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SSE calculations of imaginary-time correlations
A(⌧) = e⌧HAe�⌧HTime evolved operator:

Generalization of Handscomb's quonium MC scheme 3611 

The heat capacity is obtained taking the derivative with respect to the temperature 
of the above expression. The result is 

c = (7&/ - (7l)'W - ( 7 q W  . (3.9) 

For a product of m operators kk, ,  . . . , I I ,_  we get 

N ( k 1 , .  . . , k , ) )  (3.10) 
i= l  W 

where N ( k , ,  . . . , k,,,) denotes the number of ordered subsequences k,, . . . , k, in 
S,. The form of (3.10) indicates that it will be dillicult to obtain good estimates of 
products of a large numbcr of operators. 

Now consider an jmab'inaly-time-clependent product 

A , ( T ) A , ( O )  = e T f i / i 2 e - ' H A 1 .  (3.11) 

"dylor-expanding the cxponcntials, the ensemble average can be written 

Changing to a summation ovcr index sequences and a sum over all positions of A, 
in the operator product results in 

(3.13) 

Consider first the case or A,, A, diagonal. We then get, comparing with the weight 
function (2.2) and using (3.2), 

(3.14) 

The propagated states ( ~ ( p ) )  are periodic for all allowed configurations, so that with 
an index sequencc of length n,  la(ri + p ) )  = l a ( p ) ) .  For A,, A, not necessarily 
diagonal, consider the sirnplcst case A, = if, , ,  A2 = H k 2 .  We then get 

(3.15) 

By Taylor expansion:

Easy for diagonal (and some off-diagonal) operators 
Alternative way: SSE with time-slicing

e��H =
⇤Y

i=1

e��⌧H , �⌧ = �/⇤

Each exponential is formally expanded individually

- only changes acceptance probability in diagonal updates

- n(i) Hamiltonian operators in slice i, n(i) ≤ 𝑙 (𝑙 adjusted)
Time correlations easy to measure for 𝝉=i𝛥𝝉  (states at slice boundaries)

How is 𝝉 related to the SSE “propagation” dimension?

p

F(m) weighted correlations between states separated

by m operations with H; sharply peaked distribution

- dominated by m ~ (𝝉/β)n0, n0=n+m (expansion order)

F (m)



Spectral functions and Imaginary-time correlations

But we are faced with the difficult inverse problem:

- know G(𝝉) from QMC for some points 𝝉i, i=1,2,…,N𝝉

- statistical errors are always present 

Solution S(𝜔)  is not unique given incomplete QMC data

- the numerical analytic continuation problem

- difficult to resolve fine-structure of S(𝜔)

We want the spectral function of some operator

With QMC we can compute the imaginary-time correlator

t = �i⌧ ! G(⌧) = hO†(⌧)O(0)i = he⌧HO†e�⌧HOi ⌧ 2 [0,�], � = T�1

S(!) =
1
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m,n
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Example:
O = Sz

q =
1p
N

NX

j=1

eirj ·qSz
j

Relationship between G(𝝉) and S(𝜔):

G(⌧) =

Z 1

�1
d!S(!)e�⌧!



 QMC Data may look like this:

      𝝉                     G(𝝉)                  𝜎(𝜏) (error)

 0.100000000   0.785372902099492   0.000025785921025    
 0.200000000   0.617745252224320   0.000024110978744 
 0.300000000   0.486570613927804   0.000022858341732 
 0.400000000   0.383735739475007   0.000022201962003 
 0.600000000   0.239426314549321   0.000021230286782 
 0.900000000   0.118831597893045   0.000021304530787 
 1.200000000   0.059351045039398   0.000020983919497 
 1.600000000   0.023755763120921   0.000020963449347 
 2.000000000   0.009567293481952   0.000021147137686 
 2.500000000   0.003071962229791   0.000020315351879 
 3.000000000   0.001017989765629   0.000020635751833 
 3.600000000   0.000255665406091   0.000020493781188

From a given “guess” of the spectrum S(𝜔) we can compute

GS(⌧) =

Z 1

�1
e�⌧!S(!)d⌧

Typical 𝜎(𝜏) when G(0)=1;

as small as ~10-5 - 10-6 

in good QMC data 

We want to have a good fit to the QMC data, quantified by

�2 =
X

j

1

�2
j

[GS(⌧j)�G(⌧j)]
2

QMC statistical errors are correlated; use covariance matrix

�2 =
X

i

X

j

[GS(⌧i)�G(⌧i)]C
�1
ij [GS(⌧j)�G(⌧j)]



Manifestation of ill-posed analytic continuation problem:

- many spectra have almost same goodness-of-fit (close to best 𝜒2)

Represent the spectrum using 

some suitable generic parametrization 

- e.g., sum of many delta functions 

S(!) =
N!X

i=1

Ai�(! � !i)
!

S(!)

Need some way to regularize the spectrum, without loss of information

Parametrization and Regularization



Silver, Sivia, Gubernatis, PRB 1990; Jarrell, Gubernatis, Phys. Rep. 1996

E has a smoothing effect if 𝛼 is not too small 
- how to choose 𝛼?

- different variants of the method use different criteria 

MaxEnt method is widely used, many successes, but

- indications that E may smoothen the spectrum too much in some cases

- sharp features (edges, sharp peaks) cannot be resolved

P (S) / exp(↵E), P (S|G) / exp(��2/2 + ↵E)

D is a “default model”; result in the absence of data

Find S that maximizes P(S|G).

Entropy quantifies amount of information (structure) in the spectrum

E = �
Z

d!S(!) ln

✓
S(!)

D(!)

◆
P (S) / exp (↵E)

The Maximum Entropy (MaxEnt) method

Bayes’ Theorem: P (S|G) / P (G|S)P (S) P (G|S) / exp(��2/2)

➔ Explore alternative methods



Stochastic analytic continuation (SAC)
White 1991, Sandvik 1998; Beach 2004; Syljuåsen 2008; Sandvik 2016,…. 

In order to accurately determine Q

*, it is necessary to
carry out long simulations. If the annealing is performed too
quickly ~too few steps per Q value!, the calculated entropy
curve exhibits a broader maximum than what is seen in Fig.
1. The left side of the peak is quite stable with respect to the
annealing rate, but the location of the rapid drop is shifted
towards higher ln(1/Q). Apparently, the simulation easily
gets ‘‘trapped’’ at the local entropy maximum. Hence, in
cases where the maximum is broad and its exact position is
hard to determine, it may for practical purposes be better to
estimate Q

* as a point slightly to the left of the peak center
~which within error bars could be the actual maximum!. Fig-
ure 2 ~and more detailed studies of the dependence on Q)
also shows that the change in the spectrum before the en-
tropy peak is much less dramatic than right after, where
sharp peaks rapidly emerge. A strategy of slightly underesti-
mating ln(1/Q*) also conforms with the general notion that
too little structure is better than too much.
Next, results for both q5p/2 and q5p/4 are compared

with spectra obtained using the ‘‘classic’’ Max-Ent method1
~with a flat default!. The point Q

* used for the stochastic
method was determined as discussed above, as a point
slightly before the center of the last local entropy maximum,
where a clear increase with ln(1/Q) has ceased @e.g., for the
case q5p/2 discussed above, ln(1/Q)510.6 was used#. Fig-
ure 3 shows the results, along with histograms representing
the exact spectra. The new method clearly reproduces the
exact spectra better than the Max-Ent method, although the
Max-Ent results do also represent reasonable broadened av-
erages.
It should be stressed that although the entropy is used in

the method proposed here, the underlying philosophy differs
fundamentally from standard Max-Ent methods, where the
inclusion of the entropy in the optimization explicitly affects
the shape of the spectrum. In the stochastic method, a family
of spectra is obtained based only on the QMC data, and the
entropy is used only to single out one spectrum. Hence, any
structure in the spectrum obtained is due solely to the QMC
data.
The method has here been demonstrated only for a rela-

tively simple test case. Results obtained for other models and
dynamic quantities indicate that the behavior of the entropy
vs Q found here is typical for spectra with one broad con-
tinuous ~on some reasonable frequency scale! structure with
a single maximum. Good continued spectra are then obtained
using Q5Q

*, and for Q,Q

* two sharp peaks typically
start to emerge. In cases where the actual spectrum has two
peaks, there is also a sharp entropy drop as the global x

2

minimum is approached. However, the entropy maximum

associated with the appearance of the two peaks then occurs
at quite high x

2 values ~if the data is sufficiently good! and is
then clearly not the preferred point for sampling. For QMC
data of very high accuracy one would presumably have a
final entropy maximum before the sharp drop associated with
the emergence of additional peaks, and one could then again
use this to determine the optimum Q for sampling. In typical
cases the data may, however, be compatible with just two d

functions, and then it is difficult to determine a Q

*
~this is

then also an indication that the data are not of sufficient
accuracy for a reliable analytic continuation!. Clearly more
work is needed to clarify the general behavior of the entropy
before the method can be applied to more complicated spec-
tra than the single-maximum case considered here. A prob-
lem for practical use of the method is that the sampling
needed for an accurate determination of Q

* as well as the
averaging needed to obtain a final result are quite time con-
suming. The good agreement with the exact results obtained
here should motivate further work along these lines.

Support from the NSF under Grant Nos. DMR-95-27304
and DMR-97-12765 is acknowledged.
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2 reflects the presence of covariance in
the QMC data.
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is the entropy averaged over the sampled spectra.
The entropy of the average spectrum has a very similar behav-
ior, but depends to a certain extent on the length of the simula-
tion ~longer simulation! smoother average! higher entropy!.
A priori, it is not clear which definition is preferable.

FIG. 3. The dynamic structure factor at two different wave num-
bers, obtained by averaging spectra at the respective Q5Q

*
~con-

nected points with error bars!. The Max-Ent results are shown as
dashed curves, and the exact diagonalization results are represented
by histograms.
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Heisenberg chain, T=J/2 (PRB 1998)

- SAC seems better than MaxEnt

MaxEnt method can be regarded

as mean-field version of SAC

(Beach 2004)

Monte Carlo sampling in space of

delta functions (or other space)

- average <S(𝜔)> is smooth

[slightly different approach: Mishchenko, Prokofev, Svistunov,… papers 2000-]

𝜃 = sampling 

temperature

Sample the spectrum, using

P (S|G) / exp

✓
� �2

2⇥

◆



Test case: 
Dynamic structure 
factor of Heisenberg chain  
at T=0 (q=0.8𝜋), L=500

Compare with: 
Bethe Ansatz (almost exact) 
(Sebastian Caux)

Leads to a problem  
(Sandvik 2016) 
when N𝜔 is large 
- sampling become dominated 

by configurational entropy 
- quality of fit deteriorates

SAC and entropic pressure

White 1991, Syljuåsen 2008: 
- just use 𝜃=1 
P (S|G) / exp(��2/2)

2

A(ω) is the dynamic structure factor S(q,ω). At inverse
temperature β = 1/T it satisfies S(q,−ω) = e−βωS(q,ω).
In the method to be discussed, it is more practical to
define Aq(ω) = S(q,ω)(1 + e−βω), so that

K(τ,ω) = (e−τω + e−(β−τ)ω)(1 + e−βω)−1π−1, (5)

and integrating over ω ∈ (0,∞) in Eq. (1).
Gq(τ) is computed for a set τ ∈ {τ1, . . . , τM} with

τj = (j − 1)∆τ , and, because of symmetry properties,
only the range 0 ≤ τ ≤ β/2 has to be considered. For
large τ the statistical errors may become too large, and
he number of points M is therefore adjusted in this work
so that the relative error never exceeds 10%.
With Aq(ω) parametrized as

Aq(ω) =
N
∑

n=1

anδ(ω − ωn), ωn = (n− 1/2)∆ω, (6)

the weights {an} will first be importance-sampled using
Eq. (2) with Θ = 1 and later with a modified form. Dif-
ferent types of updates are carried out to transfer weight
between two or more δ-functions, with the normalization
Gq(0) conserved to achieve a high acceptance rate [6, 8].
Conservation of higher moments can also be incorporated
[6] but will not be done here. Single-weight updates ac-
count for the (small) normalization fluctuations.
T = 0 results for S(q,ω) are available from Bethe

Ansatz (BA) calculations including two-and four-spinon
processes, which accounts for almost all spectral weight
[18]. Comparisons will be made with these results for a
system with 500 spins [19] as well as with exact diago-
nalization results for an L = 16 chain at T > 0 [20].
Unconstrained sampling.—To illustrate the entropic

problem with the sampling method in the Θ = 1 formula-
tion [8], results for L = 500, q = 0.8π are shown in Fig. 1.
The QMC calculations were carried out at inverse tem-
perature β = 500, which for all practical purposes gives
T = 0 results for Gq(τ) at the momentum considered.
The time spacing was ∆τ = 1/4 and the number of data
pointsM = 33. The relative statistical error ofGq(τ) was
≈ 10−5 at τ1 = 0 and ≈ 0.1 at τM . Fig. 1 shows results
obtained with several different numbers of δ-functions in
the spectrum. Comparing with the BA result, a striking
feature is how the low-energy weight in the region be-
low the actual spectral edge increases with increasing N
(and the weight similarly increases also above the upper
bound at ω ≈ 3), while the peak is suppressed. The main
peak is too far to the right, and there is a second, spuri-
ous peak at higher ω which is more prominent for small
N . Overall, the results look similar to those of Ref. [8],
where only a fixed N = 1000 was used.
From a statistical-mechanics point of view, it is clear

that the sampling method suffers an entropic catastro-
phe for large N , with growing weight outside the bounds
of the actual spectrum and, therefore, a rapidly increas-
ing χ2. Results indicating a similar problem with the
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FIG. 1: (Color online) Dynamic structure factor at q = 0.8π
obtained by unconstrained sampling forω ∈ [0, 4] and differ-
ent N of the form 100× 2n (peak decreasing with increasing
N), compared with a BA result [18, 19]. The lower panel
shows details of the low-frequency part. The inset shows the
goodness of the fit versus N .

Bayesian selection of Θ can be seen in Fig. 7 of Ref. [9].
To counteract the entropy, several modifications of the
sampling method will be introduced next.
Constrained sampling at T=0.—If the spectral bounds

are known one can prevent the entropy-driven leakage of
weight and, presumably, the associated distortions of the
spectrum within the bounds. Normally the bounds are
not known, however, but, as will be shown below, they
can be approximately determined using the data. Before
discussing how this is done, another important feature re-
ducing the configurational entropy will be incorporated.
With the spectrum parametrized as in (6), no partic-

ular shape is imposed and when N becomes sufficiently
large any spectrum can be reproduced in principle. In
practice, however, one can only hope to resolve some
prominent features of the spectrum. In particular, it
is difficult to resolve a large number of closely spaced
peaks. In many cases one has some prior information,
e.g., one may know that the spectrum should have one
or two peaks. In other cases, recognizing the generic lim-
itations of analytic continuation, one may want to use a
spectrum with the smallest number of peaks consistent
with the QMC data. It is easy to impose a fixed number
of peaks in sampling a δ-function sum (6), by starting
with a spectrum with the desired number of peaks and
only proposing updates which do not create or destroy
peaks. Here a one-peak spectrum Aq(w) will be consid-
ered [which implies a single peak also in S(q,ω), unless
T is very high and a small peak at low ω can appear],

How to choose 𝜃? 
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FIG. 2: (Color online) Goodness of fit versus the lower bound
of the spectrum for an L = 500 chain at q = 0.8π, for several
choices of the upper bound ωN and∆ω = 0.0025. The vertical
line shows the location of the edge of the BA spectrum.

but the procedures can be very easily generalized to any
number of peaks.
The bounds of the spectrum can be approximately de-

termined by following the goodness of the fit as a function
of the frequencies ω1 and ωN in Eq. (6). Fixing one of the
bounds, ωN say, a minimum in χ2 versus ω1 has to exist
for large N , because the entropic effect is reduced as ω1 is
increased (provided of course that the true spectrum has
vanishing or very small low-frequency weight), thereby
reducing χ2 until ω1 starts to extend into the region of
significant weight, whence χ2 must increase. Fig. 2 shows
results of such scans for the normalized goodness of fit,
χ2/M (with M used instead of the unknown number of
degrees of freedom, Ndof [5]). The minimum χ2/M is in-
deed for ω1 close to the lower spectral edge, and there is
a sharp increase when ω1 is pushed beyond the edge. The
upper edge can be roughly determined to within 5− 10%
of the location of the sharp decay in weight at ω ≈ 3.0
in the BA spectrum. The χ2 minimum becomes more
prominent for large N (hence making it easier to deter-
mine the bounds), in accord with the entropic scenario.
When determining the spectral bounds it is safe to

allow χ2 to deviate by a statistically insignificant amount
∝ M1/2 from the best value χ2

min [given that the width of
the χ2 distribution is (2Ndof)1/2 and M ∼ Ndof ], going
toward higher ω1 where χ2 grows very rapidly, and also
toward higher ωN where the spectrum is less sensitive to
the exact location of the bound. For the lower bound in
the case of a spectrum with a sharp edge, as is the case
here, one should not push ω1 beyond the point where
the peak of the spectrum is at the lower bound. One
may also determine ω1 by separately analyzing the large-
τ behavior, though that is not always an easy task unless
the lower edge is a well isolated δ-function.
A faster way to identify the spectral bounds is to begin

with high upper edge (beyond what is expected for the
true spectrum) and identify the best lower bound under
that condition. With the lower bound fixed at its opti-
mum, the upper bound can be optimized next. Iterating
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FIG. 3: (Color online) T → 0 dynamic structure factor at
q = 0.8π for an L = 500, obtained after two adjustments of
the spectral bounds (black curve). The BA result [18, 19] is
shown with the red curve.

this procedure once or twice typically leads to excellent
bounds very close to those obtained in a two-dimensional
search. The results of such a procedure for a small spac-
ing, ∆ω = 0.001, is shown in Fig. 3. The agreement with
the BA calculation (which for q = 0.8π misses about 2%
of the known total spectral weight) is remarkably good,
to the author’s knowledge unprecedented in QMC stud-
ies. The peak location is off by only 1%, the lower bound
slightly below it deviates by less than 0.5% from the true
edge, and the non-trivial profile is reproduced.
Constrained sampling at T>0.—In addition to the

entropy-driven leakage of spectral weight outside the cor-
rect bounds, there is another entropic effect in the sam-
pling of the single-peak spectrum at high (physical) tem-
perature. In such a spectrum the volume of the accessible
configuration space as a function of the peak height am
(located at the m:th δ-function) is given by

V (am) =
(am − a0)m−1

(m− 1)!

aN−m
m

(N −m)!
, (7)

where a0 is a floor imposed on the spectrum at the low-
frequency bound, a1 ≥ a0, which again is regarded as
an adjustable parameter to be optimized by monitoring
χ2(a0). The floor at the high-frequency bound does not
appear explicitly, being at 0 since the spectrum always
decays to 0 when ω → ∞, unlike at w → 0. Sampling
a spectrum (6) without any data, i.e., with χ2 = 0 in
Eq. (2), the fact that the configurational entropy ln(V )
increases rapidly with am will drive the peak to infinite
height (since no normalization is imposed). Sampling
with χ2 will of course counter-act this effect, but still the
entropy will unduly favor a sharp peak when N is large.
This is not a serious issue in the T = 0 case discussed
above (unless N is much larger than in Fig. 3), because
this spectrum has a very sharp peak. However, at high T
the peak entropy will cause problems, unless this version
of the entropic catastrophe is counteracted by dividing
the probability (2) by V (am).
In order to obtain continuity as a function of T , con-

sampling with single peak

Heisenberg chain, S(q=0.8𝜋,ω), L=500 (T→0)

Reducing entropic pressures by constraints
Sampling under constraint of fixed number of peaks in weights A(ωi) 

- use the minimum number of peaks for which <𝜒2> is good
Optimize upper (ωN)  lower (ω1) frequency bounds of the spectrum

Entropic

distortions 

decrease when

ω1 increases

→ <𝜒2> decreases

No good fit to

data possible if

ω1 exceeds true

lower bound

→ <𝜒2> increases

<𝜒2> minimum for 
best bounds

Excluded, because 

many maximums/minimums OK for 2-peak 


spectrum



Heisenberg chain, S(q=0.8𝜋,ω), L=500, SAC and BA 3
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FIG. 2: (Color online) Goodness of fit versus the lower bound
of the spectrum for an L = 500 chain at q = 0.8π, for several
choices of the upper bound ωN and∆ω = 0.0025. The vertical
line shows the location of the edge of the BA spectrum.

but the procedures can be very easily generalized to any
number of peaks.
The bounds of the spectrum can be approximately de-

termined by following the goodness of the fit as a function
of the frequencies ω1 and ωN in Eq. (6). Fixing one of the
bounds, ωN say, a minimum in χ2 versus ω1 has to exist
for large N , because the entropic effect is reduced as ω1 is
increased (provided of course that the true spectrum has
vanishing or very small low-frequency weight), thereby
reducing χ2 until ω1 starts to extend into the region of
significant weight, whence χ2 must increase. Fig. 2 shows
results of such scans for the normalized goodness of fit,
χ2/M (with M used instead of the unknown number of
degrees of freedom, Ndof [5]). The minimum χ2/M is in-
deed for ω1 close to the lower spectral edge, and there is
a sharp increase when ω1 is pushed beyond the edge. The
upper edge can be roughly determined to within 5− 10%
of the location of the sharp decay in weight at ω ≈ 3.0
in the BA spectrum. The χ2 minimum becomes more
prominent for large N (hence making it easier to deter-
mine the bounds), in accord with the entropic scenario.
When determining the spectral bounds it is safe to

allow χ2 to deviate by a statistically insignificant amount
∝ M1/2 from the best value χ2

min [given that the width of
the χ2 distribution is (2Ndof)1/2 and M ∼ Ndof ], going
toward higher ω1 where χ2 grows very rapidly, and also
toward higher ωN where the spectrum is less sensitive to
the exact location of the bound. For the lower bound in
the case of a spectrum with a sharp edge, as is the case
here, one should not push ω1 beyond the point where
the peak of the spectrum is at the lower bound. One
may also determine ω1 by separately analyzing the large-
τ behavior, though that is not always an easy task unless
the lower edge is a well isolated δ-function.
A faster way to identify the spectral bounds is to begin

with high upper edge (beyond what is expected for the
true spectrum) and identify the best lower bound under
that condition. With the lower bound fixed at its opti-
mum, the upper bound can be optimized next. Iterating
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FIG. 3: (Color online) T → 0 dynamic structure factor at
q = 0.8π for an L = 500, obtained after two adjustments of
the spectral bounds (black curve). The BA result [18, 19] is
shown with the red curve.

this procedure once or twice typically leads to excellent
bounds very close to those obtained in a two-dimensional
search. The results of such a procedure for a small spac-
ing, ∆ω = 0.001, is shown in Fig. 3. The agreement with
the BA calculation (which for q = 0.8π misses about 2%
of the known total spectral weight) is remarkably good,
to the author’s knowledge unprecedented in QMC stud-
ies. The peak location is off by only 1%, the lower bound
slightly below it deviates by less than 0.5% from the true
edge, and the non-trivial profile is reproduced.
Constrained sampling at T>0.—In addition to the

entropy-driven leakage of spectral weight outside the cor-
rect bounds, there is another entropic effect in the sam-
pling of the single-peak spectrum at high (physical) tem-
perature. In such a spectrum the volume of the accessible
configuration space as a function of the peak height am
(located at the m:th δ-function) is given by

V (am) =
(am − a0)m−1

(m− 1)!

aN−m
m

(N −m)!
, (7)

where a0 is a floor imposed on the spectrum at the low-
frequency bound, a1 ≥ a0, which again is regarded as
an adjustable parameter to be optimized by monitoring
χ2(a0). The floor at the high-frequency bound does not
appear explicitly, being at 0 since the spectrum always
decays to 0 when ω → ∞, unlike at w → 0. Sampling
a spectrum (6) without any data, i.e., with χ2 = 0 in
Eq. (2), the fact that the configurational entropy ln(V )
increases rapidly with am will drive the peak to infinite
height (since no normalization is imposed). Sampling
with χ2 will of course counter-act this effect, but still the
entropy will unduly favor a sharp peak when N is large.
This is not a serious issue in the T = 0 case discussed
above (unless N is much larger than in Fig. 3), because
this spectrum has a very sharp peak. However, at high T
the peak entropy will cause problems, unless this version
of the entropic catastrophe is counteracted by dividing
the probability (2) by V (am).
In order to obtain continuity as a function of T , con-

SAC

BA

MaxEnt cannot  
produce a sharp  
edge with power-law 
singularity, even if  
the correct bounds  
are imposed (unless, 
perhaps, a singular 
default model is  
used). 

SAC gave the above result without any prior knowledge except for 
the single-peak assumption!



Improved SAC scheme

New parametrization:  
N𝜔 𝜹-functions of equal amplitude in continuum 
- use histogram to collect “hits”

Use monotonically increasing distances for a single peak at edge

Generalization possible for peak at arbitrary location 
or set number of more than one peak

Can build in “prominent features”, e.g., 𝜹-fktn at the edge

H. Shao & A. Sandvik - work in progress

 (some applications published)
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Example: L=16 Heisenberg chain, S(𝜋/2,𝜔), T/J=0.5
Back to fighting entropy with temperature: P (S) / exp(��2/2✓)

Dependence on the sampling temperature, 𝜽 = 10/1.1n, n=0,1,2,…
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Spectra with sharp features
Example: Delta-function and continuum, test with synthetic data 
- noise level 2*10-5 (20 𝜏 points, 𝛥𝜏=0.1)
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Fix a slightly higher sampling  
temperature to see minimum  
more clearly
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More challenging case:  
continuum touches 𝜹-fktn
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C. Tests on synthetic data
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III. SPECTRAL FUNCTIONS OF THE HAFM

A. Spectral Functions

For a quantum spin system, the spectral function
S(q,!) , namely the dynamic structure factor, measured
in inelastic neutron scattering experiment is directly re-
lated to the correlations of the operator S↵

q (↵ = x, y, z),
which is the Fourier transform of the spin operator S↵

r .
In this paper we focus on the isotropic case, so correla-
tions of the z-component are measured. With su�ciently
large inversed temperature � = 4L in the SSE sampling
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[41], our QMC measurement is taken from ⌧ = 0 to �/2
and the absolute error of the data is up to 10�4.

G(q, ⌧) =

Z 1

�1
S(q,!)e�⌧!d!, (13)

i.e., to solve the spectral functions S(q,!) numerically
from the imaginary-time dependent correlation functions
G(q, ⌧) computed with quantum Monte Carlo simula-
tions. We will briefly introduce the improved SAC
method in below and more details can be found in [40].
For the square-lattice Heisenberg antiferromagnet, the

spectral function contains a dominating �-function repre-
senting the lowest single-magnon excitation and a high-
energy continuum

S(q,!) = S
0

(q)�(! � !
0

(q)) + Sc(q,!), (14)

where !
0

(q) is the single-magnon dispersion and S
0

(q) is
the associated spectral weight. So in the parametrization
of S(q,!), we include an isolated �-function with variable
amplitude and location as the prominent spectral feature,
while the continuum is traded as a set, with the number
2000, of equal amplitude �-functions at higher frequen-
cies. In the sampling procedure, the spectral function is
normalized by setting G(⌧ = 0) = 1, and the relative
spectral weight of the single-magnon excitation, defined
as

A
0

(q) =
S
0

(q)R
d!S(q,!)

, (15)

is firstly decided by finding the lowest h�2i. The spectral
function is an accumulation in a histogram with bin size
0.001.
As a overview, we show the spectral functions for L =

48 system in a 2D color plot (FIG. 5), where the x axis

�rel = 10�5

�rel = 10�6

Synthetic spectrum, a0 = 0.4, 𝜔0 = 1

2D Heisenberg model 
Shao, Qin, Capponi, Chesi,  
Meng, Sandvik, PRX 2018 
- nearly deconfined spinons at q≈(𝜋,0)

9
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FIG. 5. The dynamic structure factor of the 2D Heisenberg
model computed on an L = 48 lattice along the path in the
BZ indicated on the x-axis. The y-axis is the energy transfer
! in units of the coupling J . The magnon peak (�-function) at
the lower edge of the spectrum is marked in white irrespective
of its weight, while the continuum is shown with color coding
on an arbitrary scale where the highest value is 1. The upper
white curve corresponds to the location where, for given q,
5% of the spectral weight remains above it.

sible for the continuum. We will argue later that the
particularly large continuum at (⇡, 0) is actually due to
nearly deconfined spinons.

It is not clear whether the small maximum to the right
of the �-function, which we see consistently through the
BZ, are real spectral features or whether they reflect the
statistical errors of the QMC data in a way similar to the
most common distortion resulting from noisy synthetic
data, as seen in the tests presented in Fig. 4. The error
level of the QMC data in all cases is a bit below 10�5,
i.e., similar to Fig. 4(a). The behavior does not suggest
any gap between the �-functions and the continuum.

B. Finite-size e↵ects

It is important to investigate the size dependence of
the spectral functions. For very small lattices at T = 0,
S(q,!) computed according to Eq. (1) for each q con-
tains only a rather small number of �-functions and it
is not possible to draw a curve approximating a smooth
continuum following a leading �-functions. Therefore,
the SAC procedure does not reproduce exact Lanczos
results very well—we obtain a single broad continuum
following the leading �-function, instead of several small
peaks. Because the continuum also has weight close to
the leading �-function, between it and the second peak
of the actual spectrum, the SAC method also slightly
underestimates the weight in the first �-function. If the
continuum emerging as the system size increases indeed
is, as expected, broad and does not exhibit any unresolv-
able fine-structure, the tests in Sec. II suggest that our
methods should be able to reproduce it.

For the 6 ⇥ 6 lattice at q = (⇡, 0), our SAC result
underestimates the weight in the magnon pole by about
5%, while the energy deviates by less than 1%. We ex-
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FIG. 6. Dynamic structure factor for L = 48 system at four
di↵erent momenta. The smallest momentum increment 2⇡/L
is denoted by k in (a) and (d). The relative amplitude of the
magnon pole is indicated in each panel.

pect these systematic errors to decrease with increasing
system size, for the reasons explained above. Fig. 7 shows
the size dependence of the single-magnon weight and en-
ergy at wavevectors q = (⇡, 0), (⇡/2,⇡/2), and (⇡,⇡).
At (⇡,⇡) we only have Lanczos results, but even with
the small systems accessible with this method it can be
seen that indeed the energy decays toward zero. The
magnon weight is large, converging rapidly toward about
97%, which is similar to the series-expansion result [20].
The energies at q = (⇡, 0) and (⇡/2,⇡/2) also converge
rapidly, with no detectable di↵erences between L = 32
and L = 48, and a smooth transition between the ED re-
sults for small systems and QMC results for larger sizes.
The magnon weight at these wavevectors show more sub-
stantial size dependence, though again the results for
the two largest sizes agree within error bars. Here the
connection between the ED and QMC results does not
appear completely smooth at (⇡, 0), due to the di�cul-
ties for the SAC method to deal with a spectrum with a
small number of �-functions. Nevertheless, even the ED
results indicate a drop in the amplitude for the larger
system sizes. The trends in 1/L for the QMC results
suggest that the weight converges to slightly below 40%
at q = (⇡, 0) and slightly below 70% at q = (⇡/2,⇡/2),
both in very good agreement with the series-expansion
results [20]. This agreement with a completely di↵erent
method provides strong support to the accuracy of the
QMC-SAC procedures. The energies also agree very well
with the previous QMC results where particular func-



spinons, and a variational RVB wave function was used to
support this interpretation. We discuss a different picture of
nearly deconfined spinons further in Sec. V. Here, we first
compare the ðπ; 0Þ and ðπ=2; π=2Þ results with the exper-
imental data without invoking any interpretation. The
experimental scattering cross section in Ref. [33] was
shown vs the frequency ω=J normalized by the estimated
value of the coupling constant (J ≈ 6.11 meV). Keeping
the same scale, we should only convolute our spectral
functions with an experimental Gaussian broadening. We
optimize this broadening to match the data and find that a
half-width σ ¼ 0.12J of the Gaussian works well for both
wave vectors—which is the same as the instrumental
broadening reported for the experiment [33]. Since the
neutron data are presented with an arbitrary scale for the
scattering intensity, we also have to multiply our Sðq;ωÞ
for each q by a common factor. The agreement with the
data at both ðπ; 0Þ and ðπ=2; π=2Þ is very good and can be
further improved by dividing ω=J in the experimental data
by 1.02, which corresponds to J ≈ 6.23 meV, which
should still be within the errors of the experimentally
estimated value. As shown in Fig. 8, the agreement with
the experiments is not perfect but probably as good as
could be expected, considering small effects of the weakly
q-dependent form factor [62] and some influence of
weak interactions beyond J (longer-range exchange, ring
exchange, spin-phonon couplings, disorder, etc.).
The single-magnon dispersion, the energy ωq in

Eq. (15), is compared with the corresponding experimental
peak position in Fig. 9. The linear spin-wave dispersion is
shown as a reference, using the best available value of the
renormalized velocity c ¼ 1.65847 [65]. Our results agree
very well with the spin-wave dispersion at low energies
and also with the experimental CFTD data [33] in the
high-energy regions where the spin-wave results are not

applicable. The only statistically significant deviation,
though rather small, is at q ≈ ðπ=2; π=2Þ, where the
experimental energy is lower (as seen also in the peak
location in Fig. 8). Still, overall, one must conclude that
CFTD is an excellent realization of the square-lattice
Heisenberg model at the level of current state-of-the-art
experiments. It would certainly be interesting to improve
the frequency resolution further and try to analyze higher-
order effects, which should become possible in future
neutron-scattering experiments.

D. Wave-vector dependence of the
single-magnon amplitude

We next look at the variation of the relative magnon
weight a0ðqÞ along the representative path of the BZ for
L ¼ 48, shown in Fig. 10. For q → ð0; 0Þ and ðπ; πÞ, the
weight a0 increases and appears to tend close to 1. From the
results exactly at ðπ; πÞ in Fig. 7, we know that, in this case,
the remaining weight in the continuum should be about 3%,
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ω q
/J

Experiment
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(0,0)
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FIG. 9. Single-magnon dispersion ωq along a representative
path of the BZ. The CFTD experimental data from Ref. [33] are
shown as blue squares, and the QMC-SAC data (the location of
the magnon pole) are shown with red circles. We also show the
linear SWT dispersion (black curve) adjusted by a common factor
corresponding to the exact spin-wave velocity c ¼ 1.65847 [65].
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FIG. 8. Comparison of the CFTD experimental data [33] (the full
scattering cross section corresponding to unpolarized neutrons) and
our QMC-SAC spectral functions at wave vectors q ¼ ðπ; 0Þ and
q ¼ ðπ=2; π=2Þ. To account for experimental resolution, we have
convoluted the QMC-SAC spectral functions in Figs. 6(b) and 6(c)
with a common Gaussian broadening (half-width σ ¼ 0.12J). We
have renormalized the exchange constant by a factor 1.02 relative
to the original value in Ref. [33], and to match the arbitrary factor
in the experimental data, we have further multiplied both of our
spectra by a factor of approximately 50.
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FIG. 10. Relative spectral weight of the single-magnon pole
along the representative path in the BZ for the L ¼ 48Heisenberg
system. Error bars were estimated by bootstrapping.
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Figure 1 | Overview of the magnetic excitation spectrum of CFTD and its interpretation in terms of spin waves or spatially extended fractional
excitations. a, Momentum and energy dependence of the (total) dynamic structure factor S(q,!) measured by time-of-flight inelastic neutron scattering.
Square boxes (black dashed) highlight the (⇡ ,0) and (⇡/2,⇡/2) wavevectors. a.u., arbitrary units. b,d, Corresponding distributions of real-space fractional
quasiparticle-pair separations, as calculated in the |SFi variational state (equation (3)), evidencing, respectively, the unbound and bound nature of the pair
excitations. c,e, Pictorial representation of a quasiparticle-pair excitation and a spin-wave excitation (magnon), respectively.

using bosonic21 or fermionic22,23 fractional quasiparticles have
long been proposed, and it has been shown that the presence
of conventional classical long-range order does not hinder the
possibility of fractional excitations24,25. By analogy with the 1D case,
these are referred to as spinons.

The magnetic excitation spectrum of various realizations of the
QSLHAF have been investigated using neutron spectroscopy,
including the parent compounds of the high-Tc cuprate
superconductors Sr2CuO2Cl2 (refs 26,27) and La2CuO4 (refs 28,29),
Sr2Cu3O4Cl2 (ref. 30) and the metal-organic compounds
Cu(pz)2(ClO4)2 (refs 31,32) and Cu(DCOO)2·4D2O (CFTD;
refs 33,34) considered here. These experiments have established
that, although SWT gives an excellent account of the low-
energy spectrum, a glaring anomaly is present at high energy
for wavevectors q in the vicinity of (⇡ , 0), where q= (qx , qy) is
expressed in the square-lattice Brillouin zone of unit length 2⇡ .
The anomaly is evident as a complete wipe out of intensity (Fig. 1a)
of the otherwise sharp excitations27,29,32,34 and as a 7% downward
dispersion along the magnetic zone boundary connecting the
(⇡/2, ⇡/2) and (⇡ , 0) wavevectors for Sr2Cu3O4Cl2 (refs 30,33)
and CFTD. Unambiguously identifying the origin of this e�ect
is complicated by the presence, in some of these materials, of
further small exchange terms such as electronic ring-exchange27,29,
further neighbour exchange31,32 or interpenetrating sublattices30. In
contrast, the deviations observed in CFTD agree with numerical
results obtained by series expansion35,36, quantum Monte Carlo37,38
and exact diagonalization39 methods for the model of equation (1),
proving that the anomaly is in this case intrinsic34. Owing to
the similarities of the measured anomaly to some aspects of the
predicted fermionic RVB excitations treated in the random phase
approximation23, it has been speculated that the anomaly might
be related to fractionalized spin excitations29,34. Given the greatly
enlarged family of experimentally accessible physical realizations of
QSLHAF owing to the advent of high-resolution resonant inelastic

X-ray scattering40–43 and the fundamental nature of the QSLHAF, it
is clearly desirable to develop a microscopic understanding of the
origin of the anomaly.

Here we present polarized neutron scattering results on CFTD
which establish the existence of a spin-isotropic continuum at
(⇡ , 0), which contrasts sharply with the dominantly longitudinal
continuum at (⇡/2,⇡/2) and with the broken spin symmetry of the
ground state. Using a fermionic description of the spin dynamics
based on a Gutzwiller-projected variational approach, we argue that
the continuum at (⇡ , 0) is a signature of spatially extended pairs of
fractional S= 1/2 quasiparticles (Fig. 1b,c). At other wavevectors,
including (⇡/2, ⇡/2) (Fig. 1d), our approach yields bound pairs
of these fractional quasiparticles and so recovers a conventional
magnon spectrum, in agreement with SWT (Fig. 1e).

Neutron scattering experiments were performed on single crys-
tals of CFTD using unpolarized time-of-flight spectroscopy (Fig. 1)
and triple-axis spectroscopy with longitudinal polarization analysis
(see Supplementary Methods). The results of our polarized exper-
iment are presented in Fig. 2 through the energy dependence ! of
the diagonal components of the dynamic structure factor S(q,!).
By combiningwavevectors fromdi�erent equivalent Brillouin zones
(see SupplementaryMethods), we can reconstruct the total dynamic
structure factor (Fig. 2a,e), and separate contributions from spin
fluctuations that are transverse to and along (Fig. 2b,c,f,g) the or-
dered moment. Within SWT, the resulting transverse and longi-
tudinal spectra are dominated by one-magnon and two-magnon
excitations, respectively. At (⇡/2,⇡/2), and at an excitation energy
of ! = 2.38(2) J , we observe a sharp, energy resolution-limited
peak (1! = 1.47(5)meV = 0.24(1) J , FWHM) which is the sig-
nature of a long-lived, single-particle excitation (Fig. 2e). Most of
the observed spectral weight is in the resolution-limited peak of
the transverse channel S?(q,!)⌘Sxx(q,!)+Syy(q,!) (Fig. 2f),
while a weak continuum extends from !/J ⇡ 2.3 to 3.4, with a
maximum around !/J ⇡2.6 in the longitudinal channel, Szz(q,!)
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High-energy (~J) excitations are non-trivial: signs of spinon deconfinement
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.

DOI: 10.1103/PhysRevX.7.041072 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.
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Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real
materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of
interacting spin-1/2 particles is far from complete. The quantum square-lattice Heisenberg antiferromagnet, for example,
exhibits a striking anomaly of hitherto unknown origin in itsmagnetic excitation spectrum. This quantum e�ectmanifests itself
for excitations propagating with the specific wavevector (⇡ ,0). We use polarized neutron spectroscopy to fully characterize
the magnetic fluctuations in the metal-organic compound Cu(DCOO)2·4D2O, a known realization of the quantum square-
lattice Heisenberg antiferromagnet model. Our experiments reveal an isotropic excitation continuum at the anomaly, which
we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the
existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous
wavevector, these fractional excitations are bound and form conventional magnons. Our results establish the existence
of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence
of frustration.

A fascinating manifestation of quantum mechanics is the
emergence of elementary excitations carrying fractional
quantum numbers. Fractional excitations were a central

ingredient to understand the fractional quantum Hall e�ect1,
and have been investigated in a range of systems, including
conducting polymers2, bilayer graphene3, cold atomic gases4 and
low-dimensional quantum magnets5,6. Among the latter class of
systems, the spin-1/2 Heisenberg antiferromagnet chain (HAFC)
is perhaps the simplest model for which the ground state and the
excitations are known exactly7–9. Excitations of the spin-1/2 HAFC
created by an elementary1S=1 process are radically di�erent from
spin waves, the coherent propagation of a flipped spin, and are
pairs of unbound fractional quasiparticles known as spinons, each
carrying a S=1/2 quantum number. The existence of spinons in the
spin-1/2 HAFC has been confirmed experimentally in a number of
quasi-1D materials10,11, but observing their 2D and 3D analogues is
an ongoing challenge6. So far, the main candidate systems comprise
geometrically frustrated magnets on the triangular12 or kagome13–15
lattices. In this work, we take a frustration-free route and focus on
the quantum (spin-1/2) square-lattice Heisenberg antiferromagnet
(QSLHAF), one of the most fundamental models in magnetism. It
is defined by the Hamiltonian

H= J
X

hi,ji
Si ·Sj (1)

where J is the antiferromagnetic exchange interaction between
nearest-neighbour spins described by spin S = 1/2 operators Si
and Sj. We provide experimental and theoretical evidence that

even in this simplest of 2D models deconfined fractional S=1/2
quasiparticles can be identified at high energies, where they
modify the short-wavelength spin dynamics and are responsible
for a significant quantum anomaly that cannot be captured by
conventional spin-wave theory.

It may seem surprising that the QSLHAF is a candidate for
hosting fractional excitations, as at a superficial level its long-
range magnetic order resembles that of a classical system. The
elementary excitations of this ‘Néel state’, when calculated using
semi-classical spin-wave theory (SWT), are bosonic quasiparticles,
known as magnons: the one-magnon spectrum is gapless, with two-
magnon excitations occupying a continuum at higher energy. The
interaction between magnons is relatively weak and leads to an
upward renormalization of the magnon energy and to scattering
between two-magnon states16,17. One- and two-magnon excitations,
respectively, correspond to fluctuations perpendicular (transverse)
and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum e�ects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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and parallel (longitudinal) to the direction of the ordered moments.

Although none of the above properties suggest the existence of
quasiparticle fractionalization, quantum e�ects are nevertheless far
fromnegligible in theQSLHAF. This is evidenced by the observation
that quantum zero-point fluctuations reduce the staggered moment
to only 62% of its fully ordered value S = 1/2 (refs 18,19).
This suggests that the QSLHAF may in fact be close to a state
preserving spin-rotation symmetry, such as the resonating-valence-
bond (RVB) state proposed byAnderson20 for the cuprate realization
of this model. In particular, fractional spin excitations present
in the RVB state may be relevant for the spin dynamics in the
Néel state, especially at high energies. Indeed, analytical theories
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Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1=2
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We study the spin-excitation spectrum (dynamic structure factor) of the spin-1=2 square-lattice
Heisenberg antiferromagnet and an extended model (the J-Q model) including four-spin interactions
Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation
of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the
sharp (δ-function) contribution to the structure factor expected from spin-wave (magnon) excitations, in
addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in
excellent agreement with recent neutron-scattering experiments on CuðDCOOÞ2 · 4D2O, where a broad
spectral-weight continuum at wave vector q ¼ ðπ; 0Þ was interpreted as deconfined spinons, i.e., fractional
excitations carrying half of the spin of a magnon. Our results at ðπ; 0Þ show a similar reduction of the
magnon weight and a large continuum, while the continuum is much smaller at q ¼ ðπ=2; π=2Þ (as also
seen experimentally). We further investigate the reasons for the small magnon weight at ðπ; 0Þ and the
nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Qmodel.
Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before
the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized
state. Based on these results, we reinterpret the picture of deconfined spinons at ðπ; 0Þ in the experiments as
nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture
of a fragile ðπ; 0Þ-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce
an effective model of the excitations in which a magnon can split into two spinons that do not separate but
fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole
pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and
lowered excitation energy at ðπ; 0Þ in the Heisenberg model, as well as the energy maximum and smaller
continuum at ðπ=2; π=2Þ. It can also account for the rapid loss of the ðπ; 0Þ magnon with increasing Q and
the remarkable persistence of a large magnon pole at q ¼ ðπ=2; π=2Þ even at the deconfined critical point.
The fragility of the magnons close to ðπ; 0Þ in the Heisenberg model suggests that various interactions that
likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon
interactions—may also destroy these magnons and lead to even stronger spinon signatures than in
CuðDCOOÞ2 · 4D2O.

DOI: 10.1103/PhysRevX.7.041072 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The spin S ¼ 1=2 antiferromagnetic (AFM) Heisenberg
model is the natural starting point for describing the
magnetic properties of many electronic insulators with
localized spins [1]. The two-dimensional (2D) square-
lattice variant of the model became particularly prominent
because of its relevance to the undoped parent compounds
of the cuprate high-temperature superconductors [2,3], e.g.,
La2CuO4; more broadly, it has also remained a fruitful
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QMC/SAC results agree well with experiments
- J-Q model demonstrates mechanism of deconfinement


