Algorithms in Lattice Gauge Theory and Spin Systems IACS, Kolkata, Jan 27 - Feb 1, 2020

Dynamics: Analytic Continuation

Anders W Sandvik Boston University and Institute of Physics, CAS, Beijing

Outline

QMC imaginary-time correlations and spectral functions The Maximum-Entropy method Stochastic analytic continuation Progress on spectra with sharp features

SIMONS FOUNDATION

NSR

SSE calculations of imaginary-time correlations

Time evolved operator: $A(\tau) = e^{\tau H} A e^{-\tau H}$ How is τ related to the SSE "propagation" dimension? By Taylor expansion: $\langle \hat{A}_2(\tau) \hat{A}_1(0) \rangle = \frac{1}{Z} \sum_{\alpha} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\tau - \beta)^n (-\tau)^m}{n! m!} \langle \alpha | \hat{H}^n \hat{A}_2 \hat{H}^m \hat{A}_1 | \alpha \rangle$

F(m) weighted correlations between states separated by m operations with H; sharply peaked distribution - dominated by $\mathbf{m} \sim (\tau/\beta)\mathbf{n}_0$, $\mathbf{n}_0=\mathbf{n}+\mathbf{m}$ (expansion order)

Easy for diagonal (and some off-diagonal) operators

Alternative way: SSE with time-slicing

$$e^{-\beta H} = \prod_{i=1}^{\Lambda} e^{-\Delta_{\tau} H}, \quad \Delta_{\tau} = \beta / \Lambda$$

Each exponential is formally expanded individually

- only changes acceptance probability in diagonal updates
- n(i) Hamiltonian operators in slice i, n(i) $\leq l$ (*l* adjusted)

Time correlations easy to measure for $\tau = i \Delta \tau$ (states at slice boundaries)

Spectral functions and Imaginary-time correlations

We want the spectral function of some operator

$$S(\omega) = \frac{1}{Z} \sum_{m,n} e^{-\beta E_n} |\langle m | \hat{O} | n \rangle|^2 \delta[\omega - (E_m - E_n)]$$

Example:

$$O = S_q^z = \frac{1}{\sqrt{N}} \sum_{j=1}^N e^{ir_j \cdot q} S_j^z$$

With QMC we can compute the imaginary-time correlator

 $G(\tau) = \langle O^{\dagger}(\tau)O(0) \rangle = \langle e^{\tau H}O^{\dagger}e^{-\tau H}O \rangle \qquad \tau \in [0,\beta], \quad \beta = T^{-1}$

Relationship between $G(\tau)$ and $S(\omega)$:

$$G(\tau) = \int_{-\infty}^{\infty} d\omega S(\omega) e^{-\tau\omega}$$

But we are faced with the difficult inverse problem:

- know G(τ) from QMC for some points τ_i , i=1,2,...,N τ
- statistical errors are always present

Solution $S(\omega)$ is not unique given incomplete QMC data

- the numerical analytic continuation problem
- difficult to resolve fine-structure of $S(\omega)$

QMC Data may look like this:

au	$G(\tau)$	$\sigma(au)$ (error)
0.100000000	0.785372902099492	0.000025785921025
0.200000000	0.617745252224320	0.000024110978744
0.300000000	0.486570613927804	0.000022858341732
0.40000000	0.383735739475007	0.000022201962003
0.60000000	0.239426314549321	0.000021230286782
0.900000000	0.118831597893045	0.000021304530787
1.200000000	0.059351045039398	0.000020983919497
1.60000000	0.023755763120921	0.000020963449347
2.00000000	0.009567293481952	0.000021147137686
2.500000000	0.003071962229791	0.000020315351879
3.000000000	0.001017989765629	0.000020635751833
3.600000000	0.000255665406091	0.000020493781188

Typical $\sigma(\tau)$ when G(0)=1; as small as ~10⁻⁵ - 10⁻⁶ in good QMC data

From a given "guess" of the spectrum $S(\omega)$ we can compute

 $G_S(\tau) = \int_{-\infty}^{\infty} e^{-\tau \omega} S(\omega) d\tau$

We want to have a good fit to the QMC data, quantified by

$$\chi^{2} = \sum_{j} \frac{1}{\sigma_{j}^{2}} [G_{S}(\tau_{j}) - G(\tau_{j})]^{2}$$

QMC statistical errors are correlated; use covariance matrix

$$\chi^2 = \sum_i \sum_j [G_S(\tau_i) - G(\tau_i)] C_{ij}^{-1} [G_S(\tau_j) - G(\tau_j)]$$

Parametrization and Regularization

Represent the spectrum using some suitable generic parametrization - e.g., sum of many delta functions

$$S(\omega) = \sum_{i=1}^{N_{\omega}} A_i \delta(\omega - \omega_i)$$

Manifestation of ill-posed analytic continuation problem:

- many spectra have almost same goodness-of-fit (close to best χ^2)

Need some way to regularize the spectrum, without loss of information

The Maximum Entropy (MaxEnt) method

Silver, Sivia, Gubernatis, PRB 1990; Jarrell, Gubernatis, Phys. Rep. 1996 Bayes' Theorem: $P(S|G) \propto P(G|S)P(S)$ $P(G|S) \propto \exp(-\chi^2/2)$ Entropy quantifies amount of information (structure) in the spectrum

$$E = -\int d\omega S(\omega) \ln\left(\frac{S(\omega)}{D(\omega)}\right) \qquad \qquad P(S) \propto \exp\left(\alpha E\right)$$

D is a "default model"; result in the absence of data

 $P(S|G) \propto \exp(-\chi^2/2 + \alpha E)$

Find S that maximizes P(S|G).

E has a smoothing effect if α is not too small

- how to choose α ?
- different variants of the method use different criteria

MaxEnt method is widely used, many successes, but

- indications that E may smoothen the spectrum too much in some cases
- sharp features (edges, sharp peaks) cannot be resolved
- → Explore alternative methods

Stochastic analytic continuation (SAC)

White 1991, Sandvik 1998; Beach 2004; Syljuåsen 2008; Sandvik 2016,.... [slightly different approach: Mishchenko, Prokofev, Svistunov,... papers 2000-]

Sample the spectrum, using $P(S|G) \propto \exp\left(-\frac{\chi^2}{2\Theta}\right)$ $\theta = \text{sampling}$ temperature

Monte Carlo sampling in space of delta functions (or other space)
average <S(ω)> is smooth

MaxEnt method can be regarded as mean-field version of SAC (Beach 2004) Heisenberg chain, T=J/2 (PRB 1998)

- SAC seems better than MaxEnt

SAC and entropic pressure

How to choose θ ?

White 1991, Syljuåsen 2008: - just use θ =1

 $P(S|G) \propto \exp(-\chi^2/2)$

Leads to a problem (Sandvik 2016)

when N_@ is large

- sampling become dominated by configurational entropy
- quality of fit deteriorates

Test case:

Dynamic structure factor of Heisenberg chain at T=0 (q= 0.8π), L=500

Compare with:

Bethe Ansatz (almost exact) (Sebastian Caux)

Reducing entropic pressures by constraints

Sampling under constraint of fixed number of peaks in weights A(ω_i) - use the minimum number of peaks for which $\langle \chi^2 \rangle$ is good

Heisenberg chain, S(q=0.8 π , ω), L=500, SAC and BA

SAC gave the above result without any prior knowledge except for the single-peak assumption!

Improved SAC scheme

H. Shao & A. Sandvik - work in progress (some applications published)

New parametrization:

N $_{\omega} \delta$ -functions of equal amplitude in continuum

- use histogram to collect "hits"

Can build in "prominent features", e.g., δ -fktn at the edge

Use monotonically increasing distances for a single peak at edge

Generalization possible for peak at arbitrary location or set number of more than one peak

Back to fighting entropy with temperature: $P(S) \propto \exp(-\chi^2/2\theta)$

Example: L=16 Heisenberg chain, $S(\pi/2,\omega)$, T/J=0.5

Dependence on the sampling temperature, $\theta = 10/1.1^{n}$, n=0,1,2,...

Choose θ such that

$$\langle \chi^2 \rangle = \chi^2_{\rm min} + a \sqrt{\chi^2_{\rm min}}, \ a \approx 1$$

statistically motivated
the spectrum fluctuates and data not overfitted

Spectra with sharp features

Example: Delta-function and continuum, test with synthetic data

- noise level 2*10⁻⁵ (20 τ points, $\Delta \tau$ =0.1)

Free sampling cannot resolve the delta function very well

high-energy peak
 is also distorted

Solution:

use one special δ -function,

- adjustable weight a_0 at ω_0
- other delta-functions can not go below ω_0

Moving weight to the main delta function affects the sampling entropy

- detected in $\langle \chi^2 \rangle$ vs a_0

Results with 1+500 δ fktns

- $\langle \chi^2 \rangle$ minimum observed
- gives the correct weight and location of the δ -function

The entire spectrum is very well reproduced

Fix a slightly higher sampling temperature to see minimum more clearly

Success here isn't surprising:

- clear separation of δ -fktn and continuum

2D Heisenberg model Shao, Qin, Capponi, Chesi, Meng, Sandvik, PRX 2018

- nearly deconfined spinons at $q \approx (\pi, 0)$

DITYSICS

Fractional excitations in the square-lattice quantum antiferromagnet Cu(DCOO)₂ · 4D₂O

B. Dalla Piazza¹*, M. Mourigal^{1,2,3}*, N. B. Christensen^{4,5}, G. J. Nilsen^{1,6}/P. Tregenna-Piggott⁵, T. G. Perring⁷, M. Enderle², D. F. McMorrow⁸, D. A. Ivanov^{9,10} and H. M. Rønnow^{1,11}

High-energy (~J) excitations are non-trivial: signs of spinon deconfinement

PHYSICAL REVIEW X 7, 041072 (2017) Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1/2 Heisenberg Antiferromagnet

Hui Shao,^{1,2,*} Yan Qi Qin,^{3,4} Sylvain Capponi,^{6,2} Stefano Chesi,¹ Zi Yang Meng,^{3,5,†} and Anders W. Sandvik^{2,1,‡}

QMC/SAC results agree well with experiments - J-Q model demonstrates **mechanism of deconfinement**