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Lecture plan

Lecture |
Stochastic Series Expansion and ground-state projection with valence bonds

- SSE: Basic idea and implementation for S=1/2 Heisenberg model
- The valence-bond basis for S=1/2 systems
- Projection of the ground state from an “amplitude product state”

Lecture |
Dynamics; spectral functions and the numerical analytic continuation problem

- Stochastic Analytic Continuation

Lecture lll
Applications
- Quick review of finite-size scaling
- Examples of conventional quantum phase transitions
- J-Q models
* valence-bond-solid states
* deconfined quantum criticality
* emergent symmetries




QMC algorithms for quantum spins (and bosons)
From operators to numbers

iatice ) e | 7. )
A = > = OO
Eipler i b S W - a0
“sign problem” if Wc not positive-definite N Z N
- consider sign-free models Z a
- Trotter slicing; discrete imaginary time;
world line methods (Suzuki 1971,...) ® o O C|> T © @ O
@ O
- Taylor expansion; stochastic series expansion (SSE) o e
(Handscomb -61,... Sandvik, Kurkijarvi -91,...) ©eocoe
O @ @ O
- Continuous time; take A:—0 limit before programming o @
(Beard, Wiese, -96, Prokof’ev et al. -96,...)
@ O
- From local updates to loops, worms, directed loops.... S ® O
(Evertz et al. -93, Beard, Wiese, -96, Prokof’ev et al. -96, e o e
Sandvik -99, Sandvik, Syljuasen -02) =0
O @ @ O
Related: ground-state projection 6 0 e e

W) ~ e PH W) [W5) — [0) when 5 — o0
- Differs only in time boundary condition (open vs periodic)




Series expansion representation of quantum stat mech
Start from the Taylor expansion (no approximation)

z=Tr{e} = 3 P S o g

&0

: . o1 (o)) O3 O4

Index sequence (string) referring to terms of H § o
m - 7 ) o @ O
H:ZH’L Sn—(al,ag,...,an) 6 =
i—=1 a/i E {].,,m} 5 o ® 2 ®

. : 4 o o a @

Break up H" into strings: e e
o0 (—ﬁ)n 0 e . 0 -0 @

= aplEl, - H-_H. |a 1 . 6 e o
Z = Z Z< 0‘ Qn as 1‘ 0> 0 i = =

n—>0 [870) Sn
We should have (always possible): H;|a ;) o< |av)
- no branching during propagation with operator string

- some strings not allowed (illegal operations)
Easy to calculate

Path weight: 117 (S5,,, ag) = (_5')” H<ap\H&p|%_1> - use as MC
e sampling weight




Expectation values

4y = 2 3 EO S | Alao)

n!
== e %)

Simplest case: Operator A diagonal in the chosen basis:

(A=Y 3 S W(Sha0)Aa)  Afa) » = 3 Alay)

n—=0 ag Sn

Energy: (H) = %Z (_ﬁ)n Z(aolH”H\om)
n=0 : aQ

Relabel terms of n-sum: replace n+1 by n

we can extend the sum

= =8 - -
B = o to include n=0, because
o Z Z w5 azo< ol H™ |0 that term vanishes

==k

Therefore the energy is: £ = —(n)/f3
Can also derive specific heat: C = (n°) — (n)? — (n)

Follows: (n) x BN, o0, x /BN




Fixed string-length scheme

* n fluctuating — varying size of the sampled configurations

 the expansion can be truncated at some Nmax=L
(exponentially small error if large enough)

- cutt-off at n=L, fill in operator string with unit operators Ho=l

n=10 |H4|H7|H;|H¢|H>|H;|Hg|H3|H3|Hs| —

L=14 |H4| I [H,| I |H{|[Hg| I |Ho|H;|Hg|H3[Hs| I |Hs

- conisider all possible locations in the sequence (L) = e

- overcounting of original strings, correct by n

~v— (=8)"(L —n)!
G 55 :

Here n is the number of H;, i>0 instances in the sequence of L ops
- the summation over n is now implicit

L can be chosen automatically by the simulation (shown later)




Relation to the expansion in interaction representation

= ' At Beard, Wiese (1996)
For H=D+V, dlagonal D, oft dlagonal 4 Prokovev, Svistunov, Tupitsyn (1996)

Sandvik, Singh, Campbell (1997)

= B 71 Tn—1 ST
7 — Zo (—1)”f0 dTlfO d7'2°"J dr, Tr{e_’BDV(Tl)V(TZ)"'V(Tn)}

0

Proceed as in SSE, only off-diagonal operators in diagrams

= B 77 Teias
2=3 3 3 | an [ ar | " anwiant, o
azn=0 -1 0 0 0

What is better, SSE or interaction rep? OL 292 084 0t
- depends on balance of diagonal 2. - 8 0
and off-diagonal energy S Y
O o [ O
- Interaction rep better if diagonal energy dominates _ , >
- SSE often better if that is not the case e oo
Extreme case: Only off-diagonal operators = =
— for example, XY model in z basis Z : f ;
Time integrals in interaction rep give "/n! & s o

- configurations identical to SSE
- SSE avoids time integrals




Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

2D square lattice

0 Z S@(()) g(b bond and site labels
Diagonal (1) and off-diagonal (2) bond operators
Hip = 31— 5@)90)
2ol rok +
HQ’b z= 2(37?(6) 7(b) 32 S@(b)SJ( )>'
Ny
e
e e e
> (Hip— Hyy) 7
b=1
Four non-zero matrix elements
(o) e Hisl Tl ey —5 0 Lo [Heel o lbe) —3
Ly Ty [ H1pl Liwy T50)) = 3 Tawy L) 1 H2p) Liy Ti0)) = 3
Partition function
o0 gn n— n2 = number of a(i)=2
v e T (off-diagonal operators)
gnzzo( ) n! SZ <oz pl;[() g ) Oé> in the sequence

Index sequence: S, = [a(0),b(0)], [a(1),b(1)],...,|la(n —1),b(n —1)




For fixed-length scheme

i
e 2
g ¥y = o| [[ Hawpowy| @) Wia,S0) = (§> ( I )
(8% SL . p:O :
p—1 (W0 (n2 even) for bipartite lattice

Propagated states: |a(p)) o H Hoh @ Frustration leads to sign problem

i=12345678 A A A AN VAN

of(i) = -1 +1 -1 -1 +1 -1 +1 +1

J
p a(p) b(p) s(p)
@ @ OO @ O @0 O
— 11 1 2 4
@eeoco0eoceo ., 0 0 0 In a program:
@ ©@000@©@0®@o0
— 9 2 4 9
@ ®© O @ OO @ O : 4
— 8 2 6 13 s(p) = operator-index string
cecececo | L 3 ¢ (P) = 2*b(p) + a(p)-1
@ @0 @0 @@ 0O 6 0 0 0 s.p_ P) +alp
©ceceoc0e00 . - diagonal; s(p) = even
e @ O0@©@O0®@®@O0O0 ! ! | - off-diagonal; s(p) = off
— 4 1 2 4
@ ® O ® O @ OO
— 3 2 6 13 : . :
©®e0o0ceo0o0e@0 0 0 0 o(i) = spin state, i=1,...,N
¢e0ceo00e0 | 5 4 9 - only one has to be stored
@ @ OO @ O @ O
— 0 | 7 14
@ ®© O O e O 0 O

SSE effectively provides a discrete representation of the time continuum!

- computational advantage; only integer operations in sampling
- 0000000000000



Monte Carlo sampling scheme

By )

Change the configuration; (., S;,) — (', S") W o)~ <§> I
. W(O/vsL) Pselect(a/asi . Oé,SL) ¢ .,:(,) ©CeO0eo0
Paccept = min —— 11| eeooeoceo
W(&asL) Pselect<aasL_>a7SL) © 000060
- 7 @ ® O ® O O @ O
Diagonal update: [0, 0|, < [1,0], ceceo0 i o
loa(p+1)) @ O O ® O ® ® O @0 0O@®@0®@eeo 000000 O0O0
e — @ ® O ® O ® OO
o)) @0 0O@0e®eo @0 0O@0@®@®eo 0000600
Attempt at p=0,...,L-1. Need to know |a(p)> : : g : Z ;_‘.’ g
» generate by flipping spins when off-diagonal operator 0000060
Pselect(a:()_)ale)zl/Nb, (bE{l,,Nb}) e 0000600
@ ® OO O O

Pselect(a:1—>a:()):1 _
n is the current power

W=1) (/2 =0 L=l *n = n+1 (a=0 — a=1)
W@=0) L-n Wela =1 & < ) *n = n-1 (a=1 = a=0)
Acceptance probabilities :
= BN
Poccent 00— 0 = i = 1]
2 —n 1)
oo b 00— i N, ,1]




Pseudocode: Sweep of diagonal updates

dop=0to L —1
if (s(p) = 0) then
b =random|1l, ..., Np]
if o(i(b)) = o(j(b)) cycle
if (random[0 — 1] < Pipsert(n)) then s(p) = 2b; n = n 4+ 1 endif
elseif (mod[s(p),2] = 0) then
if (random[0 — 1| < Premove(n)) then s(p) = 0; n = n — 1 endif
else
d{)f: s(p)/2; (i(b)) = —a(i(b)); o (§(b)) = —o(5(b))
enddo

Code explanation:

- To insert operator, bond b generated at random among 1,...,Np
- can be done only if connected spins i(b),j(b) are anti-parallel
- if so, do it with probability Pinsert(n)

- Existing diagonal operator can always be removed
- do it with probability Premove(n)

- If off-diagonal operator, advance the state
- extract bond b, flip spins at i(b),j(b)



Off-diagonal updates
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Local update

Change the type

of two operators

- constraints

* inefficient

« cannot change
winding
numbers

Operator-loop
update

* Many spins

and operators
can be
changed
simultaneously
can change
winding
numbers




Linked vertex storage W - S -
T = ] E
The “legs” of a vertex represents O e ® O ®@ O @ O
. B [=oas=nx] I ]
the spin states before (below) and o e ® O O @ O @
after (above) an operator has acted e e bl F
01 0 g | o
p v X(v) vX(v) vX(v) v X(v)
@ 0 O®@ 0 @O0
‘IZO | ‘ 11 44118| (45|30 (46|16| |47|17
o o 10 40| - | 41| - | |42] - | |[43] - _
- ! 9 36]31 [37] 7] [38] 4] [39] 5| X() = vertexlist
Lol = 8 3214 [33]15] [34]12] [35] 0| °©perator at p=X(v)
= 7 28(19| [29] 6 | [30]45| [31]36] v=4P+l,1=0,1,2,3
‘ 6 2l sl | sl -1 7] -Ilnks-to nelxt and
! 5 20| - | (21] - | [22] - | 23] - Previc o o0
— 4 1646\ |17147| (18|44 |19|28
@ O @ O
= 3 12|34| 13| 2| |14|32| |15]33
2 8| - 9| -1 L0 -| |11] -
oo ||| °
— 1 4138 [ 5139 |6 |29] | 7|37
ce | @0
L — 0 0|35 |13 21131 | 3| 1

Spin states between operations are redundant; represented by links
- network of linked vertices will be used for loop updates of vertices/operators



Pseudocode: Sweep of loop updates
constructing all loops, flip probability 1/2

d6v —0to il | e - visited vertices
if (X (vo) < 0) cycle are no longer
v = Vg needed and
if (random/[0 — 1] < %) then we set them to
traverse the loop; for all v in loop, set X(v) = —1 a negative
else value -1 or -2,
traverse the loop; for all v in loop, set X (v) = —2 to indicate that
1.C1ip the operators in the loop the loop has
- dzgdlf been visited
(-1) or visited

construct and flip a loop and flipped (-2)

o * p is the location of the operator in
do the original length-L list of
X(v) = =2 operatotors
p =wv/4; s(p) = flipbit(s(p), 0)| . by flipping bit 0 of s(p), the operator
v’ = flipbit(v, 0) :
changes from diagonal to off-

= Xlv ) X | — 2 : :
1 (= ) ol diagonal, or vice versa

enddo - moving on the vertex to the adjacent
spin is also done with a bit flip




We also have to modify the stored spin state after the loop update
- we can use the information in Vsist() and X() to determine spins to be flipped
- spins with no operators, Viist(i)=—1, flipped with probability 1/2

do:1= [ te N
V= Viirst (Z)
if (v = —1) then
if (random|0-1]< 1/2) o(2) = —o(2)
else
if (X(v) =—-2) 0(1) = —0o (i)
endif
enddo

v=Viirsi(i) is the location of the first vertex leg on site i

- flip the spin if X(v)=-2

* (do not flip it if X(v)=-1)

* no operation on i if vist(i)=—1; then it is flipped with probability 1/2



Constructing the linked vertex list 0000000 | oy vIW YAV
: ":(') | | 11 44118| |45|30| (46|16| (47|17

Traverse operator list s(p), p=0,...,L-1 S e 10 |40 - | |41] - | |42] - | |43] -
w7 — 9 36|31 (37| 7| |38| 4| |39]| 5

vertex legs v=4p,4p+1,4p+2,4p+3 | : 0 2_; . T4 bl Gatal Galo

: — 7 28(19| (29| 6 | |30)|45| |31|36

Use arrays to keep track of the first and © 9 6 2] | 1251~ 1 26l - | [27]-
last (previous) vertex leg on a given spin ° o 5 20| - | |21] - | |22] - | |23] -
» Viiest(i) = location v of first leg on site i 6 o ® O . jg jj Z 427 ij jf jf_ :‘j
» Viast(i) = location v of last (currently) leg Il o e ) nminEimEline
* these are used to create the links S P 4138] | 5139] [ 6]29] | 7|37
- initialize all elements to -1 000606060 O35 LI 3] (215 [3]1
[=0 =1 [=2 [=3

Vfirst(:) =l ‘/last(:) —
dop=0to L —1
if (s(p) = 0) cycle
vo = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
V== ‘/iast(sl); o= ‘/Iast(SQ)
if (’Ul 75 —1) then X(’Ul) — Vo, X(’U()) = V1 else Vfirst(Sl) = Vo endif
if (vg # —1) then X (v2) = vo; X (vg) = v2 else Viist(s2) = vo + 1 endif
‘/last(sl) = vg + 2; ‘/iast(SQ) = v + 3
enddo

creating the last links across the “time” boundary

dor=11To N

f = ‘/first(i)

if (f # —1) then |l = V.5t (i); X(f) =1; X(I) = f endif
enddo




Determination of the cut-off L Keep track of number of operators n

- adjust during equilibration  increase L if n is close to current L
- start with arbitrary (small) n - e.g., L=n+n/3
Example ! ' ' ' ' '
*16x16 system, B=16 = 6000
« evolution of L -
* n distribution after 5000
equilibration -
« truncation is no 4000 i
approximation = [ -
3000+ i
2000 - Z
1000 - )
000 2800 5000 n
O~ ""50 " 100 150 200 250
MC sweeps



Does it work?

Compare with exact results
* 4x4 exact diagonalization

e Bethe Ansatz; long chains

0.08

0.06

Susceptibility of the 4x4 lattice = =
0.04

» SSE results from 10'° sweeps
* improved estimator gives smaller

S

S

[\
T

e improved estimator
o standard estimator

error bars at high T (where the 10 |
number of loops is larger) 0 05 oo 2
O~ 0.5 L 1.5 2
/7]
_E/N i | | |
0.443148 ¢ o o] :
[ 3 (] :
¢ < Energy for long 1D chains
0.443146 % _
« SSE results for 10° sweeps
0.443144 O N=1024(SSE) | * Bethe Ansatz ground state E/N
— N= igﬁ;‘ g;g) exact) - SSE can achieve the ground
® N=40 L
0.443142} N =4096 (T=0, exact) state limit (T—0)
0.443140 213 é IIO 111 112 113 ll4

m B=2")




Common bases for quantum spin systems
Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet

- JZS . 5; —JZ 5287 + (S+S; +8;5H)/2]

The most common baS|s Is that of ‘up’ and ‘down’ spins
* —o—0—90

*—e—9o—¢ o — 5 7
—9 o9 o — || =|5=-1/2)
C———

One can also use eigenstates of two or more spins
- dimer singlet-triplet basis

.—..—.+.

e oo e Z =|(|u>>—|u>>/f
=

e . e = =DV
e =1 1l)

The Hamiltonian is more complicated in this basis

- but some times can be used to solve sign problems
Alet, Damle, Pujari, PRL 2016; Honecker et al., PRB 2016




The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites (i,5) = (| Til;) — | L:1;))/V2
Basis states; singlet products

N/2 /
|V7”>: H(irbvjrb)a TZI,(N/Z)' B
b=1
The valence bond basis is overcomplete and non-orthogonal

- expansion of arbitrary singlet state, not unique

W) = Z fr|V:)  all f; positive for non-frustrated system (Marshall signs)
7

All valence bond states overlap with each other

EV oNo—N/2 N = number of loops in overlap graph
Spin correlations from loop structure

<‘/Z‘§z : §]|VT> - { §(_1)$i_xj+yi_yj (i.j in same loop)

4
(V1| V) O  (ijin different loops)

More complicated matrix elements
(e.g., dimer correlations) are also
related to the loop structure

K.S.D. Beach and A.W.S,,
Nucl. Phys. B 750, 142 (2006)

Vi) [Vr) (VilVe)




Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)" projects out the ground state from an arbitrary state
CaEn = CHE e o D)

S=1/2 Heisenberg model

By 5.5 > H, I, S5 9

) ()

Project with string of bond operators

(3,5

Z H Hz‘(p)j(p) ’\If> s 7“‘0> (r = normalization) sadiera
{H;;} p=1 /// (a.d) \\\
/ - el
Action of bond operators m (b) \m
Hapl...(a,b)...(c,d)...) = \1...(@, bl 4 2 E £ %
Hycl..(a,)...(¢c,d)...) = 5]...(¢,])...{a,d)...) (i,5) = (| Tads) = [ Li13))/ V2

Simple reconfiguration of bonds (or no change; diagonal)
* no minus signs for A—B bond ‘direction’ convention
* sign problem does appear for frustrated systems




Expectation values: (A) = (0|A]|0)
Strings of singlet projectors

Pk = H Hik(p)jk (p)> = 1, = 7Ngv, (Nb = number of interaction bOIldS)
1
We have to project bra and ket states

D BilVe) = Wi, |Vo(k)) — (—Eo)"col0)
k k

> (VIPr =) (Vi(g)|Wg — (Olco(—Ep)"

g g
6-spin chain example: - 2 gk \Vi|Pg AP |Vr)
_ Zg,k<Vl|Pg*Pk|Vr>
) ( _ 290 Wt Wi (Vi) |A|V:.(R))
) ) ) ( 2 g,k WatWir (Vi(g)|Vr(K))
) I ) I ) ( I ( ( - Monte Carlo sampling
of operator strings
) ) i ( ( ( I ( - Estimators based on
(Vi > A ¢ V) transition graphs

Py Py




Sampling an amplitude-product state

A better trial state leads to faster n convergence
* bond-amplitude product state [Liang, Doucot, Anderson, 1990]

N/2 -
’\IJO> = Z H h(xrby yrb)‘vk> ykb
kob=1 ’
Update state by reconfiguring two bonds . o
a Xk,b
S hze, ye)h(2d, Ya)
P = y JC )
b d Sietb h(xanya)h(xbayb)
If reconfiguration accepted ) ‘ \ \ _ ( k ( (
e calculate change in projection weight ) ) ) (
e used for final accept/reject prob. ) ( I ( (
S. Liang [PRB 42, 6555 (1990)] ) ) | ) | ) ( ( ( (
* used parametrized state amplitudes . I
* determined parameters variationally (Vi ——> A <—— Vi)
* improved state by projection Z 1 k Z




Variational wave function (2D Heisenberg)

All amplitudes h(x,y) can be optimized

[J. Lou and A\W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

* variational energy error 50% smaller than previously best (<0.1%)

* spin correlations deviate by less than 1% from exact values

« amplitudes decay as ~1/r3 - - = = =

T — 1 1 T T ] T L ] 0.16 F
0.1F -
- ] 0.14
- -
— OA2 =
Q
= 0.01F .
S/ - 0.10 -
= ] L | L | L | |
" ] 0 20 40 60 80
-0669 = ® e
0.001} s i > S
- ; -0.670 — =
| T B e—e variational 7
4 ln(lls)) 16 24 E -0.671 E e—e projected 5
Variational energy can be further D 8
iImproved by including optimized e 7
bond correlations; Lin et al. PRB 2012 BN T et
(posted on course web site) L



More efficient ground state QMC algorithm — larger lattices

Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds
(ai,bi) = (Taly — Li13)/v2

and sample in a combined space of spins and bonds

) TO17 10 ] (— :
)I) ( (10 (:lo o o)
N

P _»
. p _»
S

O ®

.
-’
[

) 1) bl CICTCH °
<\If‘ —n) % ’\If ¢ ¢
H H"
Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
e good valence-bond trial wave functions can be used
e larger systems accessible

e sample spins, but measure using the valence bonds




T>0 and T=0 algorithms side-by-side

Finite-temperature QMC
(world lines, SSE,...)

(e} = 3~ Ctal(~H)"|o)

O OHO
@ .IO OI.—. @
O ole @10 O

periodic time boundary conditions

e Computer implementations similar

Ground state projection

Y fofalBl(—H)™|)
of

L
o

M\ R

open boundaries capped by

valence bonds (2-spin singlets)
[AWS, HG Evertz, 2010]

Trial state can conserve relevant

ground state quantum numbers
(S=0, k=0,...)




Convergence
Trial state expanded in H-eigenstates 0.14

Wo> = ch‘n> 0-12-

n S

Projected state after m-th power

W = EE ) — e 50

n 0.08

0.10

Expectation value

C

e a2 0

Q||—\
N\
Sl
AN

3
_|_
L
K
~J

(A)m = (0|A|0) 4+ ¢ X exp (—__

QOIEQ/M, A:El_EO

Conclusion:
e Mm/N >> ep/A

e in valence-bond basis A is the singlet-singlet gap
e trial state also can have fixed momentum k=0 (e.g., ampl. product state)

- only k=0 excited states (gap)

32 x 32 Heisenberg

—ap=2
=up=3
o—ap=4
e—e optimized (1)
e—e oOptimized (2)




Results for 2D Heisenberg model

g g

Sublattice magnetization H=1J Z S 7‘: e T j:;
(i) i
= Z¢Z 9 ¢z_( ):13 = 7(’]’ /T,KTL

Long-range order. <ms2>> 0 for N—

Quantum Monte Carlo

LXL lattices up to 256x256, T—0

- finite-size calculations .
A 5 ).00002
- N0 approximations 0.13- |
- extrapolation to infinite size 0.00000 ¢
. S 0 oh 000002 ]
Reger & Young (world-line) 1988  — 012 1
ms - 030(2) § (o0 '().:)2' = '().:)4' - I().:)()I
g 0.11F ]
~ 60 % of classical value ©
0.10f .« M i
AWS & HG Evertz 2010 ; 5 qLAL2)
m., — 0. 307431 0 00T 002 003 004 005 006
1/L




Improved Estimators

Valence-bond projector QMC and SSE with loop updates
are examples of cluster algorithms
- we can utilize improved estimators for many observables

Classical example: Swendsen-Wang Ising cluster algorithm

¢ + & ¢ + & N(m, = 1) = No. of filled bonds

—.—?" —.—i" W — (62|'”/T B I)N(szl)

—@ ® —@ © :
(unchanged after flip)

Write magnetization as sum over clusters of size nc, sign sc:

clus Clus clu clu

N
M=Y o= 3 o= sone (=Y Y (rencscso)
J—i: C=1 e’ € =1sC"—1
All cluster orientations (signs) have same weight
- average over all 2N°s grientations —

Nclus

e | " i 2
e 2 This is the improved estimator of <M<>
o 02:1 nc) - only depends on cluster structure




Improved estimators in SSE

Consider a given slice (propagated state)
of an SSE configuration
- label the sites according to the loops

passing through — clusters

In given loop

All spins on given
sub-lattice A or B are
same, different on A, B

Staggered magnetization on a cluster is 1/2 of the size of the cluster
- changes sign when loop flipped

- similar to magnetization in SW algorithm
Nclus
1

<Mz2,stagg> S Z Z <In’%’>
C=1
The uniform magnetization requires the staggered phases

_ 2
B S . = Rl envisite
XT AN <j21 121 P o= —1 ¢ on B site




Valence-vond Projector QMC

The transition graphs give us
Improved estimators automatically

Put the spins back in:

- staggered spin configurations on each loop
- two ‘orientations’ (loop flips) A

Average over all the two ‘
orientations of all the loops
- 2Nloop configurations

Nclus

1
<Mz2,stagg> = Z Z <n2C’>
G—1

Rotationally averaged correlation function
<‘/l ‘S)Z : gj ‘Vfr> { %(—1)xi_$j+yi—yj (i,j in same loop)
s

()  (jin different loops)

Multi-spin correlations: estimators with two or more loops
[Beach and Sandvik, Nucl. Phys. B (20006)]




Frustrated systems

Consider the full valence-bond basis, including
e normal bonds, connecting A,B spins (sublattices)
e frustrated bonds, connecting A A or B,B

For a non-frustrated system
 projection eliminates frustarted bonds
X

frustrated bonds norm ll bonds

For a frustrated system
e frustrated bonds remain and cause a sign problem
o frustrated bonds can be eliminated using over-completeness

a b C d ki a b C d a b C d

In a simulation, one of the branches can be randomly chosen
 but there is a sign problem




