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hAi = Tr{Ae��H}
Tr{e��H} !

P
c AcWcP
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From operators to numbers

- Continuous time;  take Δτ→0 limit before programming

   (Beard, Wiese, -96, Prokof’ev et al. -96,…)

- Taylor expansion; stochastic series expansion (SSE)

  (Handscomb -61,… Sandvik, Kurkijärvi -91,…)

- From local updates to loops, worms, directed loops.... 
  (Evertz et al. -93, Beard, Wiese, -96, Prokof’ev et al. -96,

  Sandvik -99, Sandvik, Syljuåsen -02) 

- Trotter slicing; discrete imaginary time; 

   world line methods (Suzuki 1971,...)
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FIGURE 54. A 1D world line configuration based on the checkerboard decomposition with the Suzuki-
Trotter approximation. Kinetic jumps of the bosons (or flips of a pair of ↑ and ↓ spins) are allowed only
across the shaded squares (plaquettes). A time slice of width Δτ consists of two consecutive rows of pla-
quettes. The six isolated plaquettes shown to the right correspond to the non-zero matrix elements, which
in the case of a spin model with Heisenberg interactions (for world lines and empty sites corresponding
to ↑ and ↓ spins, respectively) are given by Eq. (244).

(kinetic jumps) are allowed only on the shaded plaquettes in Fig. 54. More complicated
“loop” and “directed loop” updates, in which large segments of several world lines can
be moved simultaneously, are used in modern algorithms [31, 191, 33] (which we will
discuss in detail below in the context of the stochastic series expansion method).

Application to the Heisenberg model. It is useful to consider a particular example
of the path weights in the Suzuki-Trotter approach. Let us compute the plaquette matrix
elements for the antiferromagnetic Heisenberg interaction;Hi,i+1 = Si ·Si+1. In this case
the boson occupation numbers in (243) are replaced by spin states ↑ and ↓. We can
consider the world lines forming between the ↑ spins (and note that we could also draw
world lines for the ↓ spins in pictures such as Fig. 54; they occupy all sites not covered
by ↑ world lines and cross those lines at each diagonal segment). The calculation just
involves straight-forward algebra and we just list the results for the six allowed (non-
zero) matrix elements;

⟨↑i↑ j |e−ΔτHi j | ↑i↑ j⟩= ⟨↓i↓ j |e−ΔτHi j | ↓i↓ j⟩= +e−Δτ/4

⟨↑i↓ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↓i↑ j |e−ΔτHi j | ↓i↑ j⟩= +eΔτ/4 cosh(Δτ/2) (244)
⟨↓i↑ j |e−ΔτHi j | ↑i↓ j⟩= ⟨↑i↓ j |e−ΔτHi j | ↓i↑ j⟩=−eΔτ/4 sinh(Δτ/2)

The weight of a world line configuration is a product of these matrix elements, all of
which are pictorially represented in the right part of Fig. 54. Note the minus sign in
front of the off-diagonal matrix elements. For an allowed world line configuration, all
the signs cancel out due to the periodicity constraint on the world lines. This is true
also for world line methods applied to bipartite lattices in higher dimensions, but for
frustrated systems there is a “sign problem” because of the presence of both negative and
positiveweights (as we will discuss further in Sec. 5.1.3). In practice, world line methods
and similar QMC approaches are therefore useful primarily for studies of bipartite spin
systems and bosons models. For a fermion system, permutation of world lines also
lead to sign problems, except in one dimension where only global cyclical permutations
(winding) are possible (with associated signs that can be avoided by choosing periodic
or anti-periodic boundary conditions [176, 187]).
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FIGURE 61. A linked-vertex SSE configuration with one loop traced out and shown in both of its
“orientations”, along with the corresponding operator-index sequences. All spins covered by the loop are
flipped, and operators are changed, diagonal↔ off-diagonal, each time the loop passes by (with no net
change of an operator visited twice). Every vertex leg (spin) belongs uniquely to one loop, and spins not
acted upon by any operator (here the one at i= 1) can also be regarded as forming their own loops.

accomplishes all these things automatically. This class of updates was initially intro-
duced as a generalization of a cluster algorithm for the Ising model to a model where the
flipped clusters take the form of loops; the classical six-vertex model [191]. The effec-
tive world line system for the S = 1/2 Heisenberg model constructed using the discrete
Suzuki-Trotter decomposition is exactly equivalent to an anisotropic six-vertex model,
and the loop update for it was therefore at the same time a generalization of the clas-
sical cluster update to a quantum mechanical system. These ideas were subsequently
applied also to continuous-time world lines [179] as well as to the off-diagonal updates
in the SSE method [190]. The improvements in performance relative to local updates
are enormous (as in the classical case, leading to a much reduced dynamic exponent)
and brought simulations of quantum spin systems to an entirely new level. Like classical
cluster algorithms, the loop updates are in practice limited to certain classes of models,
of which the isotropic Heisenberg systems is one. Generalizations of the loop concept to
worms [32] and directed loops [33] (both of which can be regarded as loops that are al-
lowed to self-intersect during their construction, unlike the original loop updates where
no self-intersection is allowed) are applicable to a wider range of systems.
For the S = 1/2 model considered here, there is no reason to even discuss local off-

diagonal updates in any greater detail, and we will just focus on how to implement the
much more powerful loop updates. In the case of the SSE method, the operator string is
again the main focus, and the loop update corresponds to constructing a loop of operators
(vertices) connected by the links in the linked-list representation.

Operator-loop updates. An example of an operator-loop and how it is flipped is
shown in Fig. 61. Here “flipping” refers to the spins along the loop (explicitly those on
the vertex legs and implicitly in all propagated states covered by the loop) as well as
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QMC algorithms for quantum spins (and bosons)

Related: ground-state projection
| �i ⇠ e��H | 0i | �i ! |0i when � ! 1

“sign problem” if Wc not positive-definite
- consider sign-free models

- Differs only in time boundary condition (open vs periodic)



Series expansion representation of quantum stat mech
Start from the Taylor expansion (no approximation)

Z = Tr{e��H} =
1X

n=0

(��)n

n!

X

↵0

h↵0|Hn|↵0i

We should have (always possible):

- no branching during propagation with operator string 

- some strings not allowed (illegal operations)

Hi|↵ji / |↵ki

Break up Hn into strings:

Z =
1X

n=0

(��)n

n!

X

↵0

X

Sn

h↵0|Han · · ·Ha2Ha1 |↵0i

Index sequence (string) referring to terms of H

Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}H =
mX

i=1

Hi
Sn = (a1, a2, . . . , an), ai 2 {1, . . . ,m}
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Fig. 1: Graphical representations of SSE configurations for (a) the Heisenberg model and (b)
the Ising model, in both cases for a system of four spins and with the SSE cutoff M = 8. Up and
down spins correspond to solid and open circles. All the propagated states |↵(0)i, . . . , |↵(M)i,
with |↵(M)i = |↵(0)i, are shown along with the operators Hbp . The number of Hamiltonian
terms for both systems is n = 6, and the two cases of empty slots between propagated states
correspond to fill-in unit operators H0,0 at these locations. In (a) the solid and open bars
represent, respectively, off-diagonal and diagonal parts of the Heisenberg exchange operators.
In (b) the ferromagnetic Ising interactions are likewise represented by open bars, and the off-
diagonal single-spin flip operators are represented by short solid bars. The short open bars
correspond to the constant site-indexed operators.

conditions. Here a constant 1/4 has been included in the diagonal operators, and they can
therefore act with a non-zero outcome only on two antiparallel spins. There is then a useful (as
we will see) similarity with the off-diagonal terms, which also can only act on antiparallel spins.
The non-zero matrix elements of the Hamiltonian terms H1,b and H2,b are all 1/2. The weight
of an allowed SSE configuration in Eq. (18) is therefore W (SM) = (�/2)n(M � n)!, where
the unimportant overall factor 1/M ! has been omitted and there are never any minus signs (for
bipartite interactions) because the number of off-diagonal operators in the string has to be even.

Note that there is no explicit dependence of the weight on the state |↵i in Eq. (18), but the state
imposes constraints on the operator string as only operations on antiparallel spins are allowed.
An example of a very small Heisenberg SSE configuration is shown in Fig. 1(a). Note again
that the mean number of operators is / �N , and in large-scale simulations the number can be
up to many millions.

In the diagonal update, if an encountered index pair at the current location p is bp = [0, 0], a
bond index b is generated at random among all the choices. If the spins at the sites i(b), j(b)

connected by bond b are antiparallel in the currently stored state |↵(p)i, i.e., �i 6= �j , then
the operator H1,b is allowed and the index pair is set to bp = [1, b] with probability given by
(19a), where the matrix element equals 1/2. If the two spins are parallel nothing is changed and
the process moves to the next position, p ! p + 1. Each time an off-diagonal operator [2, b] is
encountered, in which case no diagonal update can be carried out, the stored state is propagated;
�i ! ��i and �j ! ��j .

For the Ising model (16), where the Ising interactions Jij are of arbitrary range, we define the
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Easy to calculate

- use as MC 

sampling weight
Path weight: W (Sn,↵0) =

(��)n

n!

nY

p=1

h↵p|Hap |↵p�1i



Relabel terms of n-sum: replace n+1 by n

hHi = � 1

Z

1X

n=1

(��)n

n!

n

�

X

↵0

h↵0|Hn|↵0i
we can extend the sum 
to include n=0, because 
that term vanishes

Therefore the energy is: E = �hni/�

C = hn2i � hni2 � hniCan also derive specific heat: 

Follows: hni / �N, �n /
p
�N

hHi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnH|↵0iEnergy:

Expectation values

hAi = 1

Z

1X

n=0

(��)n

n!

X

↵0

h↵0|HnA|↵0i, Z =
1X

n=0

X

↵0

W (Sn,↵0)

A(↵0) !
1

n

n�1X

p=0

A(↵p)

Simplest case: Operator A diagonal in the chosen basis:

hAi =
1X

n=0

X

↵0

X

Sn

W (Sn,↵0)A(↵0)



Fixed string-length scheme 
• n fluctuating → varying size of the sampled configurations

• the expansion can be truncated at some nmax=L 

   (exponentially small error if large enough)

• cutt-off at n=L, fill in operator string with unit operators H0=I

Here n is the number of Hi, i>0  instances in the sequence of L ops

- the summation over n is now implicit

�
L

n

⇥�1

=
n!(L� n)!

L!
- conisider all possible locations in the sequence

- overcounting of original strings, correct by

Z =
X

↵0

X

SL

(��)n(L� n)!

L!
h↵0|Ham · · ·Ha2Ha1 |↵0i

L can be chosen automatically by the simulation (shown later)

=�

L=14



Relation to the expansion in interaction representation
Beard, Wiese (1996)

Prokovev, Svistunov, Tupitsyn (1996)

Sandvik, Singh, Campbell (1997)

For H=D+V, diagonal D, off-diagonal V

In order to ensure a sufficiently high truncation L , the
power n is monitored during the equilibration part of the
simulation. If n exceeds some threshold value L2DL , the
sequence is augmented with, e.g., 2DL randomly positioned
unit operators, corresponding to L!L12DL . With
DL'L/10, this procedure typically converges rapidly to a
proper L . During a subsequent simulation ~of practical dura-
tion!, n never reaches L . The truncation is therefore no ap-
proximation in practice.
The details of the Monte Carlo sampling procedures of

course depend on the model under consideration. Here only
some general principles will be discussed. The operators Ĥa
can be divided into two classes; diagonal and off-diagonal.
There are no a priori constraints on the number of diagonal
operators that can appear in SL . The probability of a diago-
nal operator Ĥdia at a position p is only determined by the
state ua(p21)

&

on which it operates. The general strategy
for inserting and removing diagonal operators is to attempt
substitutions with the unit operator Ĥ0 introduced in the
fixed-length scheme ~note again that Ĥ0 is not part of the
Hamiltonian!:

Ĥ0$Ĥdia . ~19!

This update can be attempted consecutively at all positions in
SL . The weight change needed for calculating the Metropo-
lis or heat-bath acceptance probability involves only the ma-
trix element

^

a(p21)uĤdiaua(p21)
&

and the prefactor
(2b)n(L2n)!, with n changing by 61. With ua~0!& stored
initially, the subsequent states can be generated one-by-one
as needed during the updating process.
Suitable constants have to be added to the diagonal opera-

tors in order to make all the eigenvalues of 2bĤdia positive.
According to Eq. ~18!, the presence or absence of a sign
problem then depends only on the off-diagonal operators
Ĥoff . They are associated with various constraints, and can-
not be inserted or removed at a single position only. They
can always be inserted and removed pairwise. One way to do
this is in substitutions with diagonal operators, according to

Ĥdia ,Ĥdia$Ĥoff ,Ĥoff
† . ~20!

In some one-dimensional models, the above types of updates
are sufficient for achieving ergodicity. In other cases, more
complicated updates are also required ~e.g., involving off-
diagonal operators forming loops around plaquettes in 2D!.
The constraints and weight changes associated with local up-
dates involve only operators present in SL which act on a
small number of lattice sites surrounding those directly af-
fected by the update. Typically, this allows for a sampling
scheme for which the computation time scales as Nb .17

III. RELATION TO THE PERTURBATION EXPANSION

In this section we discuss the general principles of carry-
ing out importance sampling of the standard perturbation ex-
pansion in the interaction representation. This starting point
for a QMC scheme was recently suggested by Prokof’ev
et al.18 We here show that the configuration space of this
method is closely related to that of the SSE method. We also
derive expressions for several types of observables.

The partition function for a Hamiltonian

Ĥ5D̂1V̂ , ~21!

with a diagonal ~unperturbed! part D̂ and an off-diagonal
~perturbing! part V̂ is given by the standard time-ordered
perturbation expansion in V̂ ,

Z5
(

n50

`

~

21
!

nE
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtn

3Tr
$

e2bD̂V̂
~

t1!V~

t2!•••V~

tn!%, ~22!

where the time dependence in the interaction representation
is V̂(t)5etD̂Ve2tD̂. In the same way as was done for Ĥ in
the SSE scheme, V̂ can be decomposed into operators that
satisfy requirement ~4!, now in the basis $ua&% where D̂ is
diagonal:

V̂5
(

b51

MV

Ĥb . ~23!

For a given model, the operators in the above sum are of
course a subset of those in the SSE Hamiltonian ~3!, where
we now define the indexing such that all Ĥb with b.MV are
diagonal. An index sequence defining a product of n of the
operators Ĥb is defined as before. In order to distinguish the
SSE sequence Sn , which contains off-diagonal as well as
diagonal operators, from the perturbation expansion se-
quence containing only off-diagonal operators, we denote the
latter by Tn :

Tn5~

b1 ,. . . ,bn!, bpP$

1,.. . ,MV%

. ~24!

Expanding the trace in Eq. ~22! over diagonal matrix el-
ements gives

Z5
(

a

(

n50

`

(

Tn
E
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtnW~

a ,Tn ,$t%

!

,

~25!

where $t % is a short-hand for the set of times
$

t1 ,. . . ,tn%.
The weight is

W
~

a ,Tn ,$t%

!

5
~

21
!

nS e2bE0
)

p51

n

e2tp~

Ep2Ep21!D
3K aU

)

p51

n

ĤbpUaL , ~26!

where Ep5^

a(p)uD̂ua(p)
&

.
Now, consider an SSE index sequence Sn5(b1 ,. . . ,bn),

containing m indices bp<MV , corresponding to m off-
diagonal and n2m diagonal operators. Removing all the in-
dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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Expanding the trace in Eq. ~22! over diagonal matrix el-
ements gives
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(

n50

`

(

Tn
E
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b

dt1E
0

t1
dt2•••E

0

tn21
dtnW~
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!

,

~25!

where $t % is a short-hand for the set of times
$

t1 ,. . . ,tn%.
The weight is

W
~

a ,Tn ,$t%

!

5
~

21
!

nS e2bE0
)

p51

n

e2tp~

Ep2Ep21!D
3K aU

)

p51

n

ĤbpUaL , ~26!

where Ep5^

a(p)uD̂ua(p)
&

.
Now, consider an SSE index sequence Sn5(b1 ,. . . ,bn),

containing m indices bp<MV , corresponding to m off-
diagonal and n2m diagonal operators. Removing all the in-
dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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In order to ensure a sufficiently high truncation L , the
power n is monitored during the equilibration part of the
simulation. If n exceeds some threshold value L2DL , the
sequence is augmented with, e.g., 2DL randomly positioned
unit operators, corresponding to L!L12DL . With
DL'L/10, this procedure typically converges rapidly to a
proper L . During a subsequent simulation ~of practical dura-
tion!, n never reaches L . The truncation is therefore no ap-
proximation in practice.
The details of the Monte Carlo sampling procedures of

course depend on the model under consideration. Here only
some general principles will be discussed. The operators Ĥa
can be divided into two classes; diagonal and off-diagonal.
There are no a priori constraints on the number of diagonal
operators that can appear in SL . The probability of a diago-
nal operator Ĥdia at a position p is only determined by the
state ua(p21)

&

on which it operates. The general strategy
for inserting and removing diagonal operators is to attempt
substitutions with the unit operator Ĥ0 introduced in the
fixed-length scheme ~note again that Ĥ0 is not part of the
Hamiltonian!:

Ĥ0$Ĥdia . ~19!

This update can be attempted consecutively at all positions in
SL . The weight change needed for calculating the Metropo-
lis or heat-bath acceptance probability involves only the ma-
trix element

^

a(p21)uĤdiaua(p21)
&

and the prefactor
(2b)n(L2n)!, with n changing by 61. With ua~0!& stored
initially, the subsequent states can be generated one-by-one
as needed during the updating process.
Suitable constants have to be added to the diagonal opera-

tors in order to make all the eigenvalues of 2bĤdia positive.
According to Eq. ~18!, the presence or absence of a sign
problem then depends only on the off-diagonal operators
Ĥoff . They are associated with various constraints, and can-
not be inserted or removed at a single position only. They
can always be inserted and removed pairwise. One way to do
this is in substitutions with diagonal operators, according to

Ĥdia ,Ĥdia$Ĥoff ,Ĥoff
† . ~20!

In some one-dimensional models, the above types of updates
are sufficient for achieving ergodicity. In other cases, more
complicated updates are also required ~e.g., involving off-
diagonal operators forming loops around plaquettes in 2D!.
The constraints and weight changes associated with local up-
dates involve only operators present in SL which act on a
small number of lattice sites surrounding those directly af-
fected by the update. Typically, this allows for a sampling
scheme for which the computation time scales as Nb .17

III. RELATION TO THE PERTURBATION EXPANSION

In this section we discuss the general principles of carry-
ing out importance sampling of the standard perturbation ex-
pansion in the interaction representation. This starting point
for a QMC scheme was recently suggested by Prokof’ev
et al.18 We here show that the configuration space of this
method is closely related to that of the SSE method. We also
derive expressions for several types of observables.

The partition function for a Hamiltonian

Ĥ5D̂1V̂ , ~21!

with a diagonal ~unperturbed! part D̂ and an off-diagonal
~perturbing! part V̂ is given by the standard time-ordered
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~
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operators Ĥb is defined as before. In order to distinguish the
SSE sequence Sn , which contains off-diagonal as well as
diagonal operators, from the perturbation expansion se-
quence containing only off-diagonal operators, we denote the
latter by Tn :
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b1 ,. . . ,bn!, bpP$

1,.. . ,MV%

. ~24!

Expanding the trace in Eq. ~22! over diagonal matrix el-
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a(p)uD̂ua(p)
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.
Now, consider an SSE index sequence Sn5(b1 ,. . . ,bn),

containing m indices bp<MV , corresponding to m off-
diagonal and n2m diagonal operators. Removing all the in-
dices bp.MV results in a valid perturbation expansion se-
quence Tm . We use the notation @

Sn# for this ‘‘projection’’
of Sn onto the corresponding Tm ; @

Sn#5Tm . Since there are
no convergence issues for a finite lattice model at finite b,
neither for SSE nor for the perturbation expansion, the
weights of the two formulations must be related according to
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Proceed as in SSE, only off-diagonal operators in diagrams

What is better, SSE or interaction rep?

- depends on balance of diagonal 

and off-diagonal energy
- Interaction rep better if diagonal energy dominates

- SSE often better if that is not the case
Extreme case: Only off-diagonal operators

- for example, XY model in z basis

Time integrals in interaction rep give βn/n! 

- configurations identical to SSE

- SSE avoids time integrals

0.14 Anders W. Sandvik
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Fig. 1: Graphical representations of SSE configurations for (a) the Heisenberg model and (b)
the Ising model, in both cases for a system of four spins and with the SSE cutoff M = 8. Up and
down spins correspond to solid and open circles. All the propagated states |↵(0)i, . . . , |↵(M)i,
with |↵(M)i = |↵(0)i, are shown along with the operators Hbp . The number of Hamiltonian
terms for both systems is n = 6, and the two cases of empty slots between propagated states
correspond to fill-in unit operators H0,0 at these locations. In (a) the solid and open bars
represent, respectively, off-diagonal and diagonal parts of the Heisenberg exchange operators.
In (b) the ferromagnetic Ising interactions are likewise represented by open bars, and the off-
diagonal single-spin flip operators are represented by short solid bars. The short open bars
correspond to the constant site-indexed operators.

conditions. Here a constant 1/4 has been included in the diagonal operators, and they can
therefore act with a non-zero outcome only on two antiparallel spins. There is then a useful (as
we will see) similarity with the off-diagonal terms, which also can only act on antiparallel spins.
The non-zero matrix elements of the Hamiltonian terms H1,b and H2,b are all 1/2. The weight
of an allowed SSE configuration in Eq. (18) is therefore W (SM) = (�/2)n(M � n)!, where
the unimportant overall factor 1/M ! has been omitted and there are never any minus signs (for
bipartite interactions) because the number of off-diagonal operators in the string has to be even.

Note that there is no explicit dependence of the weight on the state |↵i in Eq. (18), but the state
imposes constraints on the operator string as only operations on antiparallel spins are allowed.
An example of a very small Heisenberg SSE configuration is shown in Fig. 1(a). Note again
that the mean number of operators is / �N , and in large-scale simulations the number can be
up to many millions.

In the diagonal update, if an encountered index pair at the current location p is bp = [0, 0], a
bond index b is generated at random among all the choices. If the spins at the sites i(b), j(b)

connected by bond b are antiparallel in the currently stored state |↵(p)i, i.e., �i 6= �j , then
the operator H1,b is allowed and the index pair is set to bp = [1, b] with probability given by
(19a), where the matrix element equals 1/2. If the two spins are parallel nothing is changed and
the process moves to the next position, p ! p + 1. Each time an off-diagonal operator [2, b] is
encountered, in which case no diagonal update can be carried out, the stored state is propagated;
�i ! ��i and �j ! ��j .

For the Ising model (16), where the Ising interactions Jij are of arbitrary range, we define the



Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice

bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2

(off-diagonal operators)

in the sequence



Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:


s(p) = operator-index string

• s(p) = 2*b(p) + a(p)-1 
• diagonal; s(p) = even

• off-diagonal; s(p) = off


σ(i) = spin state, i=1,...,N

• only one has to be stored

W>0 (n2 even) for bipartite lattice 

Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum! 

• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤



Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>

• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power

• n → n+1 (a=0 → a=1)

• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥



do p = 0 to L � 1
if (s(p) = 0) then

b = random[1, . . . , Nb]
if �(i(b)) = �(j(b)) cycle

if (random[0 � 1] < P
insert

(n)) then s(p) = 2b; n = n + 1 endif

elseif (mod[s(p), 2] = 0) then

if (random[0 � 1] < P
remove

(n)) then s(p) = 0; n = n � 1 endif

else

b = s(p)/2; �(i(b)) = ��(i(b)); �(j(b)) = ��(j(b))
endif

enddo

Pseudocode: Sweep of diagonal updates

Code explanation: 
• To insert operator, bond b generated at random among 1,...,Nb

   - can be done only if connected spins i(b),j(b) are anti-parallel

   - if so, do it with probability Pinsert(n)

• Existing diagonal operator can always be removed

   - do it with probability Premove(n)

• If off-diagonal operator, advance the state

   - extract bond b, flip spins at i(b),j(b)



Off-diagonal updates

Operator-loop  
update
• Many spins  

and operators 
can be 
changed 
simultaneously


• can change 
winding 
numbers

Local update
Change the type

of two operators

• constraints

• inefficient

• cannot change 

winding 
numbers



Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 

the spin states before (below) and 

after (above) an operator has acted

X( ) = vertex list

• operator at p→X(v)

   v=4p+l, l=0,1,2,3

• links to next and

   previous leg

Spin states between operations are redundant; represented by links

• network of linked vertices will be used for loop updates of vertices/operators



do v0 = 0 to 4L� 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0� 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = �1

else
traverse the loop; for all v in loop, set X(v) = �2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

 construct and flip a loop

v = v0
do

X(v) = �2
p = v/4; s(p) = flipbit(s(p), 0)
v� = flipbit(v, 0)
v = X(v�); X(v�) = �2
if (v = v0) exit

enddo

Pseudocode: Sweep of loop updates

• by flipping bit 0 of s(p), the operator 
changes from diagonal to off-
diagonal, or vice versa

• moving on the vertex to the adjacent 
spin is also done with a bit flip  

• visited vertices 
are no longer 
needed and 
we set them to 
a negative 
value -1 or -2, 
to indicate that 
the loop has 
been visited 
(-1) or visited 
and flipped (-2)

• p is the location of the operator in 
the original length-L list of 
operatotors 



We also have to modify the stored spin state after the loop update 
• we can use the information in Vfirst() and X() to determine spins to be flipped

• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = �1) then

if (random[0-1]< 1/2) �(i) = ��(i)
else

if (X(v) = �2) �(i) = ��(i)
endif

enddo

v=Vfirst(i) is the location of the first vertex leg on site i

• flip the spin if X(v)=−2

• (do not flip it if X(v)=−1)

• no operation on i if vfirst(i)=−1; then it is flipped with probability 1/2



Vfirst(:) = �1; Vlast(:) = �1
do p = 0 to L� 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 ⇥= �1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 ⇥= �1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f ⇥= �1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 

last (previous) vertex leg on a given spin

• Vfirst(i) = location v of first leg on site i

• Vlast(i) = location v of last (currently) leg

• these are used to create the links

• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1

• vertex legs v=4p,4p+1,4p+2,4p+3



Determination of the cut-off L 
• adjust during equilibration

• start with arbitrary (small) n

Keep track of number of operators n

• increase L if n is close to current L

• e.g., L=n+n/3

Example 

• 16×16 system, β=16 ⇒

•  evolution of L

•  n distribution after 
equilibration


•  truncation is no 
approximation



Does it work? 
Compare with exact results 
• 4×4 exact diagonalization

• Bethe Ansatz; long chains

⇐ Energy for long 1D chains

• SSE results for 106 sweeps

• Bethe Ansatz ground state E/N

• SSE can achieve the ground

   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒

• SSE results from 1010 sweeps

• improved estimator gives smaller

   error bars at high T (where the

   number of loops is larger)



Common bases for quantum spin systems
Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet

H = J
⇤

⇥i,j⇤

⇧Si · ⇧Sj = J
⇤

⇥i,j⇤

�
Sz

i Sz
j + (S+

i S�
j + S�

i S+
j )/2

⇥

The most common basis is that of  ‘up’ and ‘down’ spins

= | �⇥
= | �⇥ = |Sz = +1/2�

= |Sz = �1/2⇥

= (| ⇥⇤⌅ � | ⇤⇥⌅)/
⌃

2

= (| �⇥⇤+ | ⇥�⇤)/
⇧

2
= | ��⇥

= | ��⇥

One can also use eigenstates of two or more spins

• dimer singlet-triplet basis

The Hamiltonian is more complicated in this basis
- but some times can be used to solve sign problems


       Alet, Damle, Pujari, PRL 2016; Honecker et al., PRB 2016



|Vr� =
N/2�

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/

⌃
2Valence-bonds between sublattice  A, B sites

A
B

Basis states; singlet products

|�� =
�

r

fr|Vr�

The valence bond basis is overcomplete and non-orthogonal

• expansion of arbitrary singlet state, not unique

all fr positive for non-frustrated system (Marshall signs)

�Vl|Vr⇥|Vr�|Vl�

All valence bond states overlap with each other
�Vl|Vr⇥ = 2N��N/2 N� = number of loops in overlap graph

Spin correlations from loop structure
⇤Vl|⇤Si · ⇤Sj |Vr⌅

⇤Vl|Vr⌅
=

�
3
4 (�1)xi�xj+yi�yj

0
(i,j in same loop)

(i,j in different loops)

More complicated matrix elements 

(e.g., dimer correlations) are also 

related to the loop structure

K.S.D. Beach and  A.W.S., 

Nucl. Phys. B 750, 142 (2006)



(-H)n projects out the ground state from an arbitrary state

H =
�

�i,j⇥

⌅Si · ⌅Sj = �
�

�i,j⇥

Hij , Hij = (1
4 � ⌅Si · ⌅Sj)

S=1/2 Heisenberg model

Project with string of bond operators
�

{Hij}

n⇥

p=1

Hi(p)j(p)|�⇥ � r|0⇥ (r = normalization)

Simple reconfiguration of bonds (or no change; diagonal)

• no minus signs for A→B bond ‘direction’ convention 

• sign problem does appear for frustrated systems

Action of bond operators

Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/
⌃

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(�H)n|�⇤ = (�H)n
�

i

ci|i⇤ ⇥ c0(�E0)n|0⇤



Expectation values: �A⇥ = �0|A|0⇥
Strings of singlet projectors

Pk =
n�

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
�

k

Pk|Vr⇤ =
�

k

Wkr|Vr(k)⇤ ⇥ (�E0)nc0|0⇤

�

g

⇤Vl|P �
g =

�

g

⇤Vl(g)|Wgl ⇥ ⇤0|c0(�E0)n

|Vr��Vl| A

- Monte Carlo sampling 

   of operator strings

- Estimators based on 

   transition graphs

6-spin chain example: �A⇥ =
�

g,k�Vl|P �
g APk|Vr⇥�

g,k�Vl|P �
g Pk|Vr⇥

=
�

g,k WglWkr�Vl(g)|A|Vr(k)⇥
�

g,k WglWkr�Vl(g)|Vr(k)⇥



Sampling an amplitude-product state
A better trial state leads to faster n convergence
• bond-amplitude product state [Liang, Doucot, Anderson, 1990] 

|�0� =
�

k

N/2⇥

b=1

h(xrb, yrb)|Vk�

Update state by reconfiguring two bonds

d

c

b

a

Paccept =
h(xc, yc)h(xd, yd)
h(xa, ya)h(xb, yb)

If reconfiguration accepted
• calculate change in projection weight
• used for final accept/reject prob. 

S. Liang [PRB 42, 6555 (1990)]
• used parametrized state amplitudes
• determined parameters variationally
• improved state by projection

|Vr��Vl|� �A



Variational wave function (2D Heisenberg)
All amplitudes h(x,y) can be optimized  

[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

• variational energy error 50% smaller than previously best (<0.1%)

• spin correlations deviate by less than 1% from exact values

• amplitudes decay as ∼1/r3

measurement procedures for equal-time observables with re-
spect to the original VB projector algorithm, we refer to the
literature for this aspect of the simulations.20,21,30

In some applications, instead of measuring a ground-state
expectation value !0"A"0#, one is interested in matrix ele-
ments of the form !R"A"0#, where "R# is a reference state,
normally the Néel state in the z-component basis. This cor-
responds to sampling the wave function itself $generating the
basis states with probability proportional to the positive-
definite wave-function coefficients%. The energy $including
excitation energies in different momentum sectors% can be
computed like this,20,21 and also calculations of entanglement
entropy can be formulated in this way.34–36 A mixed matrix
element can also easily be sampled in the spin-bond basis. In
this case, the loops terminating on the state "R# should never
be flipped because "R# is a single-spin configurations $in the
case of the Néel state—other reference states are also pos-
sible and would require other rules for the boundary loops%.

V. RESULTS

As a demonstration of the efficiency of the methods, we
present results for the sublattice magnetization Ms of the 2D
Heisenberg model. This quantity has been calculated in nu-
merous previous studies, but the currently best published es-
timate, Ms=0.3070$3%, obtained on the basis of T&0 QMC
results for L up to 16, is already more than ten years old.12

Recently, the density-matrix renormalization-group method
was used to calculate Ms on rectangular lattices with N
&200 sites, giving a result consistent with the above value
and with a similar precision.37 Results have also been ob-
tained using finite-T data and scaling forms that, in principle,
allow simultaneous T→0, L→! extrapolations. With L up
to 160 and 1 /T up to 12, Ref. 38 reported Ms=0.30793$3%.
This is higher than $and well outside the error bars of% the
T=0 results cited above. In order to resolve the discrepancy,
it would be useful to have ground-state results based on
larger lattices. Here we consider L up to 256.

Below we first discuss convergence aspects of the VB
method, including the behavior with different trial states, and
then present results and finite-size extrapolation of the sub-
lattice magnetization.

A. Variational calculations

We first discuss the amplitude-product states used as trial
states for the ground-state projection. The quality of the
variationally optimized states 'i.e., all amplitudes h$x ,y%
were determined by variational Monte Carlo simulations, as
explained in Sec. III( is illustrated in Fig. 5 for system sizes
L up to 80. Results for up to L=32 were previously presented
in Ref. 24—here we improve slightly on those results, thanks
to the more efficient sampling procedures allowing for better
statistics for the computed derivatives. The results are com-
pared to converged results of the QMC projector method
$which can be considered as exact to within small statistical
errors that are not visible in the graphs%. The relative error of
the variational energy is "0.1% for large systems. The sub-
lattice magnetization falls on a smooth curve in good agree-

ment $better than 1%% with the projected data for L up to
&24. For larger systems, the behavior becomes erratic, how-
ever, being higher or lower $outside the error bars% than the
projected data in a seemingly random way. This can be ex-
plained as due to the energy becoming less sensitive to the
long-range spin correlations for increasing L, i.e., there are
states with significantly different sublattice magnetizations
but energy expectation values that are the same to within the
precision of the simulations. To obtain the correct best sub-
lattice magnetization for large L $corresponding to the mini-
mum energy determined to extreme precision% with the varia-
tional approach therefore requires unreasonably long
simulations $which is true in general in variational calcula-
tions; not just with the amplitude-product states used here%.

B. Convergence of the ground-state projection

Turning now to results of the projector method, it is useful
to test the convergence as a function of the projection power
m for different trial wave functions. Clearly, the preferred
option is to use the best variational state available but opti-
mizing an amplitude-product state also takes some time $de-
pending on how close to the energy minimum one strives%,
and, as we have seen above, for large systems it may not
even be possible to find the truly optimal amplitudes. Figure
6 shows the energy and the sublattice magnetization for L
=32 versus m /N, obtained using trial states with amplitudes
h$r%=1 /rp, p=2,3 ,4, without any optimization, as well as
with amplitudes obtained in two independent optimization
runs. It is known24,39 that the optimal amplitudes decay as
1 /r3 asymptotically but the short-bond amplitudes show de-
viations from this form. Indeed, the best convergence is seen
for p=3 but with optimized amplitudes, the convergence is
still much faster. Although the two optimized variational
states have very similar energies, there are still clear differ-
ences in the convergence of the sublattice magnetization, re-
lated to the insensitivity of the variational energy to the long-
distance spin correlations.
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E
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FIG. 5. $Color online% The energy $lower panel% and the squared
sublattice magnetization $upper panel% of the optimized variational
and ground-state projected states.
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Variational energy can be further

improved by including optimized

bond correlations; Lin et al. PRB 2012
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Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods

(world-line and stochastic series expansion methods)

• good valence-bond trial wave functions can be used

• larger systems accessible

• sample spins, but measure using the valence bonds

|����|

A

More efficient ground state QMC algorithm → larger lattices 



T>0 and T=0 algorithms side-by-side

• Computer implementations similar
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(world lines, SSE,...)

!22"# and there is no explicit dependence in Eq. !26" on the
operator string !! ," ,e , f" and spin !i , j" indices. An example
configuration is shown in Fig. 4. On a bipartite lattice, the
weights are positive since minus signs present in the states
$Eq. !6"# compensate those arising from an odd number of
off-diagonal operators $Eq. !25"# !or, equivalently, all signs
could be eliminated by a sublattice rotation2".

C. Sampling method

We now briefly describe the Monte Carlo sampling pro-
cedures. Starting with VB configurations Vr , Vl !where nor-
mally one would take Vr=Vl for simplicity" and compatible
spin configurations Zr=Zl, an initial string containing only
diagonal operators Hab!1" can be used !consistent with the
constraint that each operator must act on two antiparallel
spins". Successive configurations maintaining the constraints
are generated with three types of updates.

In the first update—the “diagonal update”—the combined
string P!"

ef
= !P"

f
"TP!

e
!where the transpose T of an operator

sequence just corresponds to writing it in the reverse order,
corresponding to acting with it on a bra state instead of a ket"
containing 2m operators is traversed and each diagonal op-
erator in it is updated !moved to a randomly selected bond",
under the condition that it acts on antiparallel spins. This step
corresponds to changing the vertex breakup in the original
world-line loop scheme.1,2 As in the SSE method,5,10 the con-
straints are checked by keeping the single state Z!p−1",
which is needed for moving a diagonal operator at location p
in the string. This state is obtained by acting on the originally
stored ket spin configuration Zr!0"=Zr with the first p opera-
tors in the sequence. It is changed !by flipping two spins"
whenever an off-diagonal operator is encountered in the
course of traversing the positions p=1, . . . ,2m. At the end of
this procedure, the stored bra state is obtained, Zr!2m"=Zl,
for a valid configuration.

In a second updating stage—the loop update—a linked
list of operator vertices is first constructed. A vertex consists
of the spin states “entering” and “exiting” an operator, as
shown in Fig. 4. They connect, forming loops. The only dif-
ference with respect to the operator loops in the SSE method
is that a loop can now be connected to the ket or bra VB
state, and the valence bonds constitute parts of such loops

!replacing the periodic boundary conditions used at T#0".
To keep nonzero !indeed, constant" matrix elements of the
operators Hab, all spins on a loop have to be flipped together,
in the process changing also Hab!1"↔Hab!2". Each loop is
flipped with probability 1/2. In practice, all loops are con-
structed, and the random decision of whether or not to flip a
loop is made before the loop is constructed. Vertices in a
loop that is not to be flipped are just flagged as visited so that
the same loop is not traversed more than once !i.e., a loop
construction is always started from a vertex leg that has not
yet been visited".

The reason for constructing all the clusters and flipping
each with probability 1/2, instead of generating single clus-
ters starting from random seed locations and flipping them
with probability 1 !as in the classical Wolff method31", is that
the de facto loop structure is only changed when performing
the diagonal updates. One would therefore potentially gener-
ate the same cluster several times, which would lead to lower
efficiency compared to uniquely identifying all clusters and
flipping each at most once. In principle, one could modify
the algorithm with combined diagonal and cluster updates
but this is more complicated and would probably not lead to
improvements in efficiency in most cases.

A flipped loop including one or several VBs will cause
spin flips in the stored spin configurations Zl or Zr. In the
loop updating procedure, we do not have to explicitly keep
track of any other spins than those in Zl and Zr. The four
spins at the operators !the vertex legs" are irrelevant at the
loop updating stage because all the vertices automatically
involve only operations on antiparallel spins, both before and
after a loop flip. For each vertex encountered when con-
structing a loop, we therefore simply have to change the
operator-type index, 1↔2, in the list of operators !i.e., the
same list P!"

ef
used in the diagonal update and to construct

the linked vertex list".
The third type of update—the state update—is identical to

the VB reconfigurations described in Sec. III for the varia-
tional calculation. Normally one would use an amplitude-
product state with coefficients in Eq. !9", which enter in the
weight $Eq. !26"#. Reconfigurations of the bonds can be car-
ried out with either two-bond or bond-loop moves, as ex-
plained in Sec. III. They only change the loop connections at
the VB “end caps.”

D. Measuring observables

When measuring operator expectation values, one can go
back to a pure VB !=loop" representation, using the estimator
$Eq. !23"#. This corresponds to summing over all loop orien-
tations. Most quantities of interest can be expressed in terms
of the loops in the transposition graph corresponding to
%Vl!"" &Vr!!"'.2,23,29,30 Note that these transposition-graph
loops can also be obtained from the “space-time” loops con-
structed in the updates, by connecting the sites !in practice,
just assigning a label, the loop number $i" crossed by the
same loop at the propagation midpoint !indicated by a
dashed line in Fig. 4". The space-time loops can also provide
access to imaginary-time correlation functions2 in the ground
state !see Sec. IV A". Since there are no differences in the

FIG. 4. !Color online" A VB-spin-operator configuration con-
tributing to %%&!−H"2m&%' for a four-site system with m=2. The
arcs to the left and right indicate VB states %Vl&, &Vr' and the two
columns of filled and open circles represent ↑ and ↓ spins of com-
patible spin states %Zj

l
&, &Zj

r
'. The spins at the four operators !verti-

ces" are also indicated. There are three loops, part of which consist
of VBs. Expectation values are evaluated at the midpoint indicated
by the dashed line.
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open boundaries capped by 

valence bonds (2-spin singlets)

[AWS, HG Evertz, 2010]

Ground state projection

Trial state can conserve relevant 

ground state quantum numbers 

(S=0, k=0,...)
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Expectation value

Conclusion: 
• m/N >> e0/Δ


• in valence-bond basis Δ is the singlet-singlet gap

• trial state also can have fixed momentum k=0 (e.g., ampl. product state)

    - only k=0 excited states (gap)

In some cases, the convergence of the sublattice magne-
tization is nonmonotonic !while the energy always has to
converge monotonically", as illustrated in Fig. 7. The behav-
ior depends on details of the variationally optimized ampli-
tudes; likely nonmonotonicity can be traced to incomplete
optimization.

C. Extrapolation of the sublattice magnetization

We now discuss large-scale calculations for the 2D
Heisenberg model. We have calculated Ms

2 as well as the
spin-correlation function C!L /2,L /2", which equals Ms

2

when L→!, for lattices with L up to 256, making sure that
the results are well converged to the ground state in all cases.
The raw data are listed in Table I The results are graphed
versus 1 /L in Fig. 8, along with polynomial fits11 used to
extrapolate to L=!. The extrapolated Ms

2 and C!L /2,L /2"
agree statistically and are stable with respect to the range of

L included and the order of the polynomials. The statistics is
slightly better for C and the polynomial needed to fit it is one
order smaller than for Ms

2. Based on C, we estimate Ms
=0.30743!1", somewhat above the previous T=0 results.12,37

The error bar is more than an order of magnitude smaller.
The higher value from finite-T simulations38 can be ruled out
!differing by more than 15 of its error bars from our result".
This illustrates difficulties with unknown corrections to the
!T ,L" scaling forms. Extrapolating T=0 properties directly
as a function of a single parameter !1 /L" can in general be
expected to be more reliable. Indeed, since the appearance of
the !unpublished" original short version of the present
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FIG. 6. !Color online" Convergence of the energy !lower panel"
and the squared sublattice magnetization !upper panel" for L=32
states projected using different trial states; amplitude-product states
with amplitudes h!r"=1 /rp !p=2,3 ,4" as well as with h!x ,y" deter-
mined by minimizing the energy !in two independent optimizations,
giving slightly different amplitudes".
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FIG. 7. !Color online" Convergence of the squared sublattice
magnetization for L=64 !L=20 in the inset", using an optimized
trial state. The dashed lines show the result " error bar of SSE
calculations !using loop updates" at very low temperatures !#
=8192 in the case of L=64".

TABLE I. Projector QMC results for the squared sublattice
magnetization and the correlation function at maximal separation
for several L$L lattices. The numbers within parentheses indicate
the statistical error !one standard deviation of the average" in the
last digit of the displayed values.

L Ms
2 C!L /2,L /2"

8 0.177843!1" 0.137595!2"
10 0.159372!2" 0.128552!2"
12 0.147448!2" 0.122586!2"
14 0.139153!2" 0.118380!2"
16 0.133067!2" 0.115263!2"
18 0.128412!2" 0.112857!2"
20 0.124748!2" 0.110954!2"
24 0.119350!2" 0.108125!2"
28 0.115573!2" 0.106126!2"
32 0.112782!2" 0.104636!2"
40 0.108943!3" 0.102571!3"
48 0.106431!3" 0.101208!3"
56 0.104661!3" 0.100239!3"
64 0.103345!3" 0.099514!4"
80 0.101523!4" 0.098501!4"
96 0.100325!5" 0.097831!5"

128 0.098843!16" 0.096990!17"
192 0.097371!11" 0.096161!11"
256 0.096669!17" 0.095765!16"
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FIG. 8. !Color online" Finite-size scaling of the sublattice mag-
netization. The curves are polynomials fitted to 16%L%256 data
!cubic for C and fourth order for Ms

2". The inset shows the deviation
of the simulation results for C!L /2,L /2" from the corresponding fit.
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32⇥ 32 Heisenberg



L⨉L lattices up to 256⨉256, T→0

AWS & HG Evertz 2010
ms = 0.30743(1)

H = J
�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young (world-line) 1988
ms = 0.30(2)
� 60 % of classical value

Results for 2D Heisenberg model
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Improved Estimators
Valence-bond projector QMC and SSE with loop updates

are examples of cluster algorithms

- we can utilize improved estimators for many observables
Classical example: Swendsen-Wang Ising cluster algorithm 

For a fixed bond configuration, spins forming clusters
(spins connected by �filled� bonds) can be flipped and then
give a configuration (term) with the same weight in Z (Fb=1
for all bonds between clusters, Fb unchanged inside cluster).

Swendsen-Wang algorithm
• Start from spin configuration
• Generate bond configuration
• Identify clusters of spins connected by bonds
• Flip each cluster with probability 1/2
• Generate new bonds with the current spins, etc

Spins not connected to any filled bonds are single-spin clusters

(unchanged after flip)

Write magnetization as sum over clusters of size nC, sign sC:

M =
NX

i=1

�i =
NclusX

C=1

X

i2C

�i =
NclusX

C=1

sCnC hM2i =
NclusX

C=1

NclusX

C0=1

hnCnC0sCsC0i

hM2i =
NclusX

C=1

hn2
Ci

All cluster orientations (signs) have same weight

- average over all 2Nclus orientations →

This is the improved estimator of <M2>

- only depends on cluster structure



Improved estimators in SSE
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FIGURE63. Example of clusters formed by space-time loops passing through a propagated state |α(p)⟩
(for arbitrary fixed p). Here there are six such clusters, labeled 1, . . . ,6. Open and solid circles correspond
to ↑ and ↓ spins, respectively, in |α(p)⟩. When a loop is flipped, all spins in the corresponding cluster are
also flipped, as indicated here with two different configurations corresponding to the two states of cluster
1 (the sites enclosed by larger circles). Note that the spins within each cluster are always in one of the two
staggered configurations.

5.2.5. Improved estimators

The operator-loop update in the SSE method (as well as loop updates more broadly
[31, 191]) is an example of a cluster update. Such non-local updates were first developed
for classical Monte Carlo simulations of the Ising model [118]. One aspect of cluster
methods is that it is possible to take averages of estimators for physical quantities over
all orientations of the clusters, because the configuration weight does not change upon
flipping a cluster. This is immediately clear in SSE simulations of S = 1/2 Heisenberg
models, because the weight (264) only depends on the number of operators n in the
sequence, which does not change when a loop is flipped. If the number of clusters (here
operator-loops) is m, then the total number of equal-weight configurations is 2m, and
the average over all of these configurations can provide a much less noisy estimator
than one depending on just a single configuration. The crucial point here is that, for
many important quantities, this average can be computed analytically, and the resulting
improved estimator is of a simple form that can be evaluated rapidly in simulations. Here
we only discuss the rather simple cases of the the static (equal-time) structure factor and
the uniform magnetic susceptibility. For improved estimators for some other quantities,
see the review article by Evertz [31].
Consider a propagated state |α(p)⟩, e.g., the stored |α(0)⟩. In the linked vertex

representation of the SSE configuration, illustrated in Fig. 61, there is a loop passing
through each of the spins in this state (with spins without operators acting on them also
considered as individual loops). The same loop can go through many spins in |α(0)⟩, and
all spins belonging to the same loop form a cluster, in the sense that if the loop is flipped
all the spins in the clusters are flipped simultaneously. Note that the loops are objects
in space-time, while the clusters discussed here are defined on a cut at fixed time (here
propagation index p). A cluster can consist of several parts that appear disconnected in
space, since such pieces can be connected in the larger space-time volume where the
loops exists. An example of clusters on a 2D lattice is shown in Fig. 63
Since we are dealing with a bipartite lattice, and because the loop structure is such

that the spin on a vertical loop segment (referring to pictures such as Fig. 61) changes
each time one changes direction when moving along a loop, the spins within a cluster
formed at a given state |α(p)⟩ always have a staggered structure. The staggered magne-
tization ms( j) of a cluster labeled j, with j = 1, . . . ,C, where C is the total number of
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FIGURE 61. A linked-vertex SSE configuration with one loop traced out and shown in both of its
“orientations”, along with the corresponding operator-index sequences. All spins covered by the loop are
flipped, and operators are changed, diagonal↔ off-diagonal, each time the loop passes by (with no net
change of an operator visited twice). Every vertex leg (spin) belongs uniquely to one loop, and spins not
acted upon by any operator (here the one at i= 1) can also be regarded as forming their own loops.

accomplishes all these things automatically. This class of updates was initially intro-
duced as a generalization of a cluster algorithm for the Ising model to a model where the
flipped clusters take the form of loops; the classical six-vertex model [191]. The effec-
tive world line system for the S = 1/2 Heisenberg model constructed using the discrete
Suzuki-Trotter decomposition is exactly equivalent to an anisotropic six-vertex model,
and the loop update for it was therefore at the same time a generalization of the clas-
sical cluster update to a quantum mechanical system. These ideas were subsequently
applied also to continuous-time world lines [179] as well as to the off-diagonal updates
in the SSE method [190]. The improvements in performance relative to local updates
are enormous (as in the classical case, leading to a much reduced dynamic exponent)
and brought simulations of quantum spin systems to an entirely new level. Like classical
cluster algorithms, the loop updates are in practice limited to certain classes of models,
of which the isotropic Heisenberg systems is one. Generalizations of the loop concept to
worms [32] and directed loops [33] (both of which can be regarded as loops that are al-
lowed to self-intersect during their construction, unlike the original loop updates where
no self-intersection is allowed) are applicable to a wider range of systems.
For the S = 1/2 model considered here, there is no reason to even discuss local off-

diagonal updates in any greater detail, and we will just focus on how to implement the
much more powerful loop updates. In the case of the SSE method, the operator string is
again the main focus, and the loop update corresponds to constructing a loop of operators
(vertices) connected by the links in the linked-list representation.

Operator-loop updates. An example of an operator-loop and how it is flipped is
shown in Fig. 61. Here “flipping” refers to the spins along the loop (explicitly those on
the vertex legs and implicitly in all propagated states covered by the loop) as well as
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Consider a given slice (propagated state) 

of an SSE configuration

• label the sites according to the loops   

passing through → clusters

In given loop

All spins on given 

sub-lattice A or B are 
same, different on A, B

Staggered magnetization on a cluster is 1/2 of the size of the cluster

- changes sign when loop flipped

- similar to magnetization in SW algorithm

hM2
z,staggi =

1

4

NclusX

C=1

hn2
Ci

The uniform magnetization requires the staggered phases

clusters, is then ms( j) = ±n j, where n j is the number of spins in cluster j. For a given
configuration, the total staggered magnetization Ms = ∑Cj=1ms( j). When averaging the
square of this sum over all the different realizations of cluster orientations, the cross
terms ⟨ms(i)ms( j)⟩= 0 (for i ̸= j). One is then left with just the i= j contributions, and
the staggered structure factor is simply given by

S(π) =
1
4N

〈

C

∑
j=1

n2j

〉

. (282)

Structure factors at other wave-vectors q are only marginally more complicated, de-
manding in place of the cluster sizes n j a summation over each cluster of the phases
φrexp(iq · r), where r refers to sites on a given cluster and φr = ±1 is the staggered
phase factor, which takes care of the staggered spin structure within the clusters (and the
denominator 4 corrects for the fact that the spin values are ±1/2). One can here also use
the fact that the true structure factor must be real-valued for any q.
In principle, equal-time correlation functions such as the structure factor can also

be averaged (fully or partially) over the propagation index p, as in Eq. (267). This,
however, requires more work for the improved estimator than in code {33} for the simple
estimator, because it takes some book keeping during the loop update to construct the
clusters for several fixed p, and doing so may not always pay off. Without this averaging,
however, a simple p-averaged estimator, such as the one implemented in code {33}, may
actually give better results at low-temperatures, where the gain due to averaging can be
very significant. The case q= 0 is special in this regard, because this corresponds to the
total squared magnetization, which is a conserved quantity (i.e., independent on the SSE
propagation index p), and no further averaging over p can then be done to improve the
statistics further. The optimal estimator for the uniform susceptibility (273) is therefore

χ =
β
4N

〈

C

∑
j=1

(

n j

∑
i=1

φi

)2〉

. (283)

Susceptibilities at other wave-vectors involve the full space-time loop structure, not just
the clusters (cut through the loops) formed at a fixed state. For example, the staggered
susceptibility is given by the sum of the squares of all the loop sizes [31].

5.2.6. Program verification

QMC programs should always be verified by comparing results for small systems
with exact diagonalization data. When correctly implemented, the SSE method should
be exact, which means that the deviation of a computed quantity from its true value
should be purely statistical, due to the finite number of sampled configurations. We
have discussed how to quantify the statistical fluctuations in terms of “error bars” in
Sec. 3.2. Deviations beyond the error bars are due either to programming errors of flaws
in the random number generator used. While most programming errors would lead to
obviously wrong results, there are also possible subtle errors that may only lead to
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The transition graphs give us

improved estimators automatically

Put the spins back in:

- staggered spin configurations on each loop

- two ‘orientations’ (loop flips)

Average over all the two 

orientations of all the loops

- 2Nloop configurations
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Rotationally averaged correlation function

Multi-spin correlations: estimators with two or more loops

[Beach and Sandvik, Nucl. Phys. B (2006)]




