Algorithms in Lattice Gauge Theory and Spin Systems IACS, Kolkata, Jan 27 - Feb 1, 2020

Stochastic Series Expansion and Stochastic Analytic Continuation

Anders W Sandvik

Boston University and

Institute of Physics, Chinese Academy of Sciences, Beijing
References:

- AIP Conf. Proc. 1297,135 (2010); arXiv:1101.3281
- arXiv:1909.10591(book chapter on SSE and related)
- PRB 82, 024407 (2010) (valence-bond projector QMC)
- PRE 68, 056701 (2003) (transverse-field Ising)
- PRX 7, 041072 (2017) (dynamics)

Algorithms in Lattice Gauge Theory and Spin Systems

Lecture plan

Lecture I

Stochastic Series Expansion and ground-state projection with valence bonds

- SSE: Basic idea and implementation for $S=1 / 2$ Heisenberg model
- The valence-bond basis for $S=1 / 2$ systems
- Projection of the ground state from an "amplitude product state"

Lecture II

Dynamics; spectral functions and the numerical analytic continuation problem

- Stochastic Analytic Continuation

Lecture III

Applications

- Quick review of finite-size scaling
- Examples of conventional quantum phase transitions
- J-Q models
- valence-bond-solid states
- deconfined quantum criticality
- emergent symmetries

QMC algorithms for quantum spins (and bosons)

From operators to numbers

$$
\langle A\rangle=\frac{\operatorname{Tr}\left\{A e^{-\beta H}\right\}}{\operatorname{Tr}\left\{e^{-\beta H}\right\}} \rightarrow \frac{\sum_{c} A_{c} W_{c}}{\sum W_{c}}
$$

"sign problem" if W_{c} not positive-definite

- consider sign-free models

- Trotter slicing; discrete imaginary time; world line methods (Suzuki 1971,...)
- Taylor expansion; stochastic series expansion (SSE) (Handscomb -61,... Sandvik, Kurkijärvi -91,...)
- Continuous time; take $\Delta_{\tau} \rightarrow 0$ limit before programming (Beard, Wiese, -96, Prokof'ev et al. -96,...)
- From local updates to loops, worms, directed loops.... (Evertz et al. -93, Beard, Wiese, -96, Prokof'ev et al. -96, Sandvik -99, Sandvik, Syljuåsen -02)
Related: ground-state projection

$$
\left|\Psi_{\beta}\right\rangle \sim \mathrm{e}^{-\beta H}\left|\Psi_{0}\right\rangle \quad\left|\Psi_{\beta}\right\rangle \rightarrow|0\rangle \text { when } \beta \rightarrow \infty
$$

- Differs only in time boundary condition (open vs periodic)

Series expansion representation of quantum stat mech

Start from the Taylor expansion (no approximation)

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n}\left|\alpha_{0}\right\rangle
$$

Index sequence (string) referring to terms of H

$$
H=\sum_{i=1}^{m} H_{i} \quad \begin{aligned}
& S_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& a_{i} \in\{1, \ldots, m\}
\end{aligned}
$$

Break up $\mathbf{H}^{\mathbf{n}}$ into strings:

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}} \sum_{S_{n}}\left\langle\alpha_{0}\right| H_{a_{n}} \cdots H_{a_{2}} H_{a_{1}}\left|\alpha_{0}\right\rangle
$$

We should have (always possible): $H_{i}\left|\alpha_{j}\right\rangle \propto\left|\alpha_{k}\right\rangle$

- no branching during propagation with operator string
- some strings not allowed (illegal operations)

Path weight: $W\left(S_{n}, \alpha_{0}\right)=\frac{(-\beta)^{n}}{n!} \prod_{p=1}^{n}\left\langle\alpha_{p}\right| H_{a_{p}}\left|\alpha_{p-1}\right\rangle$
Easy to calculate

- use as MC sampling weight

Expectation values

$$
\langle A\rangle=\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n} A\left|\alpha_{0}\right\rangle
$$

Simplest case: Operator A diagonal in the chosen basis:

$$
\langle A\rangle=\sum_{n=0}^{\infty} \sum_{\alpha_{0}} \sum_{S_{n}} W\left(S_{n}, \alpha_{0}\right) A\left(\alpha_{0}\right) \quad A\left(\alpha_{0}\right) \rightarrow \frac{1}{n} \sum_{p=0}^{n-1} A\left(\alpha_{p}\right)
$$

Energy: $\langle H\rangle=\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n} H\left|\alpha_{0}\right\rangle$
Relabel terms of n -sum: replace $\mathrm{n}+1$ by n

$$
\langle H\rangle=-\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^{n}}{n!} \frac{n}{\beta} \sum_{\alpha_{0}}\left\langle\alpha_{0}\right| H^{n}\left|\alpha_{0}\right\rangle
$$

we can extend the sum to include $n=0$, because that term vanishes

Therefore the energy is: $E=-\langle n\rangle / \beta$
Can also derive specific heat: $C=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle$
Follows: $\langle n\rangle \propto \beta N, \quad \sigma_{n} \propto \sqrt{\beta N}$

Fixed string-length scheme

- n fluctuating \rightarrow varying size of the sampled configurations
- the expansion can be truncated at some $n_{\text {max }}=L$ (exponentially small error if large enough)
- cutt-off at $\mathrm{n}=\mathrm{L}$, fill in operator string with unit operators $\mathrm{H}_{0}=1$

$$
\begin{aligned}
& \mathrm{n}=10 \quad \mathrm{H}_{4}\left|\mathrm{H}_{7}\right| \mathrm{H}_{1}\left|\mathrm{H}_{6}\right| \mathrm{H}_{2}\left|\mathrm{H}_{1}\right| \mathrm{H}_{8}\left|\mathrm{H}_{3}\right| \mathrm{H}_{3} \mid \mathrm{H}_{5} \Longrightarrow \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\mathrm{L}=14 & \mathrm{H}_{4} & \mathrm{I} & \mathrm{H}_{7} & \mathrm{I} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{I} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{I} & \mathrm{H}_{5} \\
\hline
\end{array}
\end{aligned}
$$

$$
Z=\sum_{\alpha_{0}} \sum_{S_{L}} \frac{(-\beta)^{n}(L-n)!}{L!}\left\langle\alpha_{0}\right| H_{a_{m}} \cdots H_{a_{2}} H_{a_{1}}\left|\alpha_{0}\right\rangle
$$

Here n is the number of $\mathrm{H}_{\mathrm{i}}, \mathrm{i}>0$ instances in the sequence of L ops

- the summation over n is now implicit

L can be chosen automatically by the simulation (shown later)

Relation to the expansion in interaction representation

For $\boldsymbol{H}=\boldsymbol{D}+\boldsymbol{V}$, diagonal D, off-diagonal V

$$
Z=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\beta} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{n-1}} d \tau_{n} \operatorname{Tr}\left\{e^{-\beta \hat{D} \hat{V}}\left(\tau_{1}\right) V\left(\tau_{2}\right) \cdots V\left(\tau_{n}\right)\right\}
$$

Proceed as in SSE, only off-diagonal operators in diagrams

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty} \sum_{T_{n}} \int_{0}^{\beta} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{n-1}} d \tau_{n} W\left(\alpha, T_{n},\{\tau\}\right)
$$

What is better, SSE or interaction rep?

- depends on balance of diagonal and off-diagonal energy
- Interaction rep better if diagonal energy dominates
- SSE often better if that is not the case

Extreme case: Only off-diagonal operators

- for example, XY model in z basis

Time integrals in interaction rep give β^{n} / n !

- configurations identical to SSE
- SSE avoids time integrals

Stochastic Series expansion (SSE): $S=1 / 2$ Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)}
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{array}{ll}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{array}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle \quad \begin{aligned}
& \begin{array}{l}
\mathrm{n}_{2}=\text { number of a(i) }=2 \\
\text { (off-diagonal operators) } \\
\text { in the sequence }
\end{array}
\end{aligned}
$$

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$
W >0 (n_{2} even) for bipartite lattice Frustration leads to sign problem

$$
\varrho_{0} \rightarrow \varrho_{0} \rightarrow \varrho_{0} \rightarrow \varrho_{0} \rightarrow \varrho_{0}
$$

0000000000	11	1	2	4
00000	10	0	0	0
000000	9	2	4	9
	8	2	6	13
- 00000	7	1	3	6
- 00000	6	0	0	0
00000	5	0	0	0
$\bigcirc 000000$	4	1	2	4
0000	3	2	6	13
- 00000	2	0	0	0
0000000	1	2	4	9
	0	1	7	14

In a program:
$s(p)=$ operator-index string

- $s(p)=2 * b(p)+a(p)-1$
- diagonal; $s(p)=$ even
- off-diagonal; $s(p)=$ off
$\sigma(i)=$ spin state, $i=1, \ldots, N$
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum! - computational advantage; only integer operations in sampling

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right) \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

$$
\begin{array}{lllllllll}
|\alpha(p+1)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
|\alpha(p)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \longleftrightarrow \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
P_{\text {select }}(a=1 \rightarrow a=0)=1
$$

n is the current power

$$
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
$$

$\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}$

$$
\text { - } \mathrm{n} \rightarrow \mathrm{n}+1(\mathrm{a}=0 \rightarrow \mathrm{a}=1)
$$

$$
\text { - } \mathrm{n} \rightarrow \mathrm{n}-1 \quad(\mathrm{a}=1 \rightarrow \mathrm{a}=0)
$$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

Pseudocode: Sweep of diagonal updates

```
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) then
        \(b=\operatorname{random}\left[1, \ldots, N_{b}\right]\)
        if \(\sigma(i(b))=\sigma(j(b))\) cycle
        if \(\left(\right.\) random \(\left.[0-1]<P_{\text {insert }}(n)\right)\) then \(s(p)=2 b ; n=n+1\) endif
    elseif \((\bmod [s(p), 2]=0)\) then
        if \(\left(\right.\) random \(\left.[0-1]<P_{\text {remove }}(n)\right)\) then \(s(p)=0 ; n=n-1\) endif
    else
        \(b=s(p) / 2 ; \sigma(i(b))=-\sigma(i(b)) ; \sigma(j(b))=-\sigma(j(b))\)
    endif
enddo
```


Code explanation:

- To insert operator, bond b generated at random among $1, \ldots, N_{b}$
- can be done only if connected spins i(b),j(b) are anti-parallel
- if so, do it with probability Pinsert(n)
- Existing diagonal operator can always be removed
- do it with probability Premove(n)
- If off-diagonal operator, advance the state
- extract bond b, flip spins at i(b),j(b)

Off-diagonal updates

(a)

(b)

Local update

Change the type of two operators

- constraints
- inefficient
- cannot change winding numbers

Operator-loop update

- Many spins and operators can be changed simultaneously
- can change winding numbers

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

44	18
40	-
36	31
32	14
28	19
24	-
20	-
16	46
12	34
8	-
4	38
0	35
$=0$	

45	30
41	-
37	7
33	15
29	6
25	-
21	-
17	47
13	2
9	-
5	39
1	3
$1=1$	

46	16	47	17
42	-	43	-
38	4	39	5
34	12	35	0
30	45	31	36
26	-	27	
22	-	23	
18	44	19	28
14	32	15	33
10	-	11	-
6	29	7	37
2	13	3	1
$l=2$			

$X()=$ vertex list

- operator at $p \rightarrow X(v)$ $v=4 p+l, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Pseudocode: Sweep of loop updates

constructing all loops, flip probability $1 / 2$

```
do }\mp@subsup{v}{0}{}=0\mathrm{ to }4L-1 step 
    if (X(vo)<0) cycle
    v=\mp@subsup{v}{0}{}
    if (random[0-1]< 2
        traverse the loop; for all v in loop, set X(v)=-1
    else
        traverse the loop; for all v}\mathrm{ in loop, set X(v)=-2
        flip the operators in the loop
    endif
enddo
```

- visited vertices are no longer needed and we set them to a negative value -1 or -2 , to indicate that the loop has been visited (-1) or visited and flipped (-2)
construct and flip a loop

```
v= vo
do
    X(v) = -2
    p=v/4; s(p)= flipbit(s(p),0)
    v}=\mp@code{flipbit (v,0)
    v=X(\mp@subsup{v}{}{\prime}); X(\mp@subsup{v}{}{\prime})=-2
    if (v=\mp@subsup{v}{0}{\prime}) exit
enddo
```

- p is the location of the operator in the original length-L list of operatotors
- by flipping bit 0 of $s(p)$, the operator changes from diagonal to offdiagonal, or vice versa
- moving on the vertex to the adjacent spin is also done with a bit flip

We also have to modify the stored spin state after the loop update

- we can use the information in $\mathrm{V}_{\text {first() }}$ and X () to determine spins to be flipped
- spins with no operators, $\mathrm{V}_{\text {first }}(\mathrm{i})=-1$, flipped with probability $1 / 2$

```
do \(i=1\) to \(N\)
    \(v=V_{\text {first }}(i)\)
    if \((v=-1)\) then
        if \((\) random \([0-1]<1 / 2) \sigma(i)=-\sigma(i)\)
    else
        if \((X(v)=-2) \sigma(i)=-\sigma(i)\)
    endif
enddo
```

$\mathrm{v}=\mathrm{V}_{\text {first }}(\mathrm{i})$ is the location of the first vertex leg on site i

- flip the spin if $X(v)=-2$
- (do not flip it if $X(v)=-1$)
- no operation on if $\mathrm{Vfirst}(\mathrm{i})=-1$; then it is flipped with probability $1 / 2$

Constructing the linked vertex list

Traverse operator list $s(p), p=0, \ldots, L-1$

- vertex legs $v=4 p, 4 p+1,4 p+2,4 p+3$

Use arrays to keep track of the first and last (previous) vertex leg on a given spin - $V_{\text {first }}(i)=$ location v of first leg on site i

- $V_{\text {last }}(i)=$ location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1


```
\(V_{\text {first }}(:)=-1 ; V_{\text {last }}(:)=-1\)
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) cycle
    \(v_{0}=4 p ; b=s(p) / 2 ; s_{1}=i(b) ; s_{2}=j(b)\)
    \(v_{1}=V_{\text {last }}\left(s_{1}\right) ; v_{2}=V_{\text {last }}\left(s_{2}\right)\)
    if \(\left(v_{1} \neq-1\right)\) then \(X\left(v_{1}\right)=v_{0} ; X\left(v_{0}\right)=v_{1}\) else \(V_{\text {first }}\left(s_{1}\right)=v_{0}\) endif
    if \(\left(v_{2} \neq-1\right)\) then \(X\left(v_{2}\right)=v_{0} ; X\left(v_{0}\right)=v_{2}\) else \(V_{\text {first }}\left(s_{2}\right)=v_{0}+1\) endif
    \(V_{\text {last }}\left(s_{1}\right)=v_{0}+2 ; V_{\text {last }}\left(s_{2}\right)=v_{0}+3\)
```

enddo
creating the last links across the "time" boundary

```
do \(i=1\) to \(N\)
    \(f=V_{\text {first }}(i)\)
    if \((f \neq-1)\) then \(l=V_{\text {last }}(i) ; X(f)=l ; X(l)=f\) endif
enddo
```

Determination of the cut-off L Keep track of number of operators n

- adjust during equilibration
- increase L if n is close to current L
- start with arbitrary (small) n
- e.g., $L=n+n / 3$

Example

- 16×16 system, $\beta=16 \Rightarrow$
- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow x$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit ($\mathrm{T} \rightarrow 0$)

Common bases for quantum spin systems

Lattice of $\mathrm{S}=1 / 2$ spins, e.g., Heisenberg antiferromagnet

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i, j\rangle}\left[S_{i}^{z} S_{j}^{z}+\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) / 2\right]
$$

The most common basis is that of 'up' and 'down' spins

$$
\begin{aligned}
& \bullet=|\uparrow\rangle=\left|S^{z}=+1 / 2\right\rangle \\
& \bullet=|\downarrow\rangle=\left|S^{z}=-1 / 2\right\rangle
\end{aligned}
$$

One can also use eigenstates of two or more spins

- dimer singlet-triplet basis

$$
\begin{aligned}
\bullet \bullet & =(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2} \\
\bullet \bullet & =|\uparrow \uparrow\rangle \\
\bullet & =(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) / \sqrt{2} \\
\bullet \bullet & =|\downarrow \downarrow\rangle
\end{aligned}
$$

The Hamiltonian is more complicated in this basis

- but some times can be used to solve sign problems Alet, Damle, Pujari, PRL 2016; Honecker et al., PRB 2016

The valence bond basis for $S=1 / 2$ spins

Valence-bonds between sublattice A, B sites $(i, j)=\left(\left|\uparrow_{i} \downarrow_{j}\right\rangle-\left|\downarrow_{i} \uparrow_{j}\right\rangle\right) / \sqrt{2}$
Basis states; singlet products

$$
\left|V_{r}\right\rangle=\prod_{b=1}^{N / 2}\left(i_{r b}, j_{r b}\right), \quad r=1, \ldots(N / 2)!
$$

The valence bond basis is overcomplete and non-orthogonal

- expansion of arbitrary singlet state, not unique

$$
|\Psi\rangle=\sum_{r} f_{r}\left|V_{r}\right\rangle \quad \text { all } f_{r} \text { positive for non-frustrated system (Marshall signs) }
$$

All valence bond states overlap with each other

$$
\left\langle V_{l} \mid V_{r}\right\rangle=2^{N_{\circ}-N / 2} \quad N_{\circ}=\text { number of loops in overlap graph }
$$

Spin correlations from loop structure

$$
\frac{\left\langle V_{l}\right| \vec{S}_{i} \cdot \vec{S}_{j}\left|V_{r}\right\rangle}{\left\langle V_{l} \mid V_{r}\right\rangle}=\left\{\begin{array}{l}
\frac{3}{4}(-1)^{x_{i}-x_{j}+y_{i}-y_{j}} \quad \text { (i,j in same loop) } \\
0 \quad \text { (i,j in different loops) }
\end{array}\right.
$$

More complicated matrix elements (e.g., dimer correlations) are also related to the loop structure

$\left|V_{i}\right\rangle$

$\left|V_{r}\right\rangle$

$\left\langle V_{l} \mid V_{r}\right\rangle$

Projector Monte Carlo in the valence-bond basis

Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)
$(-H)^{\mathrm{n}}$ projects out the ground state from an arbitrary state

$$
(-H)^{n}|\Psi\rangle=(-H)^{n} \sum_{i} c_{i}|i\rangle \rightarrow c_{0}\left(-E_{0}\right)^{n}|0\rangle
$$

S=1/2 Heisenberg model

$$
H=\sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=-\sum_{\langle i, j\rangle} H_{i j}, \quad H_{i j}=\left(\frac{1}{4}-\vec{S}_{i} \cdot \vec{S}_{j}\right)
$$

Project with string of bond operators

$$
\sum_{\left\{H_{i j}\right\}} \prod_{p=1}^{n} H_{i(p) j(p)}|\Psi\rangle \rightarrow r|0\rangle(r=\text { normalization })
$$

Action of bond operators

$$
\begin{aligned}
& H_{a b}|\ldots(a, b) \ldots(c, d) \ldots\rangle=|\ldots(a, b) \ldots(c, d) \ldots\rangle \\
& H_{b c}|\ldots(a, b) \ldots(c, d) \ldots\rangle=\frac{1}{2}|\ldots(c, b) \ldots(a, d) \ldots\rangle
\end{aligned}
$$

Simple reconfiguration of bonds (or no change; diagonal)

- no minus signs for $A \rightarrow B$ bond 'direction' convention
- sign problem does appear for frustrated systems

Expectation values: $\langle A\rangle=\langle 0| A|0\rangle$

Strings of singlet projectors

$$
P_{k}=\prod_{p=1}^{n} H_{i_{k}(p) j_{k}(p)}, \quad k=1, \ldots, N_{b}^{n} \quad\left(N_{b}=\text { number of interaction bonds }\right)
$$

We have to project bra and ket states

$$
\begin{aligned}
\sum_{k} P_{k}\left|V_{r}\right\rangle & =\sum_{k} W_{k r}\left|V_{r}(k)\right\rangle \rightarrow\left(-E_{0}\right)^{n} c_{0}|0\rangle \\
\sum_{g}\left\langle V_{l}\right| P_{g}^{*} & =\sum_{g}\left\langle V_{l}(g)\right| W_{g l} \rightarrow\langle 0| c_{0}\left(-E_{0}\right)^{n}
\end{aligned}
$$

6-spin chain example:

$$
\begin{aligned}
&\langle A\rangle=\frac{\sum_{g, k}\left\langle V_{l}\right| P_{g}^{*} A P_{k}\left|V_{r}\right\rangle}{\sum_{g, k}\left\langle V_{l}\right| P_{g}^{*} P_{k}\left|V_{r}\right\rangle} \\
&=\frac{\sum_{g, k} W_{g l} W_{k r}\left\langle V_{l}(g)\right| A\left|V_{r}(k)\right\rangle}{\sum_{g, k} W_{g l} W_{k r}\left\langle V_{l}(g) \mid V_{r}(k)\right\rangle} \\
&- \text { Monte Carlo sampling } \\
& \quad \text { of operator strings } \\
&- \text { Estimators based on } \\
& \quad \text { transition graphs }
\end{aligned}
$$

Sampling an amplitude-product state

A better trial state leads to faster n convergence

- bond-amplitude product state [Liang, Doucot,Anderson, 1990]

$$
\left|\Psi_{0}\right\rangle=\sum_{k} \prod_{b=1}^{N / 2} h\left(x_{r b}, y_{r b}\right)\left|V_{k}\right\rangle
$$

Update state by reconfiguring two bonds

$$
P_{\text {accept }}=\frac{h\left(x_{c}, y_{c}\right) h\left(x_{d}, y_{d}\right)}{h\left(x_{a}, y_{a}\right) h\left(x_{b}, y_{b}\right)}
$$

If reconfiguration accepted

- calculate change in projection weight
- used for final accept/reject prob.
S. Liang [PRB 42, 6555 (I990)]
- used parametrized state amplitudes
- determined parameters variationally
- improved state by projection

Variational wave function (2D Heisenberg)

All amplitudes $\mathrm{h}(\mathrm{x}, \mathrm{y})$ can be optimized
[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

- variational energy error 50\% smaller than previously best (<0.1\%)
- spin correlations deviate by less than 1% from exact values
- amplitudes decay as $\sim 1 / r^{3}$

Variational energy can be further improved by including optimized bond correlations; Lin et al. PRB 2012 (posted on course web site)

More efficient ground state QMC algorithm \rightarrow larger lattices

Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010
Put the spins back in a way compatible with the valence bonds

$$
\left(a_{i}, b_{i}\right)=\left(\uparrow_{i} \downarrow_{j}-\downarrow_{i} \uparrow_{j}\right) / \sqrt{2}
$$

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods (world-line and stochastic series expansion methods)

- good valence-bond trial wave functions can be used
- larger systems accessible
- sample spins, but measure using the valence bonds

T>0 and $\mathrm{T}=0$ algorithms side-by-side

Finite-temperature QMC (world lines, SSE,...)

periodic time boundary conditions

- Computer implementations similar

Ground state projection
$\sum_{\alpha \beta} f_{\beta} f_{\alpha}\langle\beta|(-H)^{m}|\alpha\rangle$

open boundaries capped by valence bonds (2-spin singlets) [AWS, HG Evertz, 2010]
Trial state can conserve relevant ground state quantum numbers ($\mathrm{S}=0, \mathrm{k}=0, \ldots$)

Convergence

Trial state expanded in H -eigenstates
$\left|\psi_{0}\right\rangle=\sum_{n} c_{n}|n\rangle$
Projected state after m-th power

$$
\left|\psi_{m}\right\rangle=H^{m}\left|\psi_{0}\right\rangle=\sum_{n} c_{n} E_{n}^{m}|n\rangle
$$

Expectation value

$$
\begin{aligned}
& \langle A\rangle_{m}=\langle 0| A|0\rangle+2\langle 1| A|0\rangle \frac{c_{1}}{c_{0}}\left(\frac{E_{1}}{E_{0}}\right)^{m}+ \\
& \langle A\rangle_{m}=\langle 0| A|0\rangle+c \times \exp \left(-\frac{m}{N} \frac{\Delta}{\left|e_{0}\right|}\right) \\
& e_{0}=E_{0} / M, \quad \Delta=E_{1}-E_{0}
\end{aligned}
$$

Conclusion:

- $m / N>e_{0} / \Delta$
- in valence-bond basis Δ is the singlet-singlet gap
- trial state also can have fixed momentum k=0 (e.g., ampl. product state)
- only k=0 excited states (gap)

Results for 2D Heisenberg model

Sublattice magnetization
$\mathbf{H}=\mathbf{J} \sum_{\langle\mathbf{i}, \mathbf{j}\rangle} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$

$$
\vec{m}_{s}=\frac{1}{N} \sum_{i=1}^{N} \phi_{i} \vec{S}_{i}, \quad \phi_{i}=(-1)^{x_{i}+y_{i}}
$$

Long-range order: <ms ${ }^{2} \gg 0$ for $\mathrm{N} \rightarrow \infty$

Quantum Monte Carlo

- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger \& Young (world-line) 1988

$$
m_{s}=0.30(2)
$$

$\approx 60 \%$ of classical value
AWS \& HG Evertz 2010

$$
m_{s}=0.30743(1)
$$

LxL lattices up to $256 \times 256, \mathrm{~T} \rightarrow 0$

Improved Estimators

Valence-bond projector QMC and SSE with loop updates are examples of cluster algorithms

- we can utilize improved estimators for many observables Classical example: Swendsen-Wang Ising cluster algorithm

$$
\begin{aligned}
& N\left(\tau_{b}=1\right)=\text { No. of filled bonds } \\
& W=\left(\mathrm{e}^{2|J| / T}-1\right)^{N\left(\tau_{b}=1\right)}
\end{aligned}
$$

(unchanged after flip)
Write magnetization as sum over clusters of size n_{c}, sign sc :

$$
M=\sum_{i=1}^{N} \sigma_{i}=\sum_{C=1}^{N_{\text {clus }}} \sum_{i \in C} \sigma_{i}=\sum_{C=1}^{N_{\text {clus }}} s_{C} n_{C} \quad\left\langle M^{2}\right\rangle=\sum_{C=1}^{N_{\text {clus }}} \sum_{C^{\prime}=1}^{N_{\mathrm{clus}}}\left\langle n_{C} n_{C^{\prime}} s_{C} s_{C^{\prime}}\right\rangle
$$

All cluster orientations (signs) have same weight

- average over all $2^{\text {Nclus }}$ orientations \rightarrow

$$
\left\langle M^{2}\right\rangle=\sum_{C=1}^{N_{\mathrm{clus}}}\left\langle n_{C}^{2}\right\rangle
$$

This is the improved estimator of $\left\langle\mathrm{M}^{2}\right\rangle$

- only depends on cluster structure

Improved estimators in SSE

Consider a given slice (propagated state) of an SSE configuration

- label the sites according to the loops passing through \rightarrow clusters

In given loop
All spins on given sub-lattice A or B are same, different on A, B

Staggered magnetization on a cluster is $1 / 2$ of the size of the cluster

- changes sign when loop flipped
- similar to magnetization in SW algorithm

$$
\left\langle M_{z, \text { stagg }}^{2}\right\rangle=\frac{1}{4} \sum_{C=1}^{N_{\text {clus }}}\left\langle n_{C}^{2}\right\rangle
$$

The uniform magnetization requires the staggered phases

$$
\chi=\frac{\beta}{4 N}\left\langle\sum_{j=1}^{c}\left(\sum_{i=1}^{n_{j}} \phi_{i}\right)^{2}\right\rangle \quad \phi_{i}=\left\{\begin{array}{cc}
+1 & i \text { on A site } \\
-1 & i \text { on B site }
\end{array}\right.
$$

Valence-vond Projector QMC

The transition graphs give us improved estimators automatically

Put the spins back in:

$\left|V_{l}\right\rangle$

$\left|V_{r}\right\rangle$

$\left\langle V_{l} \mid V_{r}\right\rangle$

- staggered spin configurations on each loop
- two 'orientations' (loop flips)

Average over all the two orientations of all the loops

- $2^{\text {Nloop }}$ configurations

$$
\left\langle M_{z, \text { stagg }}^{2}\right\rangle=\frac{1}{4} \sum_{C=1}^{N_{\text {clus }}}\left\langle n_{C}^{2}\right\rangle
$$

Rotationally averaged correlation function

$$
\frac{\left\langle V_{l}\right| \vec{S}_{i} \cdot \vec{S}_{j}\left|V_{r}\right\rangle}{\left\langle V_{l} \mid V_{r}\right\rangle}=\left\{\begin{array}{c}
\frac{3}{4}(-1)^{x_{i}-x_{j}+y_{i}-y_{j}} \quad \text { (i,j in same loop) } \\
0 \\
\text { (i,j in different loops) }
\end{array}\right.
$$

Multi-spin correlations: estimators with two or more loops [Beach and Sandvik, Nucl. Phys. B (2006)]

Frustrated systems

Consider the full valence-bond basis, including

- normal bonds, connecting A, B spins (sublattices)
- frustrated bonds, connecting A,A or B,B

For a non-frustrated system

- projection eliminates frustarted bonds

For a frustrated system

- frustrated bonds remain and cause a sign problem
- frustrated bonds can be eliminated using over-completeness

In a simulation, one of the branches can be randomly chosen

- but there is a sign problem

