Rate Equation Approach to Growing Networks

Sidney Redner, Boston University

Motivation: Citation distribution

Basic Model for Citations:

Barabási-Albert network

Rate Equation Analysis:

Degree and related distributions Global properties Finiteness & fluctuations Who is the leader?

Protein Interaction Network:

Cluster size distribution Lack of self averaging

Outlook

Paul Krapivsky (Boston University) Francois Leyvraz (CIC, Mexico) Geoff Rodgers (Brunel University, UK) Jeenu Kim & Byungnam Kahng (SNU)

Citation Distribution

ISI: 783339 papers 6716198 cites, $\langle n \rangle = 8.6$.

1	paper	${f cited}$	$\boldsymbol{8907}$	${f times}$
64	papers		> 1000	\mathbf{times}
282	papers		> 500	\mathbf{times}
2103	papers		> 200	\mathbf{times}
633391	papers		< 10	\mathbf{times}
368110	papers		0	times!

PRD: 24296 papers 351872 cites, $\langle n \rangle = 14.5$.

J. Laherrere and D. Sornette, EPJB (1998) Redner, EPJB (1998)

Barabási-Albert Model

 $\begin{array}{ll} nodes \longleftrightarrow publications \\ links \longleftrightarrow citations \end{array}$

- 1. Introduce nodes one at a time.
- 2. Attach to earlier node with k links at rate A_k .

H. A. Simon, Biometrica (1955)

A. L. Barabási and R. Albert, Science (1999)

Rate Equation Approach

KRL, PRL (2000), KR, PRE (2001) see also, Albert & Barabási, Rev. Mod. Phys. (2002) Dorogovtsev & Mendes, Adv. Phys. (2002)

Basic Observable:

 $N_k \equiv$ Number of nodes with k links The degree distribution.

Rate Equation:

$$\frac{dN_k}{dt} = \frac{A_{k-1}N_{k-1} - A_kN_k}{A} + \delta_{k1}.$$

Attachment Rate:

$$A_k \sim k^{\gamma}$$

so that

$$A(t) = \sum_{j=1}^{\infty} A_j N_j = \sum_{j=1}^{\infty} j^{\gamma} N_j \equiv M_{\gamma}(t).$$

Moment equations:

$$\dot{M}_0 \equiv \sum_k \dot{N}_k = 1; \quad \dot{M}_1 \equiv \sum_k k \dot{N}_k = 2$$

These suggest:
$$A(t) = \sum j^{\gamma} N_j \propto \mu(\gamma) t$$
 $N_k(t) \equiv t n_k$.

Rate eqs. \rightarrow Linear recursion relations

Formal Solution:

$$n_k = \frac{\mu}{A_k} \prod_{j=1}^k \left(1 + \frac{\mu}{A_j} \right)^{-1}$$

Asymptotics:

$$n_k \sim \left\{ egin{aligned} k^{-\gamma} \exp\left[-\mu\left(rac{k^{1-\gamma}-2^{1-\gamma}}{1-\gamma}
ight)
ight], & 0 \leq \gamma < 1; \ k^{-
u}, &
u > 2, & \gamma = 1; \
ight. \
igh$$

Heterogeneity

Bianconi & Barabási, (2000); KR (2002).

Each node has intrinsic "attractiveness" η and attachment rate $A_k(\eta)$.

Rate equation:

$$\frac{dN_k(\eta)}{dt} = \frac{A_{k-1}(\eta)N_{k-1}(\eta) - A_k(\eta)N_k(\eta)}{A} + p_0(\eta)\delta_{k1}.$$

Solution for linear kernel $A_k(\eta) = \eta k$:

$$n_k(\eta) = \frac{\mu p_0(\eta)}{\eta} \frac{\Gamma(k) \Gamma\left(1 + \frac{\mu}{\eta}\right)}{\Gamma\left(k + 1 + \frac{\mu}{\eta}\right)}.$$

Asymptotics for total degree distribution:

Bounded support of $p_0(\eta)$:

$$n_k \sim k^{-(1+\mu/\eta_{\text{max}})} (\ln k)^{-\omega},$$

with μ determined by $1 = \int d\eta \, p_0(\eta) \left(\frac{\mu}{\eta} - 1\right)^{-1}.$

Unbounded support: condensation!

Age Distribution: KR, PRE (2001).

 $N_k(t,a)$: # nodes of degree k, age a, time t.

Rate Equation:

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) N_k = \frac{A_{k-1}N_{k-1} - A_kN_k}{A} + \delta_{k1}\delta(a).$$

Age-Degree Distribution:

$$A_k = k$$
: $N_k(t, a) = \sqrt{1 - \frac{a}{t}} \left(1 - \sqrt{1 - \frac{a}{t}} \right)^{k-1}$

$$A_k = 1:$$
 $N_k(t, a) = (1 - a/t) \frac{|\ln(1 - a/t)|^{k-1}}{(k-1)!}.$

Average Age:

$$A_k = k$$
: $\langle a_k \rangle \sim t(1 - 12/k^2)$

$$A_k = 1:$$
 $\langle a_k \rangle = t[1 - (2/3)^k].$

Average Degree:

$$A_k = k$$
: $\langle k_a \rangle \sim (1 - a/t)^{-1/2}$

$$A_k = 1$$
: $\langle k_a \rangle = -\ln(1 - a/t)$.

Age-degree statistics:

Message: $A_k = k$, rich nodes must be old. $A_k = 1$, rich nodes can be young.

Degree Correlations:

 $C_{kl}(t) \equiv$ number of nodes of degree k that attach to an ancestor node of degree l.

Rate equation (linear kernel):

$$\frac{dC_{kl}}{dt} = \frac{1}{A} \left\{ [(k-1)C_{k-1,l} - kC_{kl}] + [(l-1)C_{k,l-1} - lC_{kl}] \right\} + (l-1)C_{l-1} \delta_{k1}.$$

Asymptotic solution: $(k, l \gg 1 \text{ and } k/l \neq 1)$

$$c_{kl} \to \begin{cases} 16 (l/k^5) & l \ll k, \\ 4/(k^2 l^2) & l \gg k. \end{cases}$$
 $c_{kl} \neq n_k n_l \propto (k l)^{-3} !$

In- and Out-Components:

 $I_s(t) \equiv$ No. of in-components with s nodes $\sim \frac{t}{s^2}.$

 $O_s(t) \equiv$ No. of out-components with s nodes

$$\sim \frac{(\ln t)^s}{s!}.$$

Degree Distribution of Finite Networks:

Dorogovtsev et al PRE ('01), Moreira et al cond-mat 0205411, KR ('02).

Scaling Near the Extreme:

Who is the most popular node?

Using $J = t - a_{k_{\text{max}}}$, results for k_{max} & $a_{k_{\text{max}}}$:

- For $A_k = k$, leader among the oldest! $J \approx 1.9$. $P_1 \approx 0.44$, $P_2 \approx 0.21$, $P_3 \approx 0.10$,
- For $A_k = 1$, leader index $J(t) \sim t^{\psi}$, with $\psi = 1 + \ln(2/3) / \ln 2 \approx 0.415$.

How many lead changes occur?

Basic feature:

Number of lead changes up to time t is proportional to $\ln t$.

Protein Interaction Network

Duplication: A new node duplicates a random pre-existing node by connecting to each of its neighbors with probability $1 - \delta$.

Addition: A new node links to any previous node with probability β/N .

Uetz et al., Nature (2000). Wagner, PNAS (1994).

Vazquez et al., cond-mat/0108043 (2001). Solé et al., Adv. Complex Systems (2002).

Rate Equation (equiprob. node selection):

 K^3R (2002)

$$\frac{dN_k}{dN} = \frac{A_{k-1}N_{k-1} - A_kN_k}{N} + G_k.$$

Attachment Rate:

$$A_k = \underbrace{(1-\delta)k}_{\text{duplication}} + \underbrace{\beta}_{\text{addition}}$$

"Source":

$$G_{k} = \sum_{a+b=k}^{\infty} \sum_{s=a}^{\infty} n_{s} \binom{s}{a} (1-\delta)^{a} \delta^{s-a} \underbrace{\frac{\beta^{b}}{b!} e^{-\beta}}_{\text{addition: } b \text{ links}}$$

$$\rightarrow (1-\delta)^{\gamma-1} n_{k}.$$

$$n_k = N_k/N$$
.

Average node degree:

In each event, number of links evolves as

$$\frac{dL}{dN} = \beta + (1 - \delta) \, \frac{2L}{N},$$

Combining with $\mathcal{D}(N) = 2L(N)/N$, the average node degree \mathcal{D} is

$$\mathcal{D}(N) = \begin{cases} \text{finite} & \delta > 1/2, \\ \beta \ln N & \delta = 1/2, \\ \text{const.} \times N^{1-2\delta} & \delta < 1/2. \end{cases}$$

The degree distribution (for $\delta < 1/2$):

The rate equation is a recursion. Substituting $n_k \sim k^{-\gamma}$ determines γ via:

$$\gamma = 1 + \frac{1}{1 - \delta} - (1 - \delta)^{\gamma - 2}$$

$$> 10^{1}$$

$$10^{0}$$

$$0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1$$

Addition Only: A non-local percolation.

Rate equation for cluster size distr. C_s

$$\frac{dC_s}{dN} = - \underbrace{\beta \frac{sC_s}{N}}_{\text{loss by linking}} + \underbrace{\sum_{n=0}^{\infty} \frac{\beta^n}{n!} e^{-\beta} \sum_{s_1 \cdots s_n} \prod_{j=1}^n \frac{s_j C_{s_j}}{N}}_{\text{gain by } n-\text{body merging}},$$

sum
$$s_1 \ge 1, \ldots, s_n \ge 1$$
, with $s_1 + \cdots + s_n + 1 = s$.

Generating function:

Define
$$g(z) = \sum_{1}^{\infty} sc_s e^{sz}$$
, with $c_s = C_s/N$

$$\rightarrow g = -\beta g' + (1 + \beta g') e^{z+\beta(g-1)}.$$

Basic results:

$$\langle s \rangle = g'(0) = \frac{1 - 2\beta - \sqrt{1 - 4\beta}}{2\beta^2};$$

$$c_s \sim As^{-\tau}, \qquad \tau = 1 + \frac{2}{1 - \sqrt{1 - 4\beta}};$$

$$G(\beta) \sim e^{-\pi/\sqrt{4\beta - 1}}.$$

Mean cluster size $\langle s \rangle$, percolation prob. G

Cluster size distribution:

 $\beta < \frac{1}{4}$: non-universal power law

 τ rapidly decreasing in β ; $\tau \to 3$ as $\beta \to \frac{1}{4}$.

 $\beta = \frac{1}{4}$: logarithmic correction

 $c_s \sim 8s^{-3}(\ln s)^{-2}$.

Duplication Only:

Rate equation for complete duplication

$$\frac{dN_k}{dN} = (k-1)\frac{[N_{k-1} - N_k]}{N}.$$

Solution: $N_k = 2\left(1 - \frac{2}{N}\right)^{k-1} - \text{irrelevant!}$

Instead: Strong sample-specific fluctuations

No self-averaging.

Asymptotic behavior:

 $K_{1,1}$ evolves to $K_{n,m}$.

Each state $\{n, m\}$ (with n + m = N) occurs with uniform probability.

Failure of scaling:

If isolated sites created, they evolve independently and with strong sample-specific fluctuations.

Simple example: Start with $K_{1,1,0}$ (\circ — \circ \circ). After N sites, with complete duplication:

$$P(N_0, N) = 2 \frac{N - 1 - N_0}{(N - 1)(N - 2)}$$

$$2/N$$

$$2/N$$

$$2/N^2$$

$$\rightarrow \langle N_0 \rangle = \frac{N}{3}, \quad \text{while} \quad (N_0)_{\text{mp}} \approx 1.$$

Incomplete duplication: any isolated sites created will evolve independently of $N_{k>0}$!

Outlook

The Rate Equation!

Simple yet powerful tool.

Basic Messages

Degree distribution easily computable:

Power law not generic or robust. Stretched exponential is robust.

Heterogeneity, age distribution, correlations, global features, extremes, etc.

Fluctuations – unresolved.

Other Growth Mechanisms:

Biological processes.

New percolation process.

Self averaging can fail.

"Errors" for robust behavior.