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Motivation: Citation distribution

Basic Model for Citations:

Barabasi-Albert network

Rate Equation Analysis:

Degree and related distributions
Global properties

Finiteness & fluctuations

Who is the leader?

Protein Interaction Network:

Cluster size distribution
Lack of self averaging
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Citation Distribution

ISI: 783339 papers 6716198 cites, (n) = 8.6.

1

64

282
2103
633391
368110

paper
papers
papers
papers
papers
papers

8907
>1000
>500
>200
<10

0

cited

times
times
times
times
times
times!

PRD: 24296 papers 351872 cites, (n) = 14.5.
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J. Laherrere and D. Sornette, EPJB (1998)
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Barabasi-Albert Model

nodes «+—— publications
links +«+— citations
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1. Introduce nodes one at a time.

2. Attach to earlier node with k£ links at
rate A;.

H. A. Simon, Biometrica (1955)
A. L. Barabéasi and R. Albert, Science (1999)



Rate Equation Approach

KRL, PRL (2000), KR, PRE (2001)
see also, Albert & Barabasi, Rev. Mod. Phys. (2002)
Dorogovtsev & Mendes, Adv. Phys. (2002)

Basic Observable:

N = Number of nodes with &k links
The degree distribution.

Rate Equation:

ANk Ap—1Ng—1 — ApNy, 45
dt A o

Attachment Rate:
A ~ k7

so that

Aty = AN; = §TN;= M, (t).
j=1 j=1



Moment equations:

These suggest: A(t) =) j7N; o< u(y)t
Nk(t) — tnk.

Rate eqs. — Linear recursion relations

Formal Solution:

k —1
p p
ne=——J[(1+ -
" Akj1< Aj)

Asymptotics:
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Heterogeneity

Bianconi & Barabasi, (2000); KR (2002).

Each node has intrinsic “attractiveness” 7
and attachment rate Ag(n).

Rate equation:

dNi(n) _ Ap—1(m)Ne-1(n) — A () Nk (1)
dt A

+ po(1)dk1.

Solution for linear kernel Ag(n) = nk:

ppo(n) T (1 i %)

1 F(k+1+%>.

ng(n) =

Asymptotics for total degree distribution:
Bounded support of py(7n):

nk ~ k_(l—*—:u'/nmax) (1n k)_w’

—1
with pu determined by 1 = fdn po(n) (% — 1) :

Unbounded support: condensation!



Age Distribution: «= rre 2001,
Ni(t,a) : # nodes of degree k, age a, time t.

Rate Equation:
6’ 0 Ap_1Np_1 — AN,
< )Nk k—14VE—1 kAVE

9t " 9a A +0r10(a).

Age-Degree Distribution:

k—1
A=k Nk(t,a):w/l—z<1— 1—%)

In(1 - a/t)*~"

A, =1 Nk(t,a):(l—a/t) (k—l)!
Average Age:

Ap =k - (ag) ~ t(1 —12/k?)

A =1: (ag) =t[1 — (Q/B)k]

Average Degree:
A =k: (ko) ~ (1 — a/t)_1/2
A =1: (kq) = —In(1 —a/t).



Age-degree statistics:
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Message: A, = k, rich nodes must be old.
A = 1, rich nodes can be young.



Degree Correlations:

Cyi(t) = number of nodes of degree k that
attach to an ancestor node of degree /.

k | o
Rate equation (linear kernel):

del 1

— = Z{ (k= 1)Cl_1,—kC}]

+ [(l o 1)Ck,l—1 — lel] } + (l — 1)05_1 0k1-

Yot Wt ¥l ML

(1) (i1) (iif) (iv) (V)

Asymptotic solution: (k,I> 1 and k/l # 1)

16 (l/k5) [ <k, _3
kl !
Ckl — {4/(k2l2) 1> k. Ckl#nknlOC( )




In- and Out-Components:

In-component
(cite tree to
f : my paper)
A\
out-component \./.

(cite tree from

my paper) — O

Is(t) = No. of in-components with s nodes

Ny ——

s2

Os(t) = No. of out-components with s nodes
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Degree Distribution of Finite Networks:

Dorogovtsev et al PRE (’01), Moreira et al cond-mat 0205411, KR (’02).
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Scaling Near the Extreme:
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Who is the most popular node?
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Using J =t —ay,_, , results for k.« & ai

°
max

e For A, = k, leader among the oldest!
J=~19. P, ~0.44, P, =~ 0.21, P; ~ 0.10,

e For A, = 1, leader index J(t) ~ t¥, with
Y =1+1n(2/3)/1In2 ~ 0.415.



How many lead changes occur?
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Basic feature:

Number of lead changes up to time ¢ is

proportional to Int.



Protein Interaction Network

N new node
addition o
B/N duplication
\ / 1_ 6

Duplication: A new node duplicates a
random pre-existing node by connecting to
each of its neighbors with probability 1 — 9.

Addition: A new node links to any
previous node with probability 3/N.

Uetz et al., Nature (2000).
Wagner, PNAS (1994).

Vazquez et al., cond-mat/0108043 (2001).
Solé et al., Adv. Complex Systems (2002).



Rate Equation (equiprob. node selection):

KSR (2002)

AN, Ap_1Ni_1 — ANy,

AN N + G-

Attachment Rate:

Ak:(l—é)]{?—l— I}
N—— ~~

duplication addition

“Source’:
61)
Gk — g g ng() 1_ )CL&S—a b'e B
at+b=k s=a P . ,
duplication: a links addition: b links
— (1=

ne — Nk/N



Average node degree:

In each event, number of links evolves as

dL

dN

=B+ (1-9)

2L

N Y

Combining with D(N) =2L(N)/N, the

average node degree D is

finite
D(N)=< B8InN

const. x N1—29

6 >1/2,
6 =1/2,
§ < 1/2.

The degree distribution (for § < 1/2):

The rate equation is a recursion.

Substituting ny ~ k77 determines v via:
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Addition Only: A non-local percolation.

Rate equation for cluster size distr. C

dC sC =, g = 50,
S _ S ~ —/8 ] Sj
S SR I LR DN | B
N—— n=0 S1++8pn J=1
loss by linking ™ ~~

gain by n—body merging

sum s; > 1,...,s, > 1, with s1 4+ ---+5s,+1=s.

Generating function:

Define g(z) = > ] scse®?, with ¢, = C5/N

—g=—B¢ + (1+Bg) e,

Basic results:




Mean cluster size (s), percolation prob. G
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Cluster size distribution:

B < %: non-universal power law

T rapidly decreasing in §; 7 — 3 as 8 — i.

g = f logarithmic correction
8

cs ~ 85 3(Ins) 2.



Duplication Only:

Rate equation for complete duplication

ANy [Ne_1 — N
N = (k—1) 7 .

Solution: N = 2 (1 — %)k_l — irrelevant!

Instead: Strong sample-specific fluctuations

No self-averaging.

Asymptotic behavior:
K1 evolves to K, ,,.

Each state {n,m} (with n 4+ m = N) occurs

with uniform probability.
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Failure of scaling;:

If isolated sites created, they evolve
independently and with strong
sample-specific fluctuations.

Simple example: Start with K; ;9 (o—o o).

After N sites, with complete duplication:

P(N,N)

N—-1-N, 2

P(Ng,N) =2

s R
2/IN? - N

-
!

N

— (Ng) = —, while (No)mp ~ 1.

Incomplete duplication: any isolated sites

created will evolve independently of N, (!



Outlook

The Rate Equation!

Simple yet powerful tool.

Basic Messages

Degree distribution easily
computable:

Power law not generic or robust.

Stretched exponential is robust.
Heterogeneity, age distribution,
correlations, global features,

extremes, etc.

Fluctuations — unresolved.

Other Growth Mechanisms:

Biological processes.
New percolation process.
Self averaging can fail.
“Errors” for robust behavior.



