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We investigate the growth of a crystal that is built by depositing cubes onto the inside of a
corner. The interface of this crystal evolves into a limiting shape in the long-time limit. Building on
known results for the corresponding two-dimensional system and accounting for the symmetries of
the three-dimensional problem, we conjecture a governing equation for the evolution of the interface
profile. We solve this equation analytically and find excellent agreement with simulations of the
growth process. We also present a generalization to arbitrary spatial dimension.
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Growing interfaces constitute a venerable subject, but
the proper continuum framework to account for this
growth has been developed not so long ago [1]. A de-
tailed and beautiful description of fluctuations of one-

dimensional growing interfaces has been proposed [2, 3],
culminating in a recent solution of the KPZ equation [4].
For real applications, two-dimensional growing interfaces
are more important, but in that setting the governing
stochastic continuum equations [1] remain intractable.
However, the analysis of two-dimensional growing inter-
faces is not hopeless. Indeed, although interface fluctua-
tions have attracted the most attention, they become less
important as the interface grows. The limiting shape —
the average interface profile in the long-time limit — is
the more primal characteristic. If growth begins from
a flat substrate, the interface advances upward with a
constant average speed, so only the fluctuations matter.
However, in numerous applications the limiting shapes
are curved, but known only in rare cases. For example, in
one of the simplest two-dimensional growth models, the
Eden-Richardson model [5], the statistics of its fluctua-
tions are understood (and belong to the KPZ universality
class) but the limiting shape is unknown.

FIG. 1: (color online) 3d crystal of volume 4. The next ele-
mental cube can be deposited at one of 6 inner corners.

Here we investigate the limiting shape of a crystal that
grows from the inside of a corner. This process can be de-
fined in arbitrary spatial dimension and on an arbitrary
lattice (with an appropriately defined ‘corner’). If not
stated otherwise, we consider a cubic lattice, where the
corner is the initially empty positive octant. Starting at
t = 0, elemental cubes are deposited at a unit rate onto

inner corners (Fig. 1). Initially, there is one inner cor-
ner and thus only one place where a cube can be placed.
After the first deposition event, there are three available
inner corners where the next cube can be deposited. In
the long-time limit, the interface approaches a determin-
istic limiting shape shown in Fig. 2.

FIG. 2: (color online) The growth process at t = 140.

The corner growth model admits a dual interpretation
as the melting of a three-dimensional cubic crystal by
erosion from the corner. There is also a magnetic inter-
pretation in which one initially assigns plus spins to each
site inside the corner and minus spins to sites outside the
corner, and endows the system with zero-temperature
Glauber spin-flip dynamics [6] in a sufficiently weak neg-
ative magnetic field. This dynamics causes plus spins at
inner corners to flip and thereby is isomorphic to the cor-
ner melting problem. The magnetic interpretation nat-
urally suggests considering the system in zero magnetic
field. This case indeed results in a different type of grow-
ing interface whose characteristic scale grows diffusively
rather than ballistically.
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In this work, we shall use the language of deposi-
tion dynamics; most importantly, we allow only deposi-
tion events and no evaporation. Growth inside a two-
dimensional corner is well understood. The limiting
shape was computed by Rost [7] by mapping the cor-
ner growth process onto the asymmetric simple exclu-
sion process, and fluctuations were subsequently com-
puted [8, 9]. Here we focus on the limiting shape in
three (and higher) dimensional corners. Our analysis re-
lies heavily on insights gleaned from the limiting two-
dimensional shape [7].

For two-dimensional corner growth, the limiting shape
y(x; t) evolves according to the equation of motion [10–
12]

yt =
yx

yx − 1
, (1)

from which the interface profile was found to be [7]

√
x +

√
y =

√
t . (2)

The parabolic limiting shape (2) describes the non-trivial
part of the interface where 0 ≤ x, y ≤ t. Outside this
region, the original boundary remains undisturbed.

Two properties allow us to severely constrain the form
of possible evolution equations for the growth inside
a three-dimensional corner: (i) The governing equa-
tion for the interface z(x, y; t) must reduce to the two-
dimensional form (1) on the boundaries x = 0 or y = 0;
(ii) The equation must be invariant under the interchange
of any pair of coordinates.

Analogously to Eq. (1), we seek an evolution equation
in three dimensions of the form zt = F (zx, zy) that in-
volves only first derivatives (higher-order spatial deriva-
tive are asymptotically negligible). The simplest guess is
the product zt = [zx/(zx − 1)] [zy/(zy − 1)]. This equa-
tion reduces to (1) on the boundaries x = 0, where
zx = −∞, and y = 0, where zy = −∞. The product
ansatz is also invariant under the exchange x ↔ y , but
it is not invariant under the exchanges x ↔ z or y ↔ z,
and therefore is wrong.

A simple modification to the product form that satis-
fies the necessary invariance requirements is

zt =
zx

zx − 1

zy

zy − 1

[

1 − 1

zx + zy

]

. (3)

It is difficult to find any other equation that satisfies the
invariance requirements. Indeed, if we seek a multiplica-
tive correction factor to the product form as the Lau-
rent series

∑∞

−∞ λn(zx + zy)−n, coordinate interchange
invariance gives λ0 = 1, λ1 = −1, while all other ampli-
tudes must vanish [13]. Thus Eq. (3) is the only properly
invariant choice among the family of evolutionary equa-
tions parameterized by λn.

Nevertheless, there are other evolution equations of the
form zt = F (zx, zy) that satisfy coordinate interchange

invariance. One example arises by replacing the factor in
the square brackets in (3) with

[

1 + (zxzy − zx − zy)−1
]

.
This equation, which can be re-written more elegantly as

1

zt
= 1 − 1

zx
− 1

zy
, (4)

and Eq. (3) are two independent evolution equations
in three dimensions that satisfy the invariance require-
ments. We believe, but cannot prove, that other elemen-
tal evolution equations do not exist. Using these elemen-
tal equations, we can form two distinct one-parameter
families of invariant equations [13]; an additive family

zt =
zx

zx−1

zy

zy−1

[

1 − 1 + c

zx + zy
− c

zxzy−zx−zy

]

, (5a)

and a multiplicative family

zt =

[

1 − 1
zx+zy

(

1 − 1
zx

)(

1 − 1
zy

)

]1+c
[

1 − 1

zx
− 1

zy

]c

. (5b)

Our conjecture is that (3) is the correct evolution equa-
tion. Evidence in favor of this statement partly rests on
the excellent agreement with simulation data. For this
comparison, we solve Eq. (3) by the method of charac-
teristics. Starting from an empty corner, we find [13]
that the interface profile admits the following parametric
representation (Fig. 3)

x

t
= A(q, r),

y

t
= B(q, r),

z

t
= C(q, r) (6)

where

A =
1

(q − 1)2
r

r − 1

[

1 − 1

q + r

]

− q

q − 1

r

r − 1

1

(q + r)2
,

B =
q

q − 1

1

(r − 1)2

[

1 − 1

q + r

]

− q

q − 1

r

r − 1

1

(q + r)2
,

C =
q

q − 1

r

r − 1

[

1 − 1

q + r

] [

1 +
1

q − 1
+

1

r − 1

]

− q

q − 1

r

r − 1

1

q + r
,

with q = zx, r = zy and −∞ < q, r ≤ 0. As a consistency
check, note that for r = −∞, we have x/t = (q − 1)−2,
y/t = 0, and z/t = q2(q − 1)−2. Eliminating q, we get√

x +
√

z =
√

t, thereby recovering Eq. (2) for the inter-
section of the interface (6) with the y = 0 plane.

While it seems difficult to eliminate the parameters
(q, r) from Eq. (6), the intersections of the interface (6)
with certain planes admit simplified descriptions. For
example, for the plane x = y, corresponding to q = r, we
obtain

x

t
=

1

2

z

t
− 3

4

(z

t

)2/3

+
1

4
, (7)

which agrees quite well with simulations (Fig. 4).
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FIG. 3: The interface (6).
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FIG. 4: Scaled interface profile z/t versus x/t along the diago-
nal ray x = y for t = 50, 400 (104 realizations each), t = 20000
(10 realizations), and from Eq. (7). The inset shows the dif-
ference between x/t for the simulated interface at t = 20000
and (7).

Two additional tests suggest that the conjectured evo-
lution equation (3) and its solution (6) describe the cor-
ner growth model accurately. Consider first how the in-
terface advances along the ray x = y = z. The position
of this point is given by [14]

x = y = z = wt, w = 1
8 . (8)

Numerically, we measure w ≈ 0.1261(2), which agrees
with our prediction w = 0.125 to within 0.9%. As a sec-
ond test, we compute the total volume V beneath the
growing interface at time t. Since the linear dimension
of the interface grows linearly with time, V = vt3; we
want to determine the amplitude v. Using the paramet-
ric solution (6) and changing from the physical variables
(x, y) to the parametric coordinates (q, r), the amplitude
v reduces to the integral

v =

∫ 0

−∞

∫ 0

−∞

dq dr C(q, r)
∂(A,B)

∂(q, r)
.

We compute the Jacobian ∂(A,B)
∂(q,r) and the integral using

Mathematica to find

v =
3π2

211
= 0.0144574283219 . . . (9)

Numerically, we measure v ≈ 0.01472(3), which is within
1.8% of our prediction.

While Eq. (3) is quite accurate, small discrepancies be-
tween our measurements of the coefficients w and v, and
their predicted values (8)–(9) persist. The alternative
elementary evolution equation (4) leads to the interface
profile

√
x +

√
y +

√
z =

√
t , (10)

which generalizes the parabolic profile (2). The corre-
sponding values w = 1

9 and v = 1
90 that arise from this

profile substantially disagree with simulation results, sug-
gesting that (4) is wrong.

One may also consider the composite forms given in
Eq. (5). For the multiplicative class of equations (5b),
the case c ≈ 0.074 provides the best fit for the simulated
value of v [15]. However, Nature should be described by
a simple equation. Similarly, fitting simulation results to
an evolution equation from the additive class, the optimal
mixing parameter is c ≈ 0.079. In this case, the evolution
equation is analytic, but it still contains an anomalously
small mixing parameter, which seems implausible. These
results are suggestive that Eq. (3) describes corner inter-
face evolution, but the approach to the asymptotic state
is quite slow.

A similarly slow convergence to asymptotic behavior
occurs in various well-understood d = 1 growth models
(see e.g. Refs. [16, 17]). Less is known about fluctua-
tions of the two-dimensional interfaces [2] and these are
important to understand the approach to the asymptotic
interface profile. For the two-dimensional corner prob-
lem, the intersection of the interface with the (1, 1) di-
rection evolves according to [3, 8, 9]

x(t) =
t

4
+ t1/3 ξ , (11)

where ξ is a stationary random variable with 〈ξ〉 > 0.
Thus averaging over many realizations gives an effective
velocity weff − 1

4 ∼ t−2/3.
For the three-dimensional corner problem, we similarly

expect weff − 1
8 ∼ t−α, with a still-unknown exponent α.

The best simulation results for flat interfaces indicate
that α is close to 0.77 [18, 19]. From our measurements
over the time range t ≤ 20000, the best extrapolation is
provided by using α ≈ 0.74, which indicates that we are
still outside the long-time regime. Although we find dis-
crepancies between extrapolations of simulation results
and theoretical predictions for the interface profile based
on (3) that are an order of magnitude larger than in two
dimensions [13], these persistent discrepancies may result
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from the slower convergence of the three-dimensional cor-
ner problem to the asymptotic behavior.

In four dimensions, we use coordinate interchange in-
variance and symmetry to conjecture that the height
h(x, y, z; t) obeys the following generalization of the two-
and three-dimensional evolution equations

ht =

(

1 − 1
hx+hy

)(

1 − 1
hy+hz

)(

1 − 1
hz+hx

)

(

1 − 1
hx

)(

1 − 1
hy

)(

1 − 1
hz

)(

1 − 1
hx+hy+hz

) .

In d dimensions, this same line of reasoning suggests that
the height h(x1, . . . , xd−1; t) satisfies

ht =
∏

1≤i1<...<ip≤d−1

(

1 − 1

hi1 + . . . + hip

)(−1)p

(12)

where hi ≡ ∂h
∂xi

. All these equations are solvable using
the method of characteristics [13].

The computation of the limiting shape — the primary
characteristic of the growing interface — does not close
the problem. There are many other interesting features
of growing interfaces that are ripe for exploration. One
challenging problem, given that interface fluctuations are
unknown even for flat interfaces, is to generalize Eq. (11)
to account for fluctuations of the corner interface in three
dimensions. Fluctuations of integral characteristics, such
as the crystal volume, may be more tractable and give
rise to new phenomena. Consider, for example, the total
number of sites of various fixed degrees (number of ad-
jacent vertices). Sites of degree 3, in particular, can be
categorized as either inner or outer corners. The num-
ber of inner corners grows as Ninner = dV

dt = 3vt2, with
v = 3π2/211 to leading order. One might anticipate the
same asymptotic growth for outer corners, but simula-
tions indicate that the latter grows slightly faster [13]:

Nouter/Ninner ≈ 1.04 .

Strangely, even though the interface is globally concave,
the excess of outer corners indicates that at the local scale
the interface is slightly convex.

It would be interesting to generalize from strict growth
to Ising growth, where deposition at inner corners and
desorption from outer corners occur with equal rates.
A related extension is to the situation when the des-
orption rate slightly exceeds the deposition rate to give
a large equilibrium crystal. The corresponding equilib-

rium shape has been determined both in two dimensions
[20–22] and in three dimensions [23, 24]. Similar to the
conjectured exact evolution equations (12) for the corner

growth problem, it seems feasible to conjecture an exact
generalization of equilibrium limiting shapes [20–24] in
higher dimensions.
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