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We study the statistics of growing networks with a tree topology in which each link carries a v&elg}ﬂ
wherek; andk; are the node degrees at the end points of ljniNetwork growth is governed by preferential
attachment in which a newly added node attaches to a node of degiigterate A,=k+\. For general values
of § and \, we compute the total weight of a network as a function of the number of nNdasd the
distribution of link weights. Generically, the total weight growsNagor A > -1 and superlinearly otherwise.

The link weight distribution is predicted to have a power-law form that is modified by a logarithmic correction
for the case\=0. We also determine the node strength, defined as the sum of the weights of the links that
attach to the node, as function kfUsing known results for degree correlations, we deduce the scaling of the
node strength ok andN.
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[. INTRODUCTION There has also been much very recent work on various
) , ) aspects of weighted networks including characterizing paths

The recent interest in networks stems from the discovery, ihese networkEQ], structural propertieg10,11, and the
that the node-degree distribution can have a power-law fomhpplication to weighted networks to diverse physical sys-

Here the node degree is defined as the number of links thag¢ s such as earthquakg] and to synchronization phe-
are connected to this node. It is now well documented that ﬁoméne{l:%].

wide variety of natural and man-made networks have power- | this work, we characterize basic properties of growing

law degree distributiongl]. o networks in which the links possess variable weigHt4].

In most previous studies, it has been implicitly assumedye consider the generic situation in which network growth is
that the quality of each link is identical. However, there aréyoverned only by the node degrees, so that the link weights
many examples of networks in which the weight of each linkare passive subsidiary variabléShe complementary situa-
can be distinct. For example, in scientific collaborations, cOtjon in which the link weights determine network growth has
authors can have a variable number of joint publicationsyisg peen analyzed; see, e.g., Rf8s:10,14,15) We define
Thus in the associated coauthorship network, a link betweef,q weightw;; of a link between nodeisand] in the network
two individuals represents the collaboration strength, such ag, pe the eroduct of end-point node degrees—thawys,

the number of jointly authored publicatiof3]. =kk;. More generally, we study the general case where the
Transportation networks represent another situation wherg, weight has the following dependence on the end-point
the weight of each link is variable. In the specific example Ofdegrees:

airline route networks, links between two airports represent
the passenger capacity on this ro{#g. It has been found wi = (kik)? (1)
that the weight of the linKdefined as the number of avail- e

able seats on flights between the two airports connected Qe show that this weighted network has a surprising depen-
the link) is well approximated by the products of the end-yence of the total weight on the system size and an unusual

point degrees raised to a powsi. A related line of research scaling for the distribution of link weights. Many of the new

focuses on general properties of flows in heterogeneous nelagts' that we obtain follow naturally from previous work
works [.6’7]' . . on the degree correlations in growing netwofk§).

A third example whgre link welght_s are connected to Net- £q the network growth mechanism, we employ preferen-
work topology occurs in the metabolic network of the bacte~ja attachment, in which a new node links to previous nodes
rium E. coli. Here a link between two metabolic substrates,, .k an attachment rat&, that depends only on the degree of

represents an enzymatic reaction, and the weight of a link,e “arget” nodd 171. For simplicity. we consider the situa-
(defined as the metabolic flux ratdisplays the same func- 9 417) pret;

tional dependence on the endpoint degrees as that of t
world airline network{8].

tion where the newly introduced node connects to a single
rLE;trget. Because of this topological restriction, the resulting

network is a tree, a feature that turns out to simplify our

analysis. To complete the description of the system, we need
to specify the attachment ra#g. We will consider the Simon

*Electronic address: ealmaas@nd.edu model[18], where A,=k+\, with A >-1, but otherwise ar-
"Electronic address: paulk@bu.edu bitrary. For this growth mechanism the degree distribution
*Electronic address: redner@bu.edu has a power-law taifck 3™,
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In the next section we compute the total network weight 1
W(N), defined as the sum of the link weightg, as a func- E (1-1)= §m3+ o(n?).
tion of the total number of nodds. The distribution of link 1=2
weights is investigated in Sec. Ill, and the node strength . . .
defined as the sum of the weights of all the links that attacr;rhuS the asymptotically dominant part of the sum is
to the node, is studied in Sec. IV. We first focus on the case 4inm
of the strictly linear attachment rate whefg=k and then D king ~ > + > omY. (4)
outline corresponding results for the more general case of kI m=2 m=2
A=k+N with A>-1 but otherwise arbitrary. Numerical
simulation results and comparison to our analytic predlct|on%u
are given in Sec. V.

To evaluate these sums explicitly, we need to impose a
toff in the upper limit. For the case=0, we therefore use
the fact that the maximal degrég,,, scales adN'/? [17,20.

This result is easy to derive by utilizing,~ 4Nk ™3 and es-

Il. TOTAL NETWORK WEIGHT timating the maximal degree from the extremal criterion that,
in a network ofN nodes, there will be a single node whose
degree in the rang&max ). This criterion corresponds to
the cond|t|0n2k>k Nk 1. Thus we cut off the sums in Eq.

We denote byN,(N) the number of nodes of degrée
that attach to an ancestor node of dedrekhis degree cor-
relation function is well defined only for growth processes in
which each node attaches to exagtly o?we pre\ﬁous node, 45) at Mmax~ (ZN)UZ to give
that the ancestor of each node is unique. Notice that the 1
correlation functiorlNy | is not symmetric with respect to the > kine = =(In N)2+O(In N). (5)
end nodes. For graphs that are built sequentially by prefer-
ential attachment, we are interested in the total weight of the

network, defined by Since the leading sum in E¢) diverges logarithmically, the
mere knowledge of the scale of the cutoff is sufficient to
W(N) =D KIN (N). (2 determine the exact asymptotics. With this result for the in-
Kl ' ternal sums, we thereby find, from E@),

That is, we first consider the case &£ 1 in Eq.(1). 1

For growth processes in which the attachment rate W(N):EN(“1 N)?+O(NIn N). (6)
does not grow faster than linearly witky the correlation
function N (N) grows linearly with the total number of A similar computation for the Simon modélvhere A,
nodesN (see[16] and alsq 19] for a brief review. That is, =k+\) with arbitrary \ is difficult to perform exactly be-
N (N)=Nny, for largeN. The explicit form of the distribu- cause the expression fay, is an infinite serieg16] rather
tion ny, for the simplest case of the Barabasi-AlbéBA)  than a rational function as in E¢B). However, the dominant
model (A=0) is [16] contribution to the surix, |kIny, is concentrated in the region

1<k<I, wheren,, admits the simple asymptotic forfi6]

B 41-1)
= ik D+ D(k+ [+ D(k+1+2) M ~ K277 (7)
12(1-1) 3 Therefore
k(k+ - D(k+D(k+1+1)(k+1+2)°
_ _ _ . Sking ~ 2 1Y kK~ 1M nll, (8)
SinceW(N)=NZklIn,, one might naively anticipate that Kl ’ k=l

the total weight will scale linearly witlN. This expectation is .
erroneous because the infinite stkin, formally diverges, For A>0 the sum converges, while for<O the sum for-

leading to an additiona\ dependence iW(N). mally diverges and we must again determine an upper cutoff.
To computeSkin,,; we write m=k+| and recast the sum Applying the previously mentioned extremal argument for
as the maximal node degree for general values\pfve now

find Kmax NY2™ [20]. Thus we conclude that the last sum

s s 4 "‘E'l I(1- 1) in Eq. (8) scales ad\™@*Mn N for —1< A <0. In summary,
Kin,, =
kil ! m=2 m(m+1)(m+2) 1=2 m+1-| N, )\>0,
S 12 2 - W(N) o< 1 N(In N)?, A=0, (9)
= (m-1m(m+)(m+2) 5 NN nN, XA <O0.

Consider now the situation where link weight depends on
its end-point degrees according to Eij). We treat only the
-1 casef<1 because this regime corresponds to real networks
|

For largem, the internal sums behave as

m
> -1 =m?In m+ O(mP) [5,8]. Using the asymptotic behavior fag, given in Eq.(7),
2 m+1-l ’ we then have '
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S (K)o, ~ 1720, erage num.ber of divis_ors oV grows logarithmically withw; _
Kl ’ more precisely, by differentiating the above formula with
respect tov, we have(d(w)) — In w+2+y. Thus the tail of the

which converges foh > 6-1 and diverges otherwise. Thus weight distribution is

in the range# strictly less than 1, the total weight of the

network scales according to Pw) ~w?2inw asw> 1. (14)
N, A>0-1, Consider now the general case of arbitrargbut with the
W(N) ~{NInN, A=6-1, (100  Necessary constraint>-1 to ensure a finite average de-

gree. In this case, we have to combine two separate contri-
butions to determine the link weight distribution. First, using
kl=w, we rewrite Eq.(7) as

N(l+ﬂ)/(2+)\)' AN<6-1.

IIl. LINK WEIGHT DISTRIBUTION Ny ~ K'w2, (15)

In this section, we consider exclusively the casegefl.  This asymptotic behavior holds fér<I, so it can be used to

We define the link weight distributioH(w) as the fraction of ~estimate the part of the sum in E€L1) that runs over the
links whose weight equals: that is, divisors k|w such thatk<<yw. The corresponding contribu-
tion to the weight distribution is therefore

H(W) = 2 N, - (11)
kil

kl=w

P_(W) ~ w2 g, (VW), (16)

wherea, (n) is the generalized divisor function ofdefined
This natural definition leads to erratic behavior in the distri-5g

bution, as the arithmetic nature wfplays a significant role.

If wis prime, then the only possible degrees of the end nodes oy\(n) = 2 A 17

are 1 andw, while if w has many divisors, there are more fin

possibilities for the degrees of the end nodes. Thus in addi- - . .

tion to an expected global smooth dependendd @f) onw, Where the sum runs over all dIVI.SO'fEDf the integem. This
there will be superimposed fluctuations related to the divis_generallzed_ divisor function exh|}l\)|ts, on average, a power-
ibility of w. These fluctuations will disappear if we averagelaw growth inn for A >0, 03(n) ~n*, and apprqaches acon-
TI(w) over a range much less thanand much larger than stant forh <0 [22]. As a re§ultl, the asymptotic behavior of
the average distance between successive pritmgsch P<(w) undergoe§ a qualitative change whan passes
grows as Inv [21]). This suggests that we also consider athrough zero. Using the result for the generalized divisor

i - function in Eq.(16), we find, for the contribution to the link
thed distribut defined b
smoothed distributiofP(w) defined by weight distribution from divisors oW that are smaller than
Pw)=w? 2 ng, (12 W
ws=kl<w+w? W—2—)\/2, A>0,

with a in the range 8<a<1. For sufficiently largew this P(w) ~ w2 A <D0. (18)
smoothed distribution should be monotonic and independent o . o _
of a. A second contribution to the weight distribution arises

To determine the behavior of the link weight distribution from the rangek>1. [For the following arguments we use
for w>1, we again start with the case of the BA model the smoothed weight distribution of E¢L2). Correspond-
wherex=0. Using Eq.(3) and writingl =w/k we obtain, for ~ ingly, the generalized divisor functiom(n) should also be
largew, averaged in the same way as that for the weight distribution

4 Lok in Eg. (12).] In this case, the asymptotic behavior of the
. W distributionny, is [16]

(w) — >, @i it | (13)

kw N ~ 15" W52, (19)

The notatiork|w means that this sum runs over all values of
k that are divisors ofv. For largew, the asymptotic behavior
of the summand scales as? times the average number o
divisors of w. Using the celebrated Dirichlet formulaee,

e.g.,[21]), the total number of divisors of all integers from 1

We use this asymptotics to estimate the part of the sum in
f Eqg. (11) that runs over the divisons|w such thatk> yw or,
equivalently, over divisor$|w such thatl < w. The corre-
sponding contribution to the weight distribution is

tow is Po(W) ~ W5 20 (VW) (20)
w
_ _ Since 6+3 >0 (in fact, the stronger inequality 6\3>3
dx)=winw+ (2y-Dw+ ---, ) o .
gl ®) (2y=1) holds, the generalized divisor function behaves as

. . . 0'6+3>\(\’SV—V)~W3+3M2- Thus
whered(x) is the number of divisors of the integgrand y

=0.577 215 is the Euler-Mascheroni constant. Thus the av- P(w) ~ w22, (21)
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We therefore find that the large-tail of the complete S(K) = $in(K) + SouiK) = (K= DK in + kKl dour ~ (25)
weight distributionP(w)=P_(w)+P~(w) is dominated by

P_(w). Thus summarizing our results, the link weight distri- The first term accounts for the fact that there larel incom-

ing links, each of which has weigki,, wherej, denotes the

tion i S
bution is degree of a daughter node when the initial node has dégree
o2 Similarly, the second term accounts for the single ancestor
W , A>0, ) . :
S node with degred,. We now consider these two contribu-
Pw) ~{wInw, A=0, (22)  tions tos(k) separately.
w2, A <0. For the contribution due to the ancestor node, we use the

fact that its average degrék),,: is given by
The average weight per linkw)=dwwlI(w), should be

equalW(N)/N. >, I
Equation (22) shows that the integrafdwwil(w) con- (Iour= S : (26)
verges in the largev limit if A >0, so in this rang&V~N, in I=1" kKl

agreement with Eq(9). When \=0, the integral formally
diverges ag'dww ! In w; taking into account the upper cut-
off Wrnax<K2.,~N regularizes the integral tén N)? and S N == 4

therefore W~ N(In N)?, again in agreement with Eq9). S TR T Kk + )k +2)

Similarly for A <0, Eq.(22) predictsW~ Nw.. The reason ) ) ) ) ) )

for the disagreement in the range <A <0 is unclear. Part Using this, together with Eq3), we obtain(again using the
of difficulty may lie in the fact that the link weight distriou- Shorthand notatiom=k+1)

tion exhibits an anomalous feature that is not simply a I - 1)

: i o= (k+2)S ——— =
power-law behaviofsee Sec. Y. (Iout=( )El m(m+ D(m+2)

The normalization factor is just the degree distribution

11-1)
IV. NODE STRENGTH
+ 3+ 1)l Z)E (M= Dm(m+ D(m+2)"

Many real networks display a significant correlation be-
tween the degrees of adjacent nodes. There are examplé&be first sum on the right-hand side is logarithmically diver-
where there is a bias for nodes to be connected to other nod@éent. Using the fact the upper cutoff &l and replacing the
with either similar(assortativg or different (disassortative ~ sum by an integral, we find that fde>1 the first sum is
degred 23]. This tendency to select nodes with a consonanasymptotic to INN-Ink. Similarly we find that the second
property is often expressed as a Pearson correlation coeffsum is asymptotic to 18k). Therefore
cient of the network. For networks where the weights are

correlated with the topology, we investigate the effects of Soul(K) = K(ldour— KX(INVN = In k). (27)
correlations by studying the node strength definefbas For the contribution tas(k) from the daughter nodes, we
need the average degree of these nodes. This is given by
=2, Wi, 23 .
5 % i (23) S m
Jon= - (28)
where the sum runs over all nodethat are linked to node 2;21 Nk

Let us first consider the simplest link weight function where , ,

w;; is just the product of the end-point node degrees. Thed N denominator is found from

the strengths(k) of a node of degrek is simply k times the 4(k-1)

sum of the degrees of the neighboring nodes. Since there are E Njk= (k= 1ne= m

k neighborss(k) is thenk? times the average degree of the =1

neighboring nodes if we ignore correlations between the deThis equality is somewhat subtle. A node of degkeeask
grees of neighboring nodes. Now the average node degreel incoming daughter nodes. If we sum the two-point cor-
equals twice the number of links divided by the number ofrelations functions for all these daughter nodes, we over-
nodes; this simply equals 2 for a network with a tree topol-count the number of nodes of degie®y exactly the factor

ogy. Hence the node strengstk) scales as k—1. The numerator can be computed straightforwardly but
tediously by following similar steps to those preceding Eq.
s(k) ~ K. (24) (27) to evaluate the sums. The resulting asymptotic behavior

_has the simple formk?In k. Thus we have
Because node degrees are actually correlated, we now in-

vestigate their influence on the simple prediction of &4). Sin(k) = (k= Dk(jiin — K*In k. (29
To include the effect of node correlations on the behavior of
the node strength(k), we start by splitting the contributions Consequently, fok>1 the node strength scales
to s(k) into two parts: one from incoming links and another _}} 2

from the outgoing link. This gives sk zk InN. (30
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A note of warning is in order. The above computation of 10”
the contribution of the outgoing link to the node strength is 10°
exact—both s,,(k)=k{lpo and Eg. (26) are manifestly
correct—and therefore knowledge of, suffices to deter- 10° AAAAjiZ;;SS
mine s,,{k). On the other hand, an exact calculation of the g 10° | AAﬁgagzgsﬁ“’
contribution of incoming links requires knowing the many- B Aﬁgggéég"""
body correlation functiom(j4, ... ,jx-7). This quantity gives 10° gggﬁﬁg""
the fraction of nodes of degréewhose daughter nodes have 102 ‘Q.es88
degreegy, ... ,jk-1. This exact contribution has the form o 4

5K = K(j1 + - + JicDi et
_ kzjlx---rjk—l R e L E L FIG. 1. Average network weight/(N) as a function oN for the

E- - NG e siked) representative cases=100,1,0,-2/30O, +, A, V), respectively.

Ja--

Unfortunately, we do not know(jy, ... ji_1), SO we cannot & New node to a randomly s_elected target node_with probqbil—
computes;,(k) exactly. Equationg25) and (28), which in- 1ty 1= and attach to the direct ancestor of this target with
volve only the known degree correlation,, are based on Probabilityr. This method is both extremely simple, because
the assumption that the degrees of the daughter nodes at[tée target .node is randomly selected, and.eff|C|ent,_S|nce the
uncorrelated. Although the correlation between the degreetéme to .bu'ld a ngtwork oN nqdes s_cale; Imearly W'tN'.

of daughter nodes is certainly smaller than the degree corre- As discussed n Re£.16], this redirection rule is equiva-
lation between the daughter and mother nodes, it is not clej(fm to a network in Wh'(.:h the attachment régto a node of
that we can ignore these correlations. egreek equalsk+\, with N\=1/r—2. The attachment rate

Consider now the general linear attachment keAyelk k+) then leads to a degfe‘? distriputiqp~ K™, with v=3
+\ with A>-1 and choose the weight functiom; =(kik;)” +\ [16]. Thus by implementing redirection, we can generate

with #<1. We now compute the contribution of the outgoing scale-free networks with degree distribution exponent any-
link to the node strength. We have where in thg rang.éz_ ,-oc). As a parenthetical tech.nlcal point,
each node in the initial network must have a unique ancestor
k? p to ensure that redirection weights each network realization
SoulK) = n_z MR (1) correctly[20]. In our simulations, we chose the starting net-
: work to be a triangle in which each node points cyclically to
In performing this sum, we use the asymptotigs- k3™ for  its nearest neighbor. This detail about initial condition does
k>1 and the results df16] for the asymptotics ofy, not affect the asymptotic form of the degree distribution.
Figure 1 shows the average network weight as a function
of the total number of node. These results are based on
100 realizations of the network that each contain up to
N ~ K472 for 1<k<l. Niax=(1.5%°~1.1x 10’ nodes. On a double-logarithmic
oW(N) versusN are quite linear foi >0,

=1

N ~ K21 for 1< <Kk,

We estimate the formally diverging sums by using the cutoffScale. the data f

NY2N \We thus find but there is a very small systematic curvaturg 'in the data for
N=<0. As suggested by Eq@9), we therefore divide the data
Kk2?, A>6-1, for W(N) by (In N)? for A=0, or by InN for A <0.
Sou(K) ~ 1 K2 (N NY@N — k), A=6-1, The resulting data shown in Fig. 2 are now visually more

linear on a double-logarithmic scale. Power-law fits to large-
N subranges of the data give effective exponents that are
Finally, we specialize this prediction to the simplest weightonly weakly dependent on the subrange. For the case

functionw;;=kik;, as we report simulation results only in this ==2/3, the effective exponent changes from 1.451 to 1.487

k1+)\+0N(0—l—)\)/(2+)\) _ k249’ A<6-1.

particular case in the next section: as the lower limit of the fit rang8l,,,;, is increased from 4 to
) 4% 10° while N, remains fixed. This behavior suggests that

K, A>0, the total network weight scales &8/2In N, as predicted by
SouK) ~ 1K2(INYN=1Ink), =0, (32)  Eq.(9). Similarly, for A\=0, the effective exponent changes
IRANNEN 2\ < 0. from 0.938 to 0.969 when the above fitting protocol is ap-

plied. Again, the data are consistent witi{N) ~N(In N)?
for A\=0. ForA>0, the variation in the effective exponent is
V. SIMULATION RESULTS staIIer still and it is evident that/(N) varies linearly with
We now present numerical results for the total weight of a In Fig. 3, we show our data for the distribution of link
network and the underlying weight and strength distribu-weights for the representative casesaef0, 1, and —0.5. The
tions. To generate the network, we use the redirectiomlata shown are based on*l@etwork realizations witiN
method, as discussed in REE6]. In this approach, we attach =10° for A=0 and 1, whileN is limited to 25 000 for thex
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10

FIG. 2. Same as in Fig. 1, except that the dataXei0 and\
<0 have been divided bgin N)? and InN, respectively. The solid B
lines are best fits to the data fof>4x 10°. The slopes of these - I
lines are 0.990, 0.988, 0.969, and 1.489Xer100, 1, 0, and —2/3, 2
respectively. =

=-1/2 due to the broadness of the link weight distribution. 102 |
The data show considerable small-scale variation because of

the previously mentioned fluctuations in the number of divi- 10°
sors of the integers; thus we also examined the locally aver- 10
aged distribution given by Eq12). While this construction w
smooths the distribution, exponent estimates based on the
smoothed distribution are nearly identical to those found for

the raw distribution[IT(w) in Eq. (11)] and thus we quote

results based on analysis of the latter.

For \=0, a power-law fit to the data fdi(w)/In w gives 2
II(w)/Inw~w™x, with y=2.3, compared to the theoretical =
prediction from Eq.(22) of y=2. Forx=1, we findII(w)
~wX, with y~2.23, while the theoretical prediction from 10
Eq. (22) is y=2.5. Finally, forn=-0.5, a simple power-law
fit to the raw distribution in Fig. 3 is clearly an oversimpli- .
fication. However, a power-law fit to all the data givgs 10 10°
=1.39, close to the theoretical prediction p£1.5. Overall, w
the agreement between the predictions of 8) and simu-
lation results is surprisingly good, given the vagaries of these(\t
distributions.

We also numerically calculate the node strength as funct
tion of the degreek. In Fig. 4 we show the results for=0
for a network ofN=10" nodes. As a check of Eq27), the While most of our discussion has considered the case
contribution to the node strength from the outgoing links wasyhere the exponené=1, there are examples of real net-
fit with form s,,(K) ~kP(In kyna—In k). Using a nonlinear works, such as th&. coli metabolic network§8] and the
curve fitting package, we obtaif=1.9 andk,,=13000. airline route network[5], where the correlations between
This value ofk;,,is very close to what we observed numeri- node degree and link weight seem to follow

cally (10 900 for the maximum degree over all 1000 real- w;; i =(kik )1’2 that is, 6=0.5. To test the predictive power of
izations of the network. Overall, the data fag,(k) agree  our analyt|cal approach also for the casedsf1, we inves-
reasonably well with the theoretical prediction from E27)  tigate the scaling of node strength as a function of node
with B=2. degree forg=1/2 for the twospecific examples af =0 and

In Fig. 5 we show the node strength for two other repre-\=-2/3 (Fig. 6). Our analytical results for the outgoing
sentative values ok. For the case oh=1, boths(k) and node strength ares,,(k)~k (A=0) and s, (k) ~k®® (\
Sou(K) grow ask?, as predicted by Eq$27) and(30). Forthe  =-2/3), in good agreement with the best fits &f(k)
case ofA=-2/3, s,,{(K) grows ask*3, as predicted by Eq. ~k%2 ands, (k) ~ k%8 respectively.

(27), while s,(k) grows slightly faster thak?, which is con- As a further test of our theoretical predictions, we show
sistent with thek? In k growth given in Eq(29). Notice also  data for the node strength in which we attempt finite-size
that the point wheres, (k) and s,,(k) intersect moves to scaling(Fig. 7). In panel(a), the data foix=0 are consistent
largerk as\ decreases. This crossover point also coincidesvith the asymptotic behavior af, (k)/In N~k? given in Eq.
with K. and the behavior df;,,,,0n \ is consistent with the (27). The departure from data collapse arises from the cor-
prediction Ky, ~ N, rection term in this equation. In panéb), the data for\

v}

10

5

10

FIG. 3. Distribution of link weightslI(w) versusw for A=0
op), A=1 (middle) and A=-0.5 (bottom). Every tenth point is
plotted and the line is a ten-point average. The quafity)/In w
appears in the top plot.
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FIG. 4. The node strength(k) versusk for a network ofN
=10’ nodes withA\=0 and the contributions to this strength from
incoming and outgoing links, as given by the two terms in 8)
(O, @, A, respectively. Inset:s(k);, divided byk? In k.

=2/3 are nowconsistent with the forms,,(k)/NY2~k*3
-k?/NY2 given in Eq.(32). The departure from data collapse
is due to the influence of the correction termsjp(k). Panel
(c) shows the expected scaling behavior sk) ~k? In k
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10° 10°
degree k

10

FIG. 6. The node strength f@#=0.5. This left panel shows the
casex=0 and the righiv=—2/3, both for networks of siz8=1(F.
The node strength(k) and its contribution from incoming and out-
going links are denoted byl, ®, and A, respectively.

wherek; andk; are the node degrees at the endpoint of the
link ij. We also characterized a node by its strength, defined
as the sum of the weights of the links that are attached to this
node. The link weights and node strengths provide new met-
rics with which to characterize heterogeneous networks. The
motivation for considering these properties stems from a
number of real-world examples, such as airline route net-
works or metabolic networks, in which the flow capacity of
each link is different.

We focused on developing an analytical understanding of

given in Eq.(29). Curiously, this same behavior also occursthe link weights and node strengths as a function of the un-

for the case oh=-2/3.

VI. SUMMARY

derlying growth mechanism of the network. Much of our
analytical results are obtained by adapting previously derived
results for node-degree correlations to the link weights and

We studied the statistics of growing networks in which node strengths. Generically, we found that the total network

each linkij in the network has an associated weigk]kj)g,
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FIG. 5. The node strengtk) and its contribution from incom-
ing and outgoing linkg[], @, A, respectively for the cases of
=1 (uppe) and —2/3(lower), both withN=10".

weight grows faster than linearly with the total number of
nodes,N. Strictly linear growth of the total weight oil
occurs for networks whose degree distribution decays rela-
tively quickly in k for large k. The distribution of link
weights has a power-law tail that is modified by a logarith-
mic correction fox =0. There is also a strange and, as of yet,
unexplained anomaly in this distribution whanr<0. There
are also small-scale fluctuations in the link weight distribu-
tions that are caused by the granularity in the number of
ways that a given link weight can be factored into a product
of the degrees of the end-point nodes.

A calculational approach in the same spirit as that used for
the link weights was also applied to determine the node

1 0‘) | I
10° 10%10°
degree k

FIG. 7. Finite-size scaling of the node-strength contribution
from outgoing[(a) and (b)] and incoming((c) and (d)] links for A
=0 (upper panelsand \=-2/3 (lower panels The network sizes
areN=101C,1C°,10' (O, @, A, *, respectively.
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strength. For\=0, the node strength scales k& with a 1

logarithmic correction in the case af=0, while for A <0, W(N+1)=W(N) + Ek(k*' D+ (- (AL

the node strength has a more complicated scaling behavior.

The node strength can also be decomposed into contributio¥¥e shall ignore the positive increme@t-) since its calcu-
from the outgoing link and a contribution from incoming lation requires knowledge of the distribution,. By this
links. Only the former is amenable to a complete analyticaPProximation we will derive the lower bound rather than the
treatment in terms of the two-node correlation function,fué asymptotic. . . .

while the latter requires knowledge of many-node correla- EQuation(Al), in conjunction with the well-known ex-
tions. We expect that these many-node correlation functionBression for the degree distribution,

can be computed withing a rate equation approach. 4

n=——"—"""=, A2
“Tkk+ 1)(k+2) (A2)
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For the degree distribution, the location of the cutkjf,,
APPENDIX: LOWER BOUND FOR THE TOTAL ~NY2 s weII_estainshed.[Even the full scaling form
LINK WEIGHT n(N)=n,F(k/VN) is known analytically[20].] Thus W(N

_ ) ) +1)-W(N)>InN, so that the lower bound for the total
Our calculation for the total network weight relied on the \yeight is

distributionn, | that was obtained in Ref16]. We also made
use of the cutofk,,, that applies for the degree distribution W(N) > NIn N. (A4)
n, [20]. Thus the application of this cutoff to,, could in  This bound exhibits a slower growth than the prediction of
principle be questioned. Here we establifr the simplest  Eq. (6) but it proves that the total weight of a network grows
A=0 mode] a rigorous lower bound for the total weight of a faster than linearly irN.
network using only the well-known properties of the degree For the general case where the attachment rate as the form
distribution. A.=k+X, the tail of the degree distribution is given oy

Let W(N) be the average total weight of the network with ~k™3™, For A >0 this asymptotic form for the degree distri-
N nodes. The next node will link to a target node of dedtee bution implies that the suik(k+1)n, converges, leading to
with probability %knk. The degree of the target node thenthe lower boundM(N) > N. This gives the same scaling be-
increasek+1, so that the average weight of the new link is havior as the actual asymptotic behavior of Eg). For A
>(k+1)(kn)/2. The increase of the degree of the target node<0, the sumZk(k+1)n, diverges and we use the cutoff
(k—k+1) implies that the weights of thiecurrent links that Ky~ NY?™ to obtain Sk(k+1)n,~NM2N  This then
end at the target node will also increase; we denote this cogives the lower boundM(N)>N%@™ g result that also
responding average increase (y). Thus agrees with the actual asymptotic behavior in Bj.
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