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We study the statistics of growing networks with a tree topology in which each link carries a weightskikjdu,
whereki andkj are the node degrees at the end points of linki j . Network growth is governed by preferential
attachment in which a newly added node attaches to a node of degreek with rateAk=k+l. For general values
of u and l, we compute the total weight of a network as a function of the number of nodesN and the
distribution of link weights. Generically, the total weight grows asN for l.u−1 and superlinearly otherwise.
The link weight distribution is predicted to have a power-law form that is modified by a logarithmic correction
for the casel=0. We also determine the node strength, defined as the sum of the weights of the links that
attach to the node, as function ofk. Using known results for degree correlations, we deduce the scaling of the
node strength onk andN.
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I. INTRODUCTION

The recent interest in networks stems from the discovery
that the node-degree distribution can have a power-law form.
Here the node degree is defined as the number of links that
are connected to this node. It is now well documented that a
wide variety of natural and man-made networks have power-
law degree distributionsf1g.

In most previous studies, it has been implicitly assumed
that the quality of each link is identical. However, there are
many examples of networks in which the weight of each link
can be distinct. For example, in scientific collaborations, co-
authors can have a variable number of joint publications.
Thus in the associated coauthorship network, a link between
two individuals represents the collaboration strength, such as
the number of jointly authored publicationsf2,3g.

Transportation networks represent another situation where
the weight of each link is variable. In the specific example of
airline route networks, links between two airports represent
the passenger capacity on this routef4g. It has been found
that the weight of the linksdefined as the number of avail-
able seats on flights between the two airports connected by
the linkd is well approximated by the products of the end-
point degrees raised to a powerf5g. A related line of research
focuses on general properties of flows in heterogeneous net-
works f6,7g.

A third example where link weights are connected to net-
work topology occurs in the metabolic network of the bacte-
rium E. coli. Here a link between two metabolic substrates
represents an enzymatic reaction, and the weight of a link
sdefined as the metabolic flux rated displays the same func-
tional dependence on the endpoint degrees as that of the
world airline networkf8g.

There has also been much very recent work on various
aspects of weighted networks including characterizing paths
on these networksf9g, structural propertiesf10,11g, and the
application to weighted networks to diverse physical sys-
tems, such as earthquakesf12g and to synchronization phe-
nomenaf13g.

In this work, we characterize basic properties of growing
networks in which the links possess variable weightsf14g.
We consider the generic situation in which network growth is
governed only by the node degrees, so that the link weights
are passive subsidiary variables.sThe complementary situa-
tion in which the link weights determine network growth has
also been analyzed; see, e.g., Refs.f8–10,14,15g.d We define
the weightwij of a link between nodesi and j in the network
to be the product of end-point node degrees—that is,wij
=kikj. More generally, we study the general case where the
link weight has the following dependence on the end-point
degrees:

wij = skikjdu. s1d

We show that this weighted network has a surprising depen-
dence of the total weight on the system size and an unusual
scaling for the distribution of link weights. Many of the new
results that we obtain follow naturally from previous work
on the degree correlations in growing networksf16g.

For the network growth mechanism, we employ preferen-
tial attachment, in which a new node links to previous nodes
with an attachment rateAk that depends only on the degree of
the “target” nodef17g. For simplicity, we consider the situa-
tion where the newly introduced node connects to a single
target. Because of this topological restriction, the resulting
network is a tree, a feature that turns out to simplify our
analysis. To complete the description of the system, we need
to specify the attachment rateAk. We will consider the Simon
model f18g, whereAk=k+l, with l.−1, but otherwise ar-
bitrary. For this growth mechanism the degree distribution
has a power-law tail~k−3−l.
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In the next section we compute the total network weight
WsNd, defined as the sum of the link weightswij , as a func-
tion of the total number of nodesN. The distribution of link
weights is investigated in Sec. III, and the node strength,
defined as the sum of the weights of all the links that attach
to the node, is studied in Sec. IV. We first focus on the case
of the strictly linear attachment rate whereAk=k and then
outline corresponding results for the more general case of
Ak=k+l with l.−1 but otherwise arbitrary. Numerical
simulation results and comparison to our analytic predictions
are given in Sec. V.

II. TOTAL NETWORK WEIGHT

We denote byNk,lsNd the number of nodes of degreek
that attach to an ancestor node of degreel. This degree cor-
relation function is well defined only for growth processes in
which each node attaches to exactly one previous node, so
that the ancestor of each node is unique. Notice that the
correlation functionNk,l is not symmetric with respect to the
end nodes. For graphs that are built sequentially by prefer-
ential attachment, we are interested in the total weight of the
network, defined by

WsNd = o
k,l

klNk,lsNd. s2d

That is, we first consider the case ofu=1 in Eq. s1d.
For growth processes in which the attachment rateAk

does not grow faster than linearly withk, the correlation
function Nk,lsNd grows linearly with the total number of
nodes,N sseef16g and alsof19g for a brief reviewd. That is,
Nk,lsNd=Nnk,l for largeN. The explicit form of the distribu-
tion nkl for the simplest case of the Barabási-AlbertsBAd
model sl=0d is f16g

nk,l =
4sl − 1d

ksk + 1dsk + ldsk + l + 1dsk + l + 2d

+
12sl − 1d

ksk + l − 1dsk + ldsk + l + 1dsk + l + 2d
. s3d

SinceWsNd=Noklnk,l, one might naively anticipate that
the total weight will scale linearly withN. This expectation is
erroneous because the infinite sumoklnk,l formally diverges,
leading to an additionalN dependence inWsNd.

To computeoklnk,l we write m=k+ l and recast the sum
as

o
k,l

klnk,l = o
mù2

4

msm+ 1dsm+ 2d o
l=2

m−1
lsl − 1d

m+ 1 − l

+ o
mù2

12

sm− 1dmsm+ 1dsm+ 2d o
l=2

m−1

lsl − 1d.

For largem, the internal sums behave as

o
l=2

m−1
lsl − 1d

m+ 1 − l
= m2 ln m+ Osm2d,

o
l=2

m−1

lsl − 1d =
1

3
m3 + Osm2d.

Thus the asymptotically dominant part of the sum is

o
k,l

klnk,l , o
mù2

4 ln m

m
+ o

mù2
Osm−1d. s4d

To evaluate these sums explicitly, we need to impose a
cutoff in the upper limit. For the casel=0, we therefore use
the fact that the maximal degreekmax scales asN1/2 f17,20g.
This result is easy to derive by utilizingNk,4Nk−3 and es-
timating the maximal degree from the extremal criterion that,
in a network ofN nodes, there will be a single node whose
degree in the rangeskmax,`d. This criterion corresponds to
the conditionokùkmax

Nk=1. Thus we cut off the sums in Eq.
s4d at mmax,s2Nd1/2 to give

o
k,l

klnk,l =
1

2
sln Nd2 + Osln Nd. s5d

Since the leading sum in Eq.s4d diverges logarithmically, the
mere knowledge of the scale of the cutoff is sufficient to
determine the exact asymptotics. With this result for the in-
ternal sums, we thereby find, from Eq.s2d,

WsNd =
1

2
Nsln Nd2 + OsN ln Nd. s6d

A similar computation for the Simon modelswhere Ak
=k+ld with arbitrary l is difficult to perform exactly be-
cause the expression fornk,l is an infinite seriesf16g rather
than a rational function as in Eq.s3d. However, the dominant
contribution to the sumok,lklnk,l is concentrated in the region
1!k! l, wherenk,l admits the simple asymptotic formf16g

nk,l , k−2l−2−l. s7d

Therefore

o
k,l

klnk,l , o l−1−lo
k!l

k−1 , o l−1−l ln l . s8d

For l.0 the sum converges, while forlø0 the sum for-
mally diverges and we must again determine an upper cutoff.
Applying the previously mentioned extremal argument for
the maximal node degree for general values ofl, we now
find kmax~N1/s2+ld f20g. Thus we conclude that the last sum
in Eq. s8d scales asN−l/s2+ldln N for −1,l,0. In summary,

WsNd ~ 5N, l . 0,

Nsln Nd2, l = 0,

N2/s2+ld ln N, l , 0.
6 s9d

Consider now the situation where link weight depends on
its end-point degrees according to Eq.s1d. We treat only the
caseu,1 because this regime corresponds to real networks
f5,8g. Using the asymptotic behavior fornk,l given in Eq.s7d,
we then have
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o
k,l

skldunk,l , o l−2−l+u,

which converges forl.u−1 and diverges otherwise. Thus
in the rangeu strictly less than 1, the total weight of the
network scales according to

WsNd , 5N, l . u − 1,

N ln N, l = u − 1,

Ns1+ud/s2+ld, l , u − 1.

s10d

III. LINK WEIGHT DISTRIBUTION

In this section, we consider exclusively the case ofu=1.
We define the link weight distributionPswd as the fraction of
links whose weight equalsw: that is,

Pswd = o
k,l

kl=w

nk,l . s11d

This natural definition leads to erratic behavior in the distri-
bution, as the arithmetic nature ofw plays a significant role.
If w is prime, then the only possible degrees of the end nodes
are 1 andw, while if w has many divisors, there are more
possibilities for the degrees of the end nodes. Thus in addi-
tion to an expected global smooth dependence ofPswd on w,
there will be superimposed fluctuations related to the divis-
ibility of w. These fluctuations will disappear if we average
Pswd over a range much less thanw and much larger than
the average distance between successive primesswhich
grows as lnw f21gd. This suggests that we also consider a
smoothed distributionPswd defined by

Pswd = w−a o
wøkløw+wa

nk,l , s12d

with a in the range 0,a,1. For sufficiently largew this
smoothed distribution should be monotonic and independent
of a.

To determine the behavior of the link weight distribution
for w@1, we again start with the case of the BA model
wherel=0. Using Eq.s3d and writing l =w/k we obtain, for
largew,

Pswd → o
kuw

F 4w

sk2 + wd3 +
12wk2

sk2 + wd4G . s13d

The notationkuw means that this sum runs over all values of
k that are divisors ofw. For largew, the asymptotic behavior
of the summand scales asw−2 times the average number of
divisors of w. Using the celebrated Dirichlet formulassee,
e.g.,f21gd, the total number of divisors of all integers from 1
to w is

o
x=1

w

dsxd = w ln w + s2g − 1dw + ¯ ,

wheredsxd is the number of divisors of the integerx andg
>0.577 215 is the Euler-Mascheroni constant. Thus the av-

erage number of divisors ofw grows logarithmically withw;
more precisely, by differentiating the above formula with
respect tow, we havekdswdl→ ln w+2g. Thus the tail of the
weight distribution is

Pswd , w−2 ln w asw @ 1. s14d

Consider now the general case of arbitraryl sbut with the
necessary constraintl.−1 to ensure a finite average de-
greed. In this case, we have to combine two separate contri-
butions to determine the link weight distribution. First, using
kl=w, we rewrite Eq.s7d as

nk,l , klw−2−l. s15d

This asymptotic behavior holds fork, l, so it can be used to
estimate the part of the sum in Eq.s11d that runs over the
divisors kuw such thatk,Îw. The corresponding contribu-
tion to the weight distribution is therefore

P,swd , w−2−lslsÎwd, s16d

whereslsnd is the generalized divisor function ofn defined
as

slsnd = o
f un

fl, s17d

where the sum runs over all divisorsf of the integern. This
generalized divisor function exhibits, on average, a power-
law growth inn for l.0, slsnd,nl, and approaches a con-
stant forl,0 f22g. As a result, the asymptotic behavior of
P,swd undergoes a qualitative change whenl passes
through zero. Using the result for the generalized divisor
function in Eq.s16d, we find, for the contribution to the link
weight distribution from divisors ofw that are smaller than
Îw,

P,swd , Hw−2−l/2, l . 0,

w−2−l, l , 0.
J s18d

A second contribution to the weight distribution arises
from the rangek. l. fFor the following arguments we use
the smoothed weight distribution of Eq.s12d. Correspond-
ingly, the generalized divisor functionslsnd should also be
averaged in the same way as that for the weight distribution
in Eq. s12d.g In this case, the asymptotic behavior of the
distributionnk,l is f16g

nk,l , l6+3lw−5−2l. s19d

We use this asymptotics to estimate the part of the sum in
Eq. s11d that runs over the divisorskuw such thatk.Îw or,
equivalently, over divisorsl uw such thatl ,Îw. The corre-
sponding contribution to the weight distribution is

P.swd , w−5−2ls6+3lsÎwd. s20d

Since 6+3l.0 sin fact, the stronger inequality 6+3l.3
holdsd, the generalized divisor function behaves as
s6+3lsÎwd,w3+3l/2. Thus

P.swd , w−2−l/2. s21d
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We therefore find that the large-w tail of the complete
weight distributionPswd=P,swd+P.swd is dominated by
P,swd. Thus summarizing our results, the link weight distri-
bution is

Pswd , 5w−2−l/2, l . 0,

w−2 ln w, l = 0,

w−2−l, l , 0.
6 s22d

The average weight per link,kwl=edwwPswd, should be
equalWsNd /N.

Equation s22d shows that the integraledwwPswd con-
verges in the large-w limit if l.0, so in this rangeW,N, in
agreement with Eq.s9d. When l=0, the integral formally
diverges asedww−1 ln w; taking into account the upper cut-
off wmax,kmax

2 ,N regularizes the integral tosln Nd2 and
therefore W,Nsln Nd2, again in agreement with Eq.s9d.
Similarly for l,0, Eq.s22d predictsW,Nwmax

−l . The reason
for the disagreement in the range −1,l,0 is unclear. Part
of difficulty may lie in the fact that the link weight distribu-
tion exhibits an anomalous feature that is not simply a
power-law behaviorssee Sec. Vd.

IV. NODE STRENGTH

Many real networks display a significant correlation be-
tween the degrees of adjacent nodes. There are examples
where there is a bias for nodes to be connected to other nodes
with either similarsassortatived or different sdisassortatived
degreef23g. This tendency to select nodes with a consonant
property is often expressed as a Pearson correlation coeffi-
cient of the network. For networks where the weights are
correlated with the topology, we investigate the effects of
correlations by studying the node strength defined asf5g

si = o
k ji l

wij , s23d

where the sum runs over all nodesj that are linked to nodei.
Let us first consider the simplest link weight function where
wij is just the product of the end-point node degrees. Then
the strengthsskd of a node of degreek is simply k times the
sum of the degrees of the neighboring nodes. Since there are
k neighbors,sskd is thenk2 times the average degree of the
neighboring nodes if we ignore correlations between the de-
grees of neighboring nodes. Now the average node degree
equals twice the number of links divided by the number of
nodes; this simply equals 2 for a network with a tree topol-
ogy. Hence the node strengthsskd scales as

sskd , k2. s24d

Because node degrees are actually correlated, we now in-
vestigate their influence on the simple prediction of Eq.s24d.
To include the effect of node correlations on the behavior of
the node strengthsskd, we start by splitting the contributions
to sskd into two parts: one from incoming links and another
from the outgoing link. This gives

sskd = sinskd + soutskd = sk − 1dkk jklin + kklklout. s25d

The first term accounts for the fact that there arek−1 incom-
ing links, each of which has weightkjk, wherejk denotes the
degree of a daughter node when the initial node has degreek.
Similarly, the second term accounts for the single ancestor
node with degreelk. We now consider these two contribu-
tions tosskd separately.

For the contribution due to the ancestor node, we use the
fact that its average degreeklklout is given by

klklout =
olù1

lnk,l

olù1
nk,l

. s26d

The normalization factor is just the degree distribution

o
lù1

nk,l = nk =
4

ksk + 1dsk + 2d
.

Using this, together with Eq.s3d, we obtainsagain using the
shorthand notationm=k+ ld

klklout = sk + 2do
lù1

lsl − 1d
msm+ 1dsm+ 2d

+ 3sk + 1dsk + 2do
lù1

lsl − 1d
sm− 1dmsm+ 1dsm+ 2d

.

The first sum on the right-hand side is logarithmically diver-
gent. Using the fact the upper cutoff isÎN and replacing the
sum by an integral, we find that fork@1 the first sum is
asymptotic to lnÎN−ln k. Similarly we find that the second
sum is asymptotic to 1/s3kd. Therefore

soutskd = kklklout→ k2slnÎN − ln kd. s27d

For the contribution tosskd from the daughter nodes, we
need the average degree of these nodes. This is given by

k jklin =
o jù1

jnj ,k

o jù1
nj ,k

. s28d

The denominator is found from

o
jù1

nj ,k = sk − 1dnk =
4sk − 1d

ksk + 1dsk + 2d
.

This equality is somewhat subtle. A node of degreek hask
−1 incoming daughter nodes. If we sum the two-point cor-
relations functions for all these daughter nodes, we over-
count the number of nodes of degreek by exactly the factor
k−1. The numerator can be computed straightforwardly but
tediously by following similar steps to those preceding Eq.
s27d to evaluate the sums. The resulting asymptotic behavior
has the simple form 4k−2 ln k. Thus we have

sinskd = sk − 1dkk jklin → k2 ln k. s29d

Consequently, fork@1 the node strength scales

sskd → 1

2
k2 ln N. s30d
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A note of warning is in order. The above computation of
the contribution of the outgoing link to the node strength is
exact—both soutskd=kklklout and Eq. s26d are manifestly
correct—and therefore knowledge ofnk,l suffices to deter-
mine soutskd. On the other hand, an exact calculation of the
contribution of incoming links requires knowing the many-
body correlation functionns j1, . . . ,jk−1d. This quantity gives
the fraction of nodes of degreek whose daughter nodes have
degreesj1, . . . ,jk−1. This exact contribution has the form

sinskd = kk j1 + ¯ + jk−1lin

= k
o j1,. . .,jk−1

s j1 + ¯ + jk−1dns j1, . . . ,jk−1d

o j1,. . .,jk−1
ns j1, . . . ,jk−1d

.

Unfortunately, we do not knowns j1, . . . ,jk−1d, so we cannot
computesinskd exactly. Equationss25d and s28d, which in-
volve only the known degree correlationnk,l, are based on
the assumption that the degrees of the daughter nodes are
uncorrelated. Although the correlation between the degrees
of daughter nodes is certainly smaller than the degree corre-
lation between the daughter and mother nodes, it is not clear
that we can ignore these correlations.

Consider now the general linear attachment kernelAk=k
+l with l.−1 and choose the weight functionwij =skikjdu

with u,1. We now compute the contribution of the outgoing
link to the node strength. We have

soutskd =
ku

nk
o
lù1

lunk,l . s31d

In performing this sum, we use the asymptoticsnk,k−3−l for
k@1 and the results off16g for the asymptotics ofnk,l,

nk,l , k−5−2ll1+l for 1 ! l ! k,

nk,l , k−2l−2−l for 1 ! k ! l .

We estimate the formally diverging sums by using the cutoff
N1/s2+ld. We thus find

soutskd , 5k2u, l . u − 1,

k2+2lsln N1/s2+ld − ln kd, l = u − 1,

k1+l+uNsu−1−ld/s2+ld − k2u, l , u − 1.
6

Finally, we specialize this prediction to the simplest weight
functionwij =kikj, as we report simulation results only in this
particular case in the next section:

soutskd , 5k2, l . 0,

k2slnÎN − ln kd, l = 0,

k2+lN−l/s2+ld − k2, l , 0.
6 s32d

V. SIMULATION RESULTS

We now present numerical results for the total weight of a
network and the underlying weight and strength distribu-
tions. To generate the network, we use the redirection
method, as discussed in Ref.f16g. In this approach, we attach

a new node to a randomly selected target node with probabil-
ity 1−r and attach to the direct ancestor of this target with
probability r. This method is both extremely simple, because
the target node is randomly selected, and efficient, since the
time to build a network ofN nodes scales linearly withN.

As discussed in Ref.f16g, this redirection rule is equiva-
lent to a network in which the attachment rateAk to a node of
degreek equalsk+l, with l=1/r −2. The attachment rate
k+l then leads to a degree distributionnk,k−n, with n=3
+l f16g. Thus by implementing redirection, we can generate
scale-free networks with degree distribution exponent any-
where in the ranges2,`d. As a parenthetical technical point,
each node in the initial network must have a unique ancestor
to ensure that redirection weights each network realization
correctlyf20g. In our simulations, we chose the starting net-
work to be a triangle in which each node points cyclically to
its nearest neighbor. This detail about initial condition does
not affect the asymptotic form of the degree distribution.

Figure 1 shows the average network weight as a function
of the total number of nodesN. These results are based on
100 realizations of the network that each contain up to
Nmax=s1.5d40<1.13107 nodes. On a double-logarithmic
scale, the data forWsNd versusN are quite linear forl.0,
but there is a very small systematic curvature in the data for
lø0. As suggested by Eq.s9d, we therefore divide the data
for WsNd by sln Nd2 for l=0, or by lnN for l,0.

The resulting data shown in Fig. 2 are now visually more
linear on a double-logarithmic scale. Power-law fits to large-
N subranges of the data give effective exponents that are
only weakly dependent on the subrange. For the casel
=−2/3, the effective exponent changes from 1.451 to 1.487
as the lower limit of the fit rangeNmin is increased from 4 to
43105 while Nmax remains fixed. This behavior suggests that
the total network weight scales asN3/2 ln N, as predicted by
Eq. s9d. Similarly, for l=0, the effective exponent changes
from 0.938 to 0.969 when the above fitting protocol is ap-
plied. Again, the data are consistent withWsNd,Nsln Nd2

for l=0. Forl.0, the variation in the effective exponent is
smaller still and it is evident thatWsNd varies linearly with
N.

In Fig. 3, we show our data for the distribution of link
weights for the representative cases ofl=0, 1, and −0.5. The
data shown are based on 104 network realizations withN
=106 for l=0 and 1, whileN is limited to 25 000 for thel

FIG. 1. Average network weightWsNd as a function ofN for the
representative casesl=100,1,0,−2/3ss, 1, n, ,d, respectively.
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=−1/2 due to the broadness of the link weight distribution.
The data show considerable small-scale variation because of
the previously mentioned fluctuations in the number of divi-
sors of the integers; thus we also examined the locally aver-
aged distribution given by Eq.s12d. While this construction
smooths the distribution, exponent estimates based on the
smoothed distribution are nearly identical to those found for
the raw distributionfPswd in Eq. s11dg and thus we quote
results based on analysis of the latter.

For l=0, a power-law fit to the data forPswd / ln w gives
Pswd / ln w,w−x, with x<2.3, compared to the theoretical
prediction from Eq.s22d of x=2. For l=1, we find Pswd
,w−x, with x<2.23, while the theoretical prediction from
Eq. s22d is x=2.5. Finally, forl=−0.5, a simple power-law
fit to the raw distribution in Fig. 3 is clearly an oversimpli-
fication. However, a power-law fit to all the data givesx
=1.39, close to the theoretical prediction ofx=1.5. Overall,
the agreement between the predictions of Eq.s22d and simu-
lation results is surprisingly good, given the vagaries of these
distributions.

We also numerically calculate the node strength as func-
tion of the degreek. In Fig. 4 we show the results forl=0
for a network ofN=107 nodes. As a check of Eq.s27d, the
contribution to the node strength from the outgoing links was
fit with form soutskd,kbsln kmax− ln kd. Using a nonlinear
curve fitting package, we obtainb=1.9 andkmax=13 000.
This value ofkmax is very close to what we observed numeri-
cally s10 900d for the maximum degree over all 1000 real-
izations of the network. Overall, the data forsoutskd agree
reasonably well with the theoretical prediction from Eq.s27d
with b=2.

In Fig. 5 we show the node strength for two other repre-
sentative values ofl. For the case ofl=1, both sskd and
soutskd grow ask2, as predicted by Eqs.s27d ands30d. For the
case ofl=−2/3, soutskd grows ask4/3, as predicted by Eq.
s27d, while sinskd grows slightly faster thank2, which is con-
sistent with thek2 ln k growth given in Eq.s29d. Notice also
that the point wheresinskd and soutskd intersect moves to
larger k as l decreases. This crossover point also coincides
with kmax and the behavior ofkmax on l is consistent with the
predictionkmax,N1/s2+ld.

While most of our discussion has considered the case
where the exponentu=1, there are examples of real net-
works, such as theE. coli metabolic networksf8g and the
airline route networkf5g, where the correlations between
node degree and link weight seem to follow
wij =skikjd1/2—that is,u=0.5. To test the predictive power of
our analytical approach also for the case ofu,1, we inves-
tigate the scaling of node strength as a function of node
degree foru=1/2 for the twospecific examples ofl=0 and
l=−2/3 sFig. 6d. Our analytical results for the outgoing
node strength aresoutskd,k sl=0d and soutskd,k5/6 sl
=−2/3d, in good agreement with the best fits ofsoutskd
,k0.9 andsoutskd,k0.8, respectively.

As a further test of our theoretical predictions, we show
data for the node strength in which we attempt finite-size
scalingsFig. 7d. In panelsad, the data forl=0 are consistent
with the asymptotic behavior ofsoutskd / ln N,k2 given in Eq.
s27d. The departure from data collapse arises from the cor-
rection term in this equation. In panelsbd, the data forl

FIG. 2. Same as in Fig. 1, except that the data forl=0 andl
,0 have been divided bysln Nd2 and lnN, respectively. The solid
lines are best fits to the data forN.43105. The slopes of these
lines are 0.990, 0.988, 0.969, and 1.489 forl=100, 1, 0, and −2/3,
respectively.

FIG. 3. Distribution of link weightsPswd versusw for l=0
stopd, l=1 smiddled and l=−0.5 sbottomd. Every tenth point is
plotted and the line is a ten-point average. The quantityPswd / ln w
appears in the top plot.

ALMAAS, KRAPIVSKY, AND REDNER PHYSICAL REVIEW E 71, 036124s2005d

036124-6



=2/3 are nowconsistent with the formsoutskd /N1/2,k4/3

−k2/N1/2 given in Eq.s32d. The departure from data collapse
is due to the influence of the correction term insoutskd. Panel
scd shows the expected scaling behavior ofsinskd,k2 ln k
given in Eq.s29d. Curiously, this same behavior also occurs
for the case ofl=−2/3.

VI. SUMMARY

We studied the statistics of growing networks in which
each linki j in the network has an associated weightskikjdu,

whereki and kj are the node degrees at the endpoint of the
link i j . We also characterized a node by its strength, defined
as the sum of the weights of the links that are attached to this
node. The link weights and node strengths provide new met-
rics with which to characterize heterogeneous networks. The
motivation for considering these properties stems from a
number of real-world examples, such as airline route net-
works or metabolic networks, in which the flow capacity of
each link is different.

We focused on developing an analytical understanding of
the link weights and node strengths as a function of the un-
derlying growth mechanism of the network. Much of our
analytical results are obtained by adapting previously derived
results for node-degree correlations to the link weights and
node strengths. Generically, we found that the total network
weight grows faster than linearly with the total number of
nodes,N. Strictly linear growth of the total weight onN
occurs for networks whose degree distribution decays rela-
tively quickly in k for large k. The distribution of link
weights has a power-law tail that is modified by a logarith-
mic correction forl=0. There is also a strange and, as of yet,
unexplained anomaly in this distribution whenl,0. There
are also small-scale fluctuations in the link weight distribu-
tions that are caused by the granularity in the number of
ways that a given link weight can be factored into a product
of the degrees of the end-point nodes.

A calculational approach in the same spirit as that used for
the link weights was also applied to determine the node

FIG. 4. The node strengthsskd versusk for a network ofN
=107 nodes withl=0 and the contributions to this strength from
incoming and outgoing links, as given by the two terms in Eq.s25d
sh, P, n, respectivelyd. Inset:sskdin divided byk2 ln k.

FIG. 5. The node strengthsskd and its contribution from incom-
ing and outgoing linkssh, P, n, respectivelyd for the cases ofl
=1 supperd and −2/3slowerd, both withN=107.

FIG. 6. The node strength foru=0.5. This left panel shows the
casel=0 and the rightl=−2/3, both for networks of sizeN=106.
The node strengthsskd and its contribution from incoming and out-
going links are denoted byh, P, andn, respectively.

FIG. 7. Finite-size scaling of the node-strength contribution
from outgoingfsad and sbdg and incomingfscd and sddg links for l
=0 supper panelsd and l=−2/3 slower panelsd. The network sizes
areN=104,105,106,107 sh, P, n, p, respectivelyd.
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strength. Forlù0, the node strength scales ask2, with a
logarithmic correction in the case ofl=0, while for l,0,
the node strength has a more complicated scaling behavior.
The node strength can also be decomposed into contributions
from the outgoing link and a contribution from incoming
links. Only the former is amenable to a complete analytical
treatment in terms of the two-node correlation function,
while the latter requires knowledge of many-node correla-
tions. We expect that these many-node correlation functions
can be computed withing a rate equation approach.
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APPENDIX: LOWER BOUND FOR THE TOTAL
LINK WEIGHT

Our calculation for the total network weight relied on the
distributionnk,l that was obtained in Ref.f16g. We also made
use of the cutoffkmax that applies for the degree distribution
nk f20g. Thus the application of this cutoff tonk,l could in
principle be questioned. Here we establishsfor the simplest
l=0 modeld a rigorous lower bound for the total weight of a
network using only the well-known properties of the degree
distribution.

Let WsNd be the average total weight of the network with
N nodes. The next node will link to a target node of degreek
with probability 1

2knk. The degree of the target node then
increasesk+1, so that the average weight of the new link is
osk+1dsknkd /2. The increase of the degree of the target node
sk→k+1d implies that the weights of thek current links that
end at the target node will also increase; we denote this cor-
responding average increase bys¯d. Thus

WsN + 1d = WsNd + o 1

2
ksk + 1dnk + s¯d. sA1d

We shall ignore the positive increments¯d since its calcu-
lation requires knowledge of the distributionnk,l. By this
approximation we will derive the lower bound rather than the
true asymptotic.

Equation sA1d, in conjunction with the well-known ex-
pression for the degree distribution,

nk =
4

ksk + 1dsk + 2d
, sA2d

then gives

WsN + 1d . WsNd + o 2

k + 2
. sA3d

For the degree distribution, the location of the cutoffkmax
,N1/2 is well established.fEven the full scaling form
nksNd=nkFsk/ÎNd is known analyticallyf20g.g Thus WsN
+1d−WsNd. ln N, so that the lower bound for the total
weight is

WsNd . N ln N. sA4d

This bound exhibits a slower growth than the prediction of
Eq. s6d but it proves that the total weight of a network grows
faster than linearly inN.

For the general case where the attachment rate as the form
Ak=k+l, the tail of the degree distribution is given bynk
,k−3−l. For l.0 this asymptotic form for the degree distri-
bution implies that the sumoksk+1dnk converges, leading to
the lower boundWsNd.N. This gives the same scaling be-
havior as the actual asymptotic behavior of Eq.s9d. For l
,0, the sumoksk+1dnk diverges and we use the cutoff
kmax,N1/s2+ld to obtain oksk+1dnk,N−l/s2+ld. This then
gives the lower boundWsNd.N2/s2+ld, a result that also
agrees with the actual asymptotic behavior in Eq.s9d.

f1g See, e.g., R. Albert and A.-L. Barabási, Rev. Mod. Phys.74,
47 s2002d; S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys.
51, 1079s2002d; Evolution of Networks: From biological nets
to the Internet and WWWsOxford University Press, Oxford,
2003d; R. Pastor-Satorras and A. Vespignani,Evolution and
Structure of the Internet: A statistical physics approachsCam-
bridge University Press, Cambridge, England, 2004d.

f2g M. E. J. Newman, Phys. Rev. E64, 016131 s2001d; 64,
016132s2001d.

f3g A.-L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,
and T. Vicsek, Physica A311, 590 s2002d.

f4g See R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, e-print
cond-mat/0312535 for a recent quantitative study of the airport
network.

f5g A. Barrat, M. Berthelemy, and A. Vespignani, Proc. Natl.
Acad. Sci. U.S.A. 101, 3747 s2004d; Phys. Rev. Lett.92,
228701s2004d.

f6g L. R. Ford and D. R. Fulkerson,Flows in NetworkssPrinceton
University Press, Princeton, 1962d.

f7g R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows:
Theory, Algorithms, and ApplicationssPrentice Hall, Engle-
wood Cliffs, NJ, 1993d.

f8g P. J. Macdonald, E. Almaas, and A.-L. Barabási, e-print cond-
mat/0405688.

f9g J. D. Noh and H. Rieger, Phys. Rev. E66, 066127s2002d.
f10g D. Zheng, S. Trimper, B. Zheng, and P. M. Hui, Phys. Rev. E

67, 040102sRd s2003d.
f11g M. E. J. Newman, Phys. Rev. E70, 056131s2004d.
f12g M. Baiesi and M. Paczuski, Nonlinear Processes Geophys.12,

1 s2005d.
f13g A. E. Motter, C. Zhou, and J. Kurths, Europhys. Lett.69, 334

s2005d.
f14g A. Barrat, M. Berthelemy, and A. Vespignani, Phys. Rev. E70

066149s2004d.
f15g T. Antal and P. L. Krapivsky, Phys. Rev. E71, 026103s2005d.
f16g P. L. Krapivsky and S. Redner, Phys. Rev. E63, 066123

s2001d.
f17g A.-L. Barabási and R. Albert, Science286, 509 s1999d.

ALMAAS, KRAPIVSKY, AND REDNER PHYSICAL REVIEW E 71, 036124s2005d

036124-8



f18g H. A. Simon, Biometrics42, 425 s1955d; reprinted in H. A.
Simon,Models of MansWiley, New York, 1957d.

f19g P. L. Krapivsky and S. Redner, Comput. Netw.39, 261s2002d.
f20g P. L. Krapivsky and S. Redner, J. Phys. A35, 9517s2002d.
f21g G. H. Hardy and E. M. Wright,An Introduction to the Theory

of NumberssOxford University Press, Oxford, 1979d.
f22g M. R. Schroeder,Number Theory in Science and Communica-

tion sSpringer-Verlag, Berlin, 1986d.
f23g M. E. J. Newman, Phys. Rev. Lett.89, 208701s2002d; Phys.

Rev. E 67, 026126s2003d.

STATISTICS OF WEIGHTED TREELIKE NETWORKS PHYSICAL REVIEW E71, 036124s2005d

036124-9


