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Abstract

Approaches from statistical physics are applied to investigate the structure of network models whose growth rules

mimic aspects of the evolution of the World Wide Web. We first determine the degree distribution of a growing network

in which nodes are introduced one at a time and attach to an earlier node of degree k with rate Ak � kc. Very different

behaviors arise for c < 1, c ¼ 1, and c > 1. We also analyze the degree distribution of a heterogeneous network, the

joint age-degree distribution, the correlation between degrees of neighboring nodes, as well as global network prop-

erties. An extension to directed networks is then presented. By tuning model parameters to reasonable values, we obtain

distinct power-law forms for the in-degree and out-degree distributions with exponents that are in good agreement with

current data for the web. Finally, a general growth process with independent introduction of nodes and links is in-

vestigated. This leads to independently growing sub-networks that may coalesce with other sub-networks. General

results for both the size distribution of sub-networks and the degree distribution are obtained. � 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

With the recent appearance of the Internet and
the World Wide Web, understanding the proper-
ties of growing networks (GNs) with popularity-
based construction rules has become an active and
fruitful research area [1]. In such models, newly-
introduced nodes preferentially attach to pre-
existing nodes of the network that are already
‘‘popular’’. This leads to graphs whose structure is
quite different from the well-known random graph
[2,3] in which links are created at random between
nodes without regard to their popularity. This
discovery of a new class of graph theory problems

has fueled much effort to characterize their pro-
perties.

One basic measure of the structure of such net-
works is the node degree Nk defined as the number
of nodes in the network that are linked to k other
nodes. In the case of the random graph, the node
degree is simply a Poisson distribution. In con-
trast, many popularity-driven GNs have much
broader degree distributions with a stretched
exponential or a power-law tail. The latter form
means that there is no characteristic scale for the
node degree, a feature that typifies many net-
worked systems [1].

Power-laws, or more generally, distributions
with highly skewed tails, characterize the degree
distributions of many man-made and naturally
occurring networks [1]. For example, the degree
distributions at the level of autonomous systems
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and at the router level exhibit highly skewed tails
[4–6]. Other important Internet-based graphs, such
as the hyperlink graph of the World Wide Web
also appear to have a degree distribution with a
power-law tail [7–11]. These observations have
spurred a flurry of recent work to understand the
underlying mechanisms for these phenomena.

A related example with interest to anyone who
publishes, is the distribution of scientific citations
[12–14]. Here one treats publications as nodes and
citations as links in a citation graph. Currently-
available data suggests that the citation distri-
bution has a power-law tail with an associated
exponent close to �3 [14]. As we shall see, this
exponent emerges naturally in the GN model
where the relative probability of linking from a
new node to a previous node (equivalent to citing
an earlier paper) is strictly proportional to the
popularity of the target node.

In this paper, we apply tools from statistical
physics, especially the rate equation approach, to
quantify the structure of GNs and to elucidate the
types of geometrical features that arise in networks
with physically-motivated growth rules. The utility
of the rate equations has been demonstrated in
a diverse range of phenomena in non-equilibrium
statistical physics, such as aggregation [15],
coarsening [16], and epitaxial surface growth [17].
We will attempt to convince the reader that the
rate equations are also a simple yet powerful
analysis tool to analyze GN systems. In addition
to providing comprehensive information about the
node degree distribution, the rate equations can be
easily adapted to analyze both heterogeneous and
directed networks, the age distribution of nodes,
correlations between node degrees, various global
network properties, as well as the cluster size dis-
tribution in models that give rise to independently
evolving sub-networks. Thus the rate equation
method appears to be better suited for probing the
structure of GNs compared to the classical ap-
proaches for analyzing random graphs, such as
probabilistic [2] or generating function [3] tech-
niques.

In the next section, we introduce three basic
models that will be the focus of this review. In the
following three sections, we then present rate
equation analyses to determine basic geometrical

properties of these networks. We close with a brief
summary.

2. Models

The models we study appear to embody many
of the basic growth processes in Web graphs
(WGs) and related systems. These include:

• The GN [8,18]. Nodes are added one at a time
and a single link is established between the
new node and a pre-existing node according to
an attachment probability Ak that depends only
on the degree of the ‘‘target’’ node (Fig. 1).

• The WG. This represents an extension of the
GN to incorporate link directionality [19] and
leads to independent, dynamically generated in-
degree and out-degree distributions. The net-
work growth occurs by two distinct processes
[20] that are meant to mimic how hyperlinks
are created in the Web (Fig. 2):

Fig. 1. GN: Nodes are added sequentially and a single link

joins a new node to an earlier node. Node 1 has (total) degree 5,

node 2 has degree 3, nodes 4 and 6 have degree 2, and the re-

maining nodes have degree 1.

Fig. 2. Growth processes in the WG model: (i) node creation

and immediate attachment, and (ii) link creation. In (i) the new

node is shaded, while in both (i) and (ii) the new link is dashed.
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1. With probability p, a new node is introduced
and it immediately attaches to an earlier tar-
get node. The attachment probability de-
pends only on the in-degree of the target.

2. With probability q ¼ 1� p, a new link is cre-
ated between already existing nodes. The
choices of the originating and target nodes
depend on the out-degree of the former
and the in-degree of the latter.

• The Multicomponent Graph (MG). Nodes and
links are introduced independently [21]. (i) With
probability p, a new unlinked node is introduced,
while (ii) with probability q ¼ 1� p, a new link
is created between existing nodes. As in the WG,
the choices of the originating and target nodes
depend on the out-degree of the former and
the in-degree of the latter. Step (i) allows for
the formation of many clusters.

3. Structure of the growing network

Because of its simplicity, we first study the
structure of the GN [8,18]. The basic approaches
developed in this section will then be extended to
the WG and MG models.

3.1. Degree distribution of a homogeneous network

We first focus on the node degree distribution
Nk. To determine its evolution, we shall write the
rate equations that account for the change in the
degree distribution after each node addition event.
These equations contain complete information
about the node degree, from which any measure
of node degree (such as moments) can be easily
extracted. For the GN growth process in which
nodes are introduced one at a time, the rate
equations for the degree distribution NkðtÞ are [22]

dNk

dt
¼ Ak�1Nk�1 � AkNk

A
þ dk1: ð3:1Þ

The first term on the right, Ak�1Nk�1=A, accounts
for processes in which a node with k � 1 links is
connected to the new node, thus increasing Nk by
one. Since there are Nk�1 nodes of degree k � 1, the

rate at which such processes occur is proportional
to Ak�1Nk�1, and the factor AðtÞ ¼

P
jP 1 AjNjðtÞ

converts this rate into a normalized probability. A
corresponding role is played by the second (loss)
term on the right-hand side; AkNk=A is the proba-
bility that a node with k links is connected to the
new node, thus leading to a loss in Nk. The last
term accounts for the introduction of new nodes
with no incoming links.

We start by solving for the time dependence of
the moments of the degree distribution defined via
MnðtÞ ¼

P
jP 1 j

nNjðtÞ. This is a standard method
of analysis of rate equations by which one can
gain partial, but valuable, information about the
time dependence of the system with minimal effort.
By explicitly summing Eq. (3.1) over all k, we
easily obtain _MM0ðtÞ ¼ 1, whose solution is M0ðtÞ ¼
M0ð0Þ þ t. Notice that by definition M0ðtÞ ¼

P
k Nk

is just the total number of nodes in the network.
It is clear by the nature of the growth process that
this quantity simply grows as t. In a similar fash-
ion, the first moment of the degree distribution
obeys _MM1ðtÞ ¼ 2 with solution M1ðtÞ ¼ M1ð0Þ þ 2t.
This time evolution for M1 can be understood
either by explicitly summing the rate equations, or
by observing that this first moment simply equals
the total number of link endpoints. Clearly, this
quantity must grow as 2t since the introduction of
a single node introduces two link endpoints. Thus
we find the simple result that the first two moments
are independent of the attachment kernel Ak and
grow linearly with time. On the other hand, higher
moments and the degree distribution itself do
depend in an essential way on the kernel Ak.

As a preview to the general behavior for
the degree distribution, consider the strictly lin-
ear kernel [8,22,23], for which AðtÞ coincides with
M1ðtÞ. In this case, we can solve Eq. (3.1) for an
arbitrary initial condition. However, since the long-
time behavior is most interesting, we limit ourselves
to the asymptotic regime (t ! 1) where the initial
condition is irrelevant. Using therefore M1 ¼ 2t, we
solve the first few of Eq. (3.1) directly and obtain
N1 ¼ 2t=3, N2 ¼ t=6, etc. Thus each of the Nk grow
linearly with time. Accordingly, we substitute
NkðtÞ ¼ t nk in Eq. (3.1) to yield the simple recursion
relation nk ¼ nk�1ðk � 1Þ=ðk þ 2Þ. Solving for nk

gives

P.L. Krapivsky, S. Redner / Computer Networks 39 (2002) 261–276 263



nk ¼
4

kðk þ 1Þðk þ 2Þ : ð3:2Þ

Returning to the case of general attachment
kernels, let us assume that the degree distribu-
tion and AðtÞ both grow linearly with time. This
hypothesis can be easily verified numerically for
attachment kernels that do not grow faster
than linearly with k. Then substituting NkðtÞ ¼ t nk

and AðtÞ ¼ lt into Eq. (3.1) we obtain the recur-
sion relation nk ¼ nk�1Ak�1=ðl þ AkÞ and n1 ¼ l=
ðl þ A1Þ. Finally, solving for nk, we obtain the
formal expression

nk ¼
l
Ak

Yk

j¼1
1

�
þ l

Aj

��1

: ð3:3Þ

To complete the solution, we need the amplitude
l. Using the definition l ¼

P
jP 1 Ajnj in Eq. (3.3),

we obtain the implicit relation

X1
k¼1

Yk

j¼1
1

�
þ l

Aj

��1

¼ 1 ð3:4Þ

which shows that the amplitude l depends on the
entire attachment kernel.

For the generic case Ak � kc, we substitute this
form into Eq. (3.3) and then rewrite the product as
the exponential of a sum of a logarithm. In the
continuum limit, we convert this sum to an inte-
gral, expand the logarithm to lowest order, and
then evaluate the integral to yield the following
basic results:

nk �

k�c exp � l
k1�c � 21�c

1� c

� �� �
; 06 c < 1;

k�m; m > 2; c ¼ 1;

best seller 1 < c < 2;

bible 2 < c:

8>>>><
>>>>:

ð3:5Þ
Thus the degree distribution decays exponentially
for c ¼ 0, as in the case of the random graph, while
for all 0 < c < 1, the distribution exhibits robust
stretched exponential behavior. The linear kernel
is the case that has garnered much of the cur-
rent research interest. As shown above, nk ¼ 4=
½kðk þ 1Þðk þ 2Þ
 for the strictly linear kernel
Ak ¼ k. One might anticipate that nk / k�3 holds
for all asymptotically linear kernels, Ak � k. How-
ever, the situation is more delicate and the degree

distribution exponent depends on microscopic
details of Ak. From Eq. (3.3), we obtain nk � k�m,
where the exponent m ¼ 1þ l can be tuned to any
value larger than 2 [22,24]. This non-universal
behavior shows that one must be cautious in
drawing general conclusions from the GN with a
linear attachment kernel.

As an illustrative example of the vagaries of
asymptotically linear kernels, consider the shifted
linear kernel Ak ¼ k þ w. One way to motivate this
kernel is to explicitly keep track of link direction-
ality. In particular, the node degree for an undi-
rected graph naturally generalizes to the in-degree
and out-degree for a directed graph, the number of
incoming and outgoing links at a node, respec-
tively. Thus the total degree k in a directed graph is
the sum of the in-degree i and out-degree j (Fig. 3).
(More details on this model are given in the next
section.) The most general linear attachment kernel
for a directed graph has the form Aij ¼ ai þ bj. The
GN corresponds to the case where the out-degree
of any node equals one; thus j ¼ 1 and k ¼ iþ 1.
For this example the general linear attachment
kernel reduces to Ak ¼ aðk � 1Þ þ b. Since the
overall scale is irrelevant, we can rewrite Ak as the
shifted linear kernel Ak ¼ k þ w, with w ¼ �1þ
b=a that can vary over the range �1 < w < 1.

To determine the degree distribution for the
shifted linear kernel, note that AðtÞ ¼

P
j AjNjðtÞ

simply equals AðtÞ ¼ M1ðtÞ þ wM0ðtÞ. Using A ¼
lt, M0 ¼ t and M1 ¼ 2t, we get l ¼ 2þ w and
hence the relation m ¼ 1þ l from the previous
paragraph becomes m ¼ 3þ w. Thus a simple ad-
ditive shift in the attachment kernel profoundly
affects the asymptotic degree distribution. Fur-
thermore, from Eq. (3.3) we determine the entire
degree distribution to be

nk ¼ ð2þ wÞ Cð3þ 2wÞ
Cð1þ wÞ

Cðk þ wÞ
Cðk þ 3þ 2wÞ : ð3:6Þ

Fig. 3. A node with in-degree i ¼ 4, out-degree j ¼ 5, and total

degree 9.
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Finally, we outline the intriguing behavior for
super-linear kernels. In this case, there is a ‘‘run-
away’’ or gelation-like phenomenon in which one
node links to almost every other node. For c > 2,
all but a finite number of nodes are linked to
a single node that has the rest of the links. We
term such an overwhelmingly popular node as a
‘‘bible’’. For 1 < c6 2, the number of nodes with a
just a few links is no longer finite, but grows
slower than linearly in time, and the remainder
of the nodes are linked to an extremely pop-
ular node that we now term ‘‘best seller’’. Full
details about this runaway behavior are given in
[22].

As a final parenthetical note, when the attach-
ment kernel has the form Ak / kc, with c < 0, there
is preferential attachment to poorly-connected
sites. Here, the degree distribution exhibits faster
than exponential decay, nk / k�cðk�1Þ. When c <
�2, the propensity for avoiding popularity is so
strong that there is a finite probability of forming
a ‘‘worm’’ graph in which each node attaches only
to its immediate predecessor.

3.2. Degree distribution of a heterogeneous network

A practically-relevant generalization of the GN
is to endow each node with an intrinsic and
permanently defined ‘‘attractiveness’’ [25]. This
accounts for the obvious fact that not all nodes are
equivalent, but that some are clearly more attrac-
tive than others at their inception. Thus the sub-
sequent attachment rate to a node should be a
function of both its degree and its intrinsic
attractiveness. For this generalization, the rate
equation approach yields complete results with
minimal additional effort beyond that needed to
solve the homogeneous network.

Let us assign each node an attractiveness pa-
rameter g > 0, with arbitrary distribution, at its
inception. This attractiveness modifies the node
attachment rate as follows: for a node with degree
k and attractiveness g, the attachment rate is
simply AkðgÞ. Now we need to characterize nodes
both by their degree and their attractiveness—thus
NkðgÞ is the number of nodes with degree k and
attractiveness g. This joint degree-attractiveness
distribution obeys the rate equation:

dNkðgÞ
dt

¼ Ak�1ðgÞNk�1ðgÞ � AkðgÞNkðgÞ
A

þ p0ðgÞdk1: ð3:7Þ

Here p0ðgÞ is the probability that a newly-intro-
duced node has attractiveness g, and the norma-
lization factor A ¼

R
dg

P
k AkðgÞNkðgÞ.

Following the same approach as that used to
analyze Eq. (3.1), we substitute A ¼ lt and nkðgÞ ¼
tNkðgÞ into Eq. (3.7) to obtain the recursion rela-
tion

nkðgÞ ¼ p0ðgÞ
l

AkðgÞ
Yk

j¼1
1

�
þ l

AjðgÞ

��1

: ð3:8Þ

For concreteness, consider the linear attach-
ment kernel AkðgÞ ¼ gk. Then applying the same
analysis as in the homogeneous network, we find

nkðgÞ ¼
lp0ðgÞ

g
CðkÞC 1þ l=gð Þ
C k þ 1þ l=gð Þ : ð3:9Þ

To determine the amplitude l we substitute
(3.9) into the definition l ¼

R
dg

P
k P 1 AkðgÞnkðgÞ

and use the identity [26]

X1
k¼1

Cðk þ uÞ
Cðk þ vÞ ¼

Cðu þ 1Þ
ðv � u � 1ÞCðvÞ

to simplify the sum. This yields the implicit rela-
tion

1 ¼
Z

dgp0ðgÞ
l
g

�
� 1

��1

: ð3:10Þ

This condition on l leads to two alternatives: if
the support of g is unbounded, then the integral
diverges and there is no solution for l. In this limit,
the most attractive node is connected to a finite
fraction of all links. Conversely, if the support of
g is bounded, the resulting degree distribution is
similar to that of the homogeneous network. For
fixed g, nkðgÞ � k�mðgÞ with an attractiveness-
dependent decay exponent mðgÞ ¼ 1þ l=g. Amus-
ingly, the total degree distribution nk ¼

R
dgnkðgÞ is

no longer a strict power-law [25]. Rather, the as-
ymptotic behavior is governed by properties of the
initial attractiveness distribution near the upper
cutoff. In particular, if p0ðgÞ � ðgmax � gÞx�1

(with
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x > 0 to ensure normalization), the total degree
distribution exhibits a logarithmic correction

nk � k�ð1þl=gmaxÞ ðln kÞ�x: ð3:11Þ

3.3. Age distribution

In addition to the degree distribution, we de-
termine when connections occur. Naively, we ex-
pect that older nodes will be better connected. We
study this feature by resolving each node both by
its degree and its age to provide a more complete
understanding of the network evolution. Thus
define ckðt; aÞ to be the average number of nodes of
age a that have k � 1 incoming links at time t. Here
age a means that the node was introduced at time
t � a. The original degree distribution may be
recovered from the joint age-degree distribution
through NkðtÞ ¼

R t
0
dackðt; aÞ.

For simplicity, we consider only the case of the
strictly linear kernel; more general kernels were
considered in Ref. [24]. The joint age-degree dis-
tribution evolves according to the rate equation

o

ot

�
þ o

oa

�
ck ¼

Ak�1ck�1 � Akck

2t
þ dk1dðaÞ: ð3:12Þ

The second term on the left accounts for the aging
of nodes. We assume here that the probability of
linking to a given node again depends only on its
degree and not on its age. Finally, we again have
used AðtÞ � M1ðtÞ ’ 2t for the linear attachment
kernel in the long-time limit.

The homogeneous form of this equation implies
that solution should be self-similar. Thus we seek
a solution as a function of the single variable
a/t rather than two separate variables. Writing
ckðt; aÞ ¼ fkðxÞ with x ¼ 1� a=t, we convert Eq.
(3.12) into the ordinary differential equation

�2x dfk

dx
¼ ðk � 1Þfk�1 � kfk: ð3:13Þ

We omit the delta function term, since it merely
provides the boundary condition ckðt; a ¼ 0Þ ¼ dk1,
or fkð1Þ ¼ dk1.

The solution to this boundary-value problem
may be simplified by assuming the exponential
solution fk ¼ Uuk�1; this is consistent with the
boundary condition, provided that Uð1Þ ¼ 1 and

uð1Þ ¼ 0. This ansatz reduces the infinite set of
rate Eq. (3.13) into two elementary differential
equations for uðxÞ and UðxÞ whose solutions are
uðxÞ ¼ 1� ffiffiffi

x
p

and UðxÞ ¼ ffiffiffi
x

p
. In terms of the

original variables of a and t, the joint age-degree
distribution is then

ckðt; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� a

t

r
1

�
�

ffiffiffiffiffiffiffiffiffiffiffi
1� a

t

r �k�1

: ð3:14Þ

Thus the degree distribution for fixed-age nodes
decays exponentially, with a characteristic degree
that diverges as hki � ð1� a=tÞ�1=2 for a ! t. As
expected, young nodes (those with a=t ! 0) typi-
cally have a small degree while old nodes have
large degree (Fig. 4). It is the large characteristic
degree of old nodes that ultimately leads to a
power-law total degree distribution when the joint
age-degree distribution is integrated over all ages.

3.4. Node degree correlations

The rate equation approach is sufficiently ver-
satile that we can also obtain much deeper geo-
metrical properties of GN. One such property is
the correlation between degrees of connected nodes
[24]. These develop naturally because a node with
large degree is likely to be old. Thus its ancestor
is also old and hence also has a large degree. In

Fig. 4. Age-dependent degree distribution for the GN for the

linear attachment kernel. Low-degree nodes tend to be rela-

tively young while high-degree nodes are old. The inset shows

detail for a=t P 0:98.
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the context of the Web, this correlation merely
expresses that obvious fact that it is more likely
that popular Web sites have hyperlinks among
each other rather than to marginal sites.

To quantify the node degree correlation, we
define CklðtÞ as the number of nodes of degree k
that attach to an ancestor node of degree l (Fig. 5).
For example, in the network of Fig. 1, there are
N1 ¼ 6 nodes of degree 1, with C12 ¼ C13 ¼ C15 ¼
2. There are also N2 ¼ 2 nodes of degree 2, with
C25 ¼ 2, and N3 ¼ 1 nodes of degree 3, with
C35 ¼ 1.

For simplicity, we again specialize to the case of
the strictly linear attachment kernel. More general
kernels can also be treated within our general
framework [24]. For the linear attachment kernel,
the degree correlation CklðtÞ evolves according to
the rate equation

M1

dCkl

dt
¼ ðk � 1ÞCk�1;l � kCkl þ ðl � 1ÞCk;l�1

� lCkl þ ðl � 1ÞCl�1 dk1: ð3:15Þ

The processes that gives rise to each term in this
equation are illustrated in Fig. 6. The first two
terms on the right account for the change in Ckl

due to the addition of a link onto a node of degree
k � 1 (gain) or k (loss) respectively, while the sec-
ond set of terms gives the change in Ckl due to the
addition of a link onto the ancestor node. Finally,

the last term accounts for the gain in C1l due to
the addition of a new node.

As in the case of the node degree, the time de-
pendence can be separated as Ckl ¼ tckl. This re-
duces Eq. (3.15) to the time-independent recursion
relation

ðk þ l þ 2Þckl ¼ ðk � 1Þck�1;l þ ðl � 1Þck;l�1

þ ðl � 1Þcl�1 dk1: ð3:16Þ
This can be further reduced to a constant-coeffi-
cient inhomogeneous recursion relation by the
substitution

ckl ¼
CðkÞCðlÞ

Cðk þ l þ 3Þ dkl

to yield

dkl ¼ dk�1;l þ dk;l�1 þ 4ðl þ 2Þdk1: ð3:17Þ
Solving Eq. (3.17) for the first few k yields the
pattern of dependence on k and l from which one
can then infer the solution

dkl ¼ 4
Cðk þ lÞ

Cðk þ 2ÞCðl � 1Þ þ 12
Cðk þ l � 1Þ

Cðk þ 1ÞCðl � 1Þ ;

ð3:18Þ
from which we ultimately obtain

ckl ¼
4ðl � 1Þ

kðk þ lÞðk þ l þ 1Þðk þ l þ 2Þ

� 1

k þ 1

�
þ 3

k þ l � 1

�
: ð3:19Þ

The important feature of this result is that the joint
distribution does not factorize, that is, ckl 6¼ nknl.
This correlation between the degrees of connected
nodes is an important distinction between the GN
and classical random graphs.

While the solution of Eq. (3.19) is unwieldy, it
greatly simplifies in the scaling regime, k ! 1 and
l ! 1 with y ¼ l=k finite. The scaled form of the
solution is

Fig. 5. Definition of the node degree correlation Ckl for the case

k ¼ 3 and l ¼ 4.

Fig. 6. The processes that contribute ((i)–(v) in order) to the various terms in the rate Eq. (3.15). The newly-added node and link are

shown dashed.
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ckl ¼ k�4
4yðy þ 4Þ
ð1þ yÞ4

: ð3:20Þ

For fixed large k, the distribution ckl has a single
maximum at y� ¼ ð

ffiffiffiffiffi
33

p
� 5Þ=2 ffi 0:372. Thus a

node whose degree k is large is typically linked to
another node whose degree is also large; the typi-
cal degree of the ancestor is 37% that of the
daughter node. In general, when k and l are both
large and their ratio is different from one, the
limiting behaviors of ckl are

ckl !
16 ðl=k5Þ; l � k;
4=ðk2 l2Þ; l � k:

�
ð3:21Þ

Here we explicitly see the absence of factorization
in the degree correlation: ckl 6¼ nknl / ðk lÞ�3.

3.5. Global properties

In addition to elucidating the degree distribu-
tion and degree correlations, the rate equations
can be applied to determine global properties. One
useful example is the out-component with respect to
a given node x—this is the set of nodes that can be
reached by following directed links that emanate
from x (Fig. 7). In the context of the web, this
is the set of nodes that are reached by following
hyperlinks that emanate from a fixed node to
target nodes, and then iteratively following target
nodes and infinitum. In a similar vein, one may
enumerate all nodes that refer to a fixed node, plus
all nodes that refer these daughter nodes, etc. This
progeny comprises the in-component to node x—
the set from which x can be reached by following a
path of directed links.

3.5.1. The in-component
For simplicity, we study the in-component size

distribution for the GN with a constant attach-
ment kernel, Ak ¼ 1. We consider this kernel be-
cause many results about network components are
independent of the form of the kernel and thus
it suffices to consider the simplest situation; the
extension to more general attachment kernels is
discussed in [24].

For the constant attachment kernel, the number
IsðtÞ of in-components with s nodes satisfies the
rate equation

dIs
dt

¼ ðs � 1ÞIs�1 � sIs
A

þ ds1: ð3:22Þ

The loss term accounts for processes in which the
attachment of a new node to an in-component of
size s increases its size by one. This gives a loss rate
that is proportional to s. If there is more than one
in-component of size s they must be disjoint, so
that the total loss rate for IsðtÞ is simply sIsðtÞ. A
similar argument applies for the gain term. Finally,
dividing by AðtÞ ¼

P
j AjNjðtÞ converts these rates

to normalized probabilities. For the constant at-
tachment kernel, AðtÞ ¼ M0ðtÞ, so asymptotically
A ¼ t. Interestingly, Eq. (3.22) is almost identical
to the rate equations for the degree distribution for
the GN with linear attachment kernel, except that

the prefactor equals t�1 rather than ð2tÞ�1. This
change in the normalization factor is responsible
for shifting the exponent of the resulting distri-
bution from �3 to �2.

To determine IsðtÞ, we again note, by explicitly
solving the first few of the rate equations, that each
Is grows linearly in time. Thus we substitute IsðtÞ ¼
tis into Eq. (3.22) to obtain i1 ¼ 1=2 and is ¼
is�1ðs � 1Þ=ðs þ 1Þ. This immediately gives

is ¼
1

sðs þ 1Þ : ð3:23Þ

This s�2 tail for the in-component distribution is
a robust feature, independent of the form of the
attachment kernel [24]. This s�2 tail also agrees
with recent measurements of the Web [10].

3.5.2. The out-component
The complementary out-component from each

node can be determined by constructing a map-Fig. 7. In-component and out-components of node x.
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ping between the out-component and an under-
lying network ‘‘genealogy’’.We build a genealogical
tree for the GN by taking generation g ¼ 0 to
be the initial node. Nodes that attach to those in
generation g form generation g þ 1; the node index
does not matter in this characterization. For ex-
ample, in the network of Fig. 1, node 1 is the
‘‘ancestor’’ of 6, while 10 is the ‘‘descendant’’ of 6
and there are 5 nodes in generation g ¼ 1 and 4 in
g ¼ 2. This leads to the genealogical tree of Fig. 8.

The genealogical tree provides a convenient way
to characterize the out-component distribution. As
one can directly verify from Fig. 8, the number Os

of out-components with s nodes equals Ls�1, the
number of nodes in generation s � 1 in the gene-
alogical tree. We therefore compute LgðtÞ, the size
of generation g at time t. For this discussion, we
again treat only the constant attachment kernel
and refer the reader to Ref. [24] for more general
attachment kernels. We determine LgðtÞ by noting
that LgðtÞ increases when a new node attaches to
a node in generation g � 1. This occurs with rate
Lg�1=M0, where M0ðtÞ ¼ 1þ t is the number of
nodes. This gives the differential equation for
_LLgðtÞ ¼ Lg�1=ð1þ tÞ with solution LgðsÞ ¼ sg=g!,
where s ¼ lnð1þ tÞ. Thus the number Os of out-
components with s nodes equals

OsðsÞ ¼ ss�1=ðs � 1Þ!: ð3:24Þ
Note that the generation size LgðtÞ grows with g,

when g < s, and then decreases and becomes of
order 1 when g ¼ es. The genealogical tree there-
fore contains approximately es generations at time
t. This result allows us to determine the diameter of
the network, since the maximum distance between
any pair of nodes is twice the distance from the

root to the last generation. Therefore the diameter
of the network scales as 2es � 2e lnN ; this is the
same dependence on N as in the random graph
[2,3]. More importantly, this result shows that the
diameter of the GN is always small—ranging from
the order of ln N for a constant attachment kernel,
to the order of one for super-linear attachment
kernels.

4. The Web graph

In the World Wide Web, link directionality is
clearly relevant, as hyperlinks go from an issuing
website to a target Website but not vice versa.
Thus to characterize the local graph structure
more fully, the node degree should be resolved
into the in-degree—the number of incoming links
to a node, and the complementary out-degree
(Fig. 3). Measurements on the Web indicate that
these distributions are power-laws with different
exponents [11]. These properties can be accounted
for by the WG model (Fig. 2) and the rate equa-
tions provide an extremely convenient analysis
tool.

4.1. Average degrees

Let us first determine the average node degrees
(in-degree, out-degree, and total degree) of the
WG. Let N(t) be the total number of nodes, and
I(t) and J(t) the in-degree and out-degree of the
entire network, respectively. According to the el-
emental growth steps of the model, these degrees
evolve by one of the following two possibilities:

ðN ; I ; JÞ

!
ðN þ 1; I þ 1; J þ 1Þ with probability p;

ðN ; I þ 1; J þ 1Þ with probability q:

�

That is, with probability p a new node and new
directed link are created (Fig. 2) so that the
number of nodes and both the total in- and out-
degrees increase by one. Conversely, with prob-
ability q a new directed link is created and the
in- and out-degrees each increase by one, while the
total number of nodes is unchanged. As a result,
NðtÞ ¼ pt, and IðtÞ ¼ JðtÞ ¼ t. Thus the average

Fig. 8. Genealogy of the network in Fig. 1. The nodes indices

indicate when each is introduced. The nodes are also arranged

according to generation number.
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in- and out-degrees, Din � IðtÞ=NðtÞ and Dout �
JðtÞ= NðtÞ, are both equal to 1=p.

4.2. Degree distributions

To determine the degree distributions, we need
to specify: (i) the attachment rate Aði; jÞ, defined as
the probability that a newly-introduced node links
to an existing node with i incoming and j outgoing
links, and (ii) the creation rate Cði1; j1ji2; j2Þ, de-
fined as the probability of adding a new link from
a ði1; j1Þ node to a ði2; j2Þ node. We will use rates
that are expected to occur in the Web. Clearly,
the attachment and creation rates should be non-
decreasing in i and j. Moreover, it seems intuitively
plausible that the attachment rate depends only on
the in-degree of the target node, Aði; jÞ ¼ Ai; i.e., a
Website designer decides to create link to a target
based only on the popularity of the latter. In the
same spirit, we take the link creation rate to de-
pend only on the out-degree of the issuing node
and the in-degree of the target node, Cði1; j1j
i2; j2Þ ¼ Cðj1; i2Þ. The former property reflects the
fact that the development rate of a site depends
only on the number of outgoing links.

The interesting situation of power-law degree
distributions arises for asymptotically linear rates,
and we therefore consider

Ai ¼ i þ kin and

Cðj; iÞ ¼ ðiþ kinÞðj þ koutÞ: ð4:1Þ

The parameters kin and kout must satisfy the con-
straint kin > 0 and kout > �1 to ensure that the
rates are positive for all attainable in- and out-
degree values, iP 0 and jP 1.

With these rates, the joint degree distribution,
NijðtÞ, defined as the average number of nodes with
i incoming and j outgoing links, evolves according
to

dNij

dt

¼ ðp þ qÞ ði � 1þ kinÞNi�1;j � ði þ kinÞNij

I þ kinN

� �

þ q
ðj � 1þ koutÞNi;j�1 � ðj þ koutÞNij

J þ koutN

� �

þ pdi0dj1: ð4:2Þ

The first group of terms on the right accounts
for the changes in the in-degree of target nodes
by simultaneous creation of a new node and link
(probability p) or by creation of a new link only
(probability q). For example, the creation of a
link to a node with in-degree i leads to a loss in
the number of such nodes. This occurs with rate
ðp þ qÞðiþ kinÞNij, divided by the appropriate nor-
malization factor

P
i;j ði þ kinÞNij ¼ I þ kinN .

The factor p þ q ¼ 1 in Eq. (4.2) is explicitly
written to make clear these two types of processes.
Similarly, the second group of terms account
for out-degree changes. These occur due to the
creation of new links between already existing
nodes—hence the prefactor q. The last term
accounts for the introduction of new nodes with
no incoming links and one outgoing link. As a
useful consistency check, one may verify that the
total number of nodes, N ¼

P
i;j Nij, grows ac-

cording to _NN ¼ p, while the total in- and out-
degrees, I ¼

P
i;j iNij and J ¼

P
i;j jNij, obey _II ¼

_JJ ¼ 1.
By solving the first few of Eq. (4.2), it is again

clear that the Nij grow linearly with time. Ac-
cordingly, we substitute NijðtÞ ¼ t nij, as well as
N ¼ pt and I ¼ J ¼ t, into Eq. (4.2) to yield a re-
cursion relation for nij. Using the shorthand no-
tations,

a ¼ q
1þ pkin
1þ pkout

and b ¼ 1þ ð1þ pÞkin;

the recursion relation for nij is

½iþ aðj þ koutÞ þ b
nij

¼ ði � 1þ kinÞni�1;j þ aðj � 1þ koutÞni;j�1

þ pð1þ pkinÞdi0dj1: ð4:3Þ

The in-degree and out-degree distributions are
straightforwardly expressed through the joint dis-
tribution: IiðtÞ ¼

P
j NijðtÞ and OjðtÞ ¼

P
i NijðtÞ.

Because of the linear time dependence of the node
degrees, we write IiðtÞ ¼ t Ii and OjðtÞ ¼ tOj. The
densities Ii and Oj satisfy

ði þ bÞIi ¼ ði � 1þ kinÞIi�1
þ pð1þ pkinÞdi0; ð4:4aÞ
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j
�

þ 1

q
þ kout

q

�
Oj ¼ ðj � 1þ koutÞOj�1

þ p
1þ pkout

q
dj1; ð4:4bÞ

respectively. The solution to these recursion for-
mulae may be expressed in terms of the following
ratios of gamma functions:

Ii ¼ I0
Cði þ kinÞCðb þ 1Þ
Cði þ b þ 1ÞCðkinÞ

; ð4:5aÞ

Oj ¼ O1

Cðj þ koutÞCð2þ q�1 þ koutq�1Þ
Cðj þ 1þ q�1 þ koutq�1ÞCð1þ koutÞ

;

ð4:5bÞ

with I0 ¼ pð1þ pkinÞ=b and O1 ¼ pð1þ pkoutÞ=
ð1þ q þ koutÞ.

From the asymptotics of the gamma function,
the asymptotic behavior of the in- and out-degree
distributions have the distinct power-law forms
[19],

Ii � i�min ; min ¼ 2þ pkin; ð4:6aÞ

Oj � j�mout ; mout ¼ 1þ q�1 þ kout pq�1; ð4:6bÞ
with min and mout both necessarily greater than 2.
Let us now compare these predictions with current
data for the Web [11]. First, the value of p is fixed
by noting that p�1 equals the average degree of the
entire network. Current data for the Web gives
Din � Dout � 7:5, and thus we set p�1 ¼ 0:75. Now
Eqs. (4.6a) and (4.6b) contain two free parameters
and by choosing them to be kin ¼ 0:75 and kout ¼
3:55 we reproduced the observed exponents for the
degree distributions of the Web, min � 2:1 and
mout � 2:7, respectively. The fact that the parame-
ters kin and kout are of the order of one indicates
that the model with linear rates of node attach-
ment and bilinear rates of link creation is a viable
description of the Web.

5. Multicomponent graph

In addition to the degree distributions, current
measurements indicate that the Web consists of

a ‘‘giant’’ component that contains approximately
91% of all nodes, and a large number of finite
components [11]. The models discussed thus far
are unsuited to describe the number and size dis-
tribution of these components, since the growth
rules necessarily produce only a single connected
component. In this section, we outline a simple
modification of the WG, the MG, that natu-
rally produces many components. In this example,
the rate equations now provide a comprehensive
characterization for the size distribution of the
components.

In the MG model, we simply separate node and
link creation steps. Namely, when a node is in-
troduced it does not immediately attach to an
earlier node, but rather, a new node begins its
existence as isolated and joins the network only
when a link creation event reaches the new node.
For the average network degrees, this small
modification already has a significant effect. The
number of nodes and the total in- and out-degrees
of the network, N, I, J now increase with time
as N ¼ pt and I ¼ J ¼ qt. Thus the in- and out-
degrees of each node are time independent and
equal to qp�1, while the total degree is D ¼ 2q=p.

As in the case of the WG model, we study the
case of a bilinear link creation rate given in Eq.
(4.1), with now kin, kout > 0 to ensure that Cðj; iÞ >
0 for all permissible in- and out-degrees, iP 0 and
jP 0.

5.1. Local properties

We study local characteristics by employing the
same approach as in the WG model. We find that
results differ only in minute details, e.g., the in-
and out-degree densities Ii and Oj are again the
ratios of gamma functions, and the respective ex-
ponents are

min ¼ 2 1

�
þ kin

D

�
; mout ¼ 2 1

�
þ kout

D

�
: ð5:1Þ

Notice the decoupling—the in-degree exponent is
independent of kout, while mout is independent of kin.
The expressions (5.1) are neater than their WG
counterparts, reflecting the fact that the governing
rules of the MG model are more symmetric.
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To complement our discussion, we now outline
the asymptotic behavior of the joint in- and out-
degree distribution. Although this distribution
defies general analysis, we can obtain partial and
useful information by fixing one index and letting
the other index vary. An elementary but cumber-
some analysis yields following limiting behaviors:

nij � i�nin ; 1 � i;
j�nout ; 1 � j;

�
ð5:2Þ

with

nin ¼ min þ
D

2

ðmin � 1Þðmout � 2Þ
mout � 1

;

nout ¼ mout þ
D

2

ðmout � 1Þðmin � 2Þ
min � 1

:

We also can determine the joint degree distri-
bution analytically in the subset of the parameter
space where min ¼ mout, i.e., kin ¼ kout. In what fol-
lows, we therefore denote kin ¼ kout � k. The re-
sulting recursion equation for the joint degree
distribution is

ðiþ j þ 1þ k þ kq�1Þnij

¼ ði� 1þ kÞni�1;j þ ðj � 1þ kÞni;j�1

þ cdi;0 dj;0; ð5:3Þ

with c ¼ pð1þ 2k=DÞ. Because the degrees i and j
appear in Eq. (5.3) with equal prefactors, the
substitution

nij ¼
Cði þ kÞCðj þ kÞ

Cði þ j þ 2þ k þ kq�1Þ mij

reduces Eq. (5.3) into the constant-coefficient re-
cursion relation

mij ¼ mi�1;j þ mi;j�1 þ ldi;0 dj;1;

with l ¼ c
Cð1þ k þ kq�1Þ

C2ðkÞ
: ð5:4Þ

We solve Eq. (5.4) by employing the generating
function technique. Multiplying Eq. (5.4) by xiyj

and summing over all i; jP 0, we find that the
generating functionMðx; yÞ ¼

P
i;jP 0 mijxiyj equals

l=ð1� x � yÞ. Expanding Mðx; yÞ in x yields
l
P

xi=ð1� yÞiþ1 which we then expand in y by

employing the identity ð1� yÞ�i�1 ¼
P

jP 0
iþj
i

� �
yj.

Finally, we arrive at

mij ¼ l
Cðiþ j þ 1Þ

Cðiþ 1ÞCðj þ 1Þ ; ð5:5Þ

from which the joint degree distribution is

nij ¼
lCðiþ kÞCðj þ kÞCði þ j þ 1Þ

Cðiþ 1ÞCðj þ 1ÞCði þ j þ 2þ k þ kq�1Þ

! l
ðijÞk�1

ði þ jÞ1þkþk=q
; as i; j ! 1: ð5:6Þ

Thus again, the in- and out-degrees of a node are
correlated: nij 6¼ IiOj � i�mj�m.

5.2. Global properties

Let us now turn to the distribution of connected
components (clusters, for brevity). For simplicity,
we consider models with undirected links. Let us
first estimate the total number of clusters N. At
each time step, N ! Nþ 1 with probability p,
or N ! N� 1 with probability q. This implies

N ¼ ðp � qÞt: ð5:7Þ
The gain rate of N is exactly equal to p, while in
the loss term we ignore self-connections and tacitly
assume that links are always created between dif-
ferent clusters. In the long-time limit, self-connec-
tions should be asymptotically negligible when the
total number of clusters grows with time and no
macroscopic clusters (i.e., components that contain
a finite fraction of all nodes) arise.

This assumption of no self-connections greatly
simplifies the description of the cluster merging
process. Consider two clusters (labeled by a ¼ 1; 2)
with total in-degrees ia, out-degrees ja, and number
of nodes ka. When these clusters merge, the com-
bined cluster is characterized by

i ¼ i1 þ i2 þ 1; j ¼ j1 þ j2 þ 1; k ¼ k1 þ k2:

Thus starting with single-node clusters with
ði; j; kÞ ¼ ð0; 0; 1Þ, the above merging rule leads to
clusters that always satisfy the constraint i ¼ j ¼
k � 1. Thus the size k characterizes both the in-
degree and out-degree of clusters.

To simplify formulae without sacrificing gen-
erality, we consider the link creation rate of
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Eq. (4.1), with kin ¼ kout ¼ 1. Then the merging
rate W ðk1; k2Þ of the two clusters is proportional to
ði1 þ k1Þðj2 þ k2Þ þ ði2 þ k2Þðj1 þ k1Þ, or
W ðk1; k2Þ ¼ ð2k1 � 1Þð2k2 � 1Þ:
Let C(k, t) denotes the number of clusters of mass
k. This distribution evolves according to

dCðk; tÞ
dt
¼ q

t2
X

k1þk2¼k

ð2k1 � 1Þð2k2 � 1ÞCðk1; tÞCðk2; tÞ

� 2q
t
ð2k � 1ÞCðk; tÞ þ pdk;1: ð5:8Þ

The first set of terms account for the gain in C(k, t)
due to the coalescence of clusters of size k1 and k2,
with k1 þ k2 ¼ k. Similarly, the second set of terms
accounts for the loss in Cðk; tÞ due to the coales-
cence of a cluster of size k with any other cluster.
The last term accounts for the input of unit-size
clusters. These rate equations are similar to those
of irreversible aggregation with product kernel
[15]. The primary difference is that we explicitly
treat the number of clusters as finite.

One can verify that the total number of nodes
NðtÞ ¼

P
kCðk; tÞ grows with rate p and that the

total number of clusters NðtÞ ¼
P

Cðk; tÞ grows
with rate p � q, in agreement with Eq. (5.7).
Solving the first few Eq. (5.8) shows again that
Cðk; tÞ grow linearly with time. Accordingly, we
substitute Cðk; tÞ ¼ t ck into Eq. (5.8) to yield the
time-independent recursion relation

ck ¼ q
X

k1þk2¼k

ð2k1 � 1Þð2k2 � 1Þck1ck2

� 2qð2k � 1Þck þ pdk;1: ð5:9Þ

A giant component, i.e., a cluster that contains
a finite fraction of all the nodes, emerges when the
link creation rate exceeds a threshold value. To
determine this threshold, we study the moments
of the cluster size distribution Mn ¼

P
k P 1 k

n ck.
We already know that the first two moments are
M0 ¼ p � q and M1 ¼ p. We can obtain an equa-
tion for the second moment by multiplying
Eq. (5.9) by k2 and summing over k P 1 to give
M2 ¼ 2qð2M2 �M1Þ2 þ p. When this equation
has a real solution, M2 is finite. The solution is

M2 ¼
1þ 8pq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16pq

p

16q
ð5:10Þ

and gives, when 1� 16pq ¼ 0, to a threshold value
pc ¼ ð2þ

ffiffiffi
3

p
Þ=4. For 1� 16pqP 0 (p > pc) all

clusters have finite size and the second moment is
finite.

In this steady-state regime, we can obtain the
cluster size distribution by introducing the gener-
ating function CðzÞ ¼

P1
k¼1 ckzk to convert Eq.

(5.9) into the differential equation

2zC0ðzÞ � CðzÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½pz � CðzÞ
=q

p
: ð5:11Þ

The asymptotic behavior of the cluster size distri-
bution can now be read off from the behavior of
the generating function in the z ! 1 limit. In par-
ticular, the power-law behavior

ck �
B
ks

as k ! 1 ð5:12Þ

implies that the corresponding generating function
has the form

CðzÞ ¼ M0 þM1ðz � 1Þ þM2 �M1

2
ðz � 1Þ2

þ BCð1� sÞð1� zÞs�1 þ � � � : ð5:13Þ

Here the asymptotic behavior is controlled by the
dominant singular term ð1� zÞs�1. However, there
are also subdominant singular terms and regular
terms in the generating function. In Eq. (5.13) we
explicitly included the three regular terms which
ensure that the first three moments of the cluster-
size distribution are correctly reproduced, namely,
Cð1Þ ¼ M0, C

0ð1Þ ¼ M1, and C00ð1Þ ¼ M2 �M1.
Finally, substituting Eq. (5.13) into Eq. (5.11)

we find that the dominant singular terms are of the
order of ð1� zÞs�2. Balancing all contributions of
this order in the equation determines the exponent
of the cluster size distribution to be

s ¼ 1þ 2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16pq

p : ð5:14Þ

This exponent satisfies the bound s > 3 and thus
justifies using the behavior of the second moment
of the size distribution as the criterion to find the
threshold value pc.
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For p P pc there is no giant cluster and the
cluster size distribution has a power-law tail with
s given by Eq. (5.14). Intriguingly, the power-law
form holds for any value p > pc. This is in stark
contrast to all other percolation-type phenomena,
where away from the threshold, there is an expo-
nential tail in cluster size distributions [27]. Thus in
contrast to ordinary critical phenomena, the entire
range p > pc is critical.

As a corollary to the power-law tail of the
cluster size distribution for p > pc, we can estimate
the size of the largest cluster kmax to see how ‘‘fi-
nite’’ it really is. Using the extreme statistics crite-
rion

P
k P kmax

N ck ¼ 1 we obtain kmax � N 1=ðs�1Þ, or

kmax � N ð1�
ffiffiffiffiffiffiffiffiffiffiffi
1�16pq

p
Þ=2: ð5:15Þ

This is very different from the corresponding be-
havior on the random graph, where below the
percolation threshold the largest component scales
logarithmically with the number of nodes. Thus
for the random graph, the dependence of kmaxðNÞ
changes from lnN just below, to N, just above the
percolation threshold; for the MG, the change is
much more gentle: from N 1=2 to N.

These considerations suggest that the phase
transition in the MG is dramatically different from
the percolation transition. Very recently, simplified
versions of the MG were studied [21,28–31]. Nu-
merical [21] and analytical [29–31] evidence sug-
gest that the size of the giant component G(p) near
the threshold scales as

GðpÞ / exp
const:ffiffiffiffiffiffiffiffiffiffiffiffiffi
pc � p

p
� �

: ð5:16Þ

Therefore, the phase transition of this dynamically
grown network is of infinite order since all deriv-
atives of G(p) vanish as p ! pc. In contrast, static
random graphs with any desired degree distribu-
tion [32] exhibit a standard percolation transition
[21,32–34].

6. Summary

In this paper, we have presented a statistical
physics viewpoint on GN problems. This per-

spective is strongly influenced by the phenomenon
of aggregation kinetics, where the rate equation
approach has proved extremely useful. From the
wide range of results that we were able to obtain
for evolving networks, we hope that the reader
appreciates both the simplicity and the power of
the rate equation method for characterizing evolv-
ing networks. We quantified the degree distribu-
tion of the GN model and found a diverse range
of phenomenology that depends on the form of
the attachment kernel. At the qualitative level, a
stretched exponential form for the degree distri-
bution should be regarded as ‘‘generic’’, since it
occurs for an attachment kernel that is sub-linear
in node degree (e.g., Ak � kc with c < 1). On the
other hand, a power-law degree distribution arises
only for linear attachment kernels, Ak � k. How-
ever, this result is ‘‘non-generic’’ as the degree
distribution exponent now depends on the detailed
form of the attachment kernel.

We investigated extensions of the basic GN to
incorporate processes that naturally occur in the
development in the Web. In particular, by allow-
ing for link directionality, the full degree distri-
bution naturally resolves into independent in-
degree and out-degree distributions. When the
rates at which links are created are linear functions
of the in- and out-degrees of the terminal nodes of
the link, the in- and out-degree distributions are
power-laws with different exponents, min and mout,
that match with current measurements on the Web
with reasonable values for the model parameters.
We also considered a model with independent
node and link creation rates. This leads to a net-
work with many independent components and
now the size distribution of these components is an
important characteristic. We have characterized
basic aspects of this process by the rate equation
approach and showed that the network is in a
critical state even away from the percolation
threshold. The rate equation approach also pro-
vides evidence of an unusual, infinite-order per-
colation transition.

While statistical physics tools have fueled much
progress in elucidating the structure of GNs, there
are still many open questions. One set is associated
with understanding dynamical processes in such
networks. For example, what is the nature of in-
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formation transmission? What governs the for-
mation of traffic jams on the Web? Another set is
concerned with growth mechanisms. While we can
make much progress in characterizing networks
with idealized growth rules, it is important to un-
derstand the actual rules that govern the growth
of the Internet. These issues appear to be fruitful
challenges for future research.
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