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The dynamics of “vicious,” continuously growing civilizationglomaing, which engage in “war” when-
ever two domains meet, is investigated. In the war event, the smaller domain is annihilated, while the larger
domain is reduced in size by a fractiemf the casualties of the loser. Harguantifies the fairness of the war,
with e=1 corresponding to a fair war with equal casualties on both sidessafdcorresponding to a com-
pletely unfair war where the winner suffers no casualties. In the heterogeneous version of the model, evolution
begins from a specified initial distribution of domains, while in the homogeneous system, there is a continuous
and spatially uniform input of point domains, in addition to the growth and warfare. For the heterogeneous
case, the rate equations are derived and solved and comparisons with numerical simulations are made. An exact
solution is also derived for the case of equal-size domains in one dimension. The heterogeneous system is
found to coarsen, with the typical cluster size growing linearly in tinsnd the number density of domains
decreases astlfor the homogeneous system, two different long-time behaviors arise as a functidiloén
3—2L<es1 (relatively fair warg, a steady state arises that is characterized by egalitarian competition between
domains of comparable size. In the limiting caseeefl, rate equations that simultaneously account for the
distribution of domains and that of the intervening gaps are derived and solved. The steady state is character-
ized by domains whose age is typically much larger than their size. Wkes<® (unfair warg, a few
“superpowers” ultimately dominate. Simulations indicate that this coarsening process is characterized by
power-law temporal behavior, with nonuniversatlependent exponents. Some of these features are captured
by a deterministic self-similar model, for which the characteristic exponents can be computed easily. The
transition pointe= ecz% is characterized by slower than power-law coarseri83063-651X96)09508-4

PACS numbd(s): 02.50—r, 01.75+m, 89.90+n

I. INTRODUCTION troduce and investigate a simple yet relatively general model
for war between vicious civilizations. In our model, domains
grow continuously and an encounter between two civiliza-
Coarsening phenomena underlie a wide variety of physitions leads to a war where the smaller combatant is annihi-
cal processes, such as phase ordering and spinodal decompged and the larger civilization suffers a specified number of
sition [1-3], growth of breath figure$4,5], spin dynamics casualties. This model exhibits a rich variety of dynamical
[6,7], and foamd8,9]. The latter system is especially inter- pehaviors, including the features of extinction and persis-
esting, as the basic phenomena are readily observable {gnce of civilizations.
many everyday situations. For example, the microscopic
rules that govern the dynamics of individual bubbles are sim-
ply given in terms of the system geometry and yet lead to ) ) .
varied and intriguing macroscopic behavior in the long-time N our model, space is populated by a collection of civi-
limit. In addition to continuous growth and shrinking of in- lizations, each of which is represented by a spatial domain of
dividual bubbles, there are discontinuous bubble “popping”a particular sizgor population. Each domain grows either
events that lead to rearrangement on a larger length sca@@ntinuously or in discrete steps at a constant rate, in which
than individual bubbles. Another attractive feature of suchthe boundaries move at velocity. Whenever two civiliza-
geometric coarsening processes is that they naturally suggesins of sizei and sizej meet(with j>i without loss of
idealizations that may be exactly soluble. One such examplgenerality, they engage in a war where the smaller domain
which can be viewed as a limiting case for breath figureis annihilated, while the larger domain suffediscasualties,
growth, is the coarsening of an array of contiguous domainso that its size changes fo-¢€i (Fig. 1). We define the
in one dimensiorj10-1§. casualties to occur at the battlefront so that the frontier of the
The mechanisms that govern domain evolution in thesevinner retreats by a distanag in one dimension. Here
types of coarsening processes appear to have natural coumeasures the “fairness” of the warfare eveat:1 corre-
terparts in social phenomena. For example, the competitioaponds to a fair war, in which the winner and loser suffer the
between cultures has led to a rich historical recdl] in same number of casualties, aed0 corresponds to a com-
which certain civilizations are dominant for long time peri- pletely unfair war, in which the winner emerges unscathed.
ods only to suddenly disappear. Conversely, other civilizaSubsequently, the survivor civilization continues its growth
tions persist for very long times even though they are relauntil the next war. We are interested in determining the long-
tively small. Motivated by these basic historical facts and bytime dynamical behavior and the spatial distribution of civi-
a qualitative appreciation for coarsening phenomena, we inlizations under these conditions. Although our model is naive

A. Background

B. The war model
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time FIG. 2. Space-time evolution of two domains for the special
case ofe= % The position of the frontier of the winner immediately
FIG. 1. Space-time dynamics of vicious civilizations in one di- after the war and at the birth time of the smaller combatant is the
mension. Shown is the heterogeneous version of the war modealame.
where the system evolves from a fixed initial state. When two civi-

lizations of sizel andj>i meet, the result is a diminished civiliza- . . . .
tion of sizej—ei. By definition, casualties occur at the point of exactly the same position that existed at the birth time of the

A . 1 ;
contact, so that the side of the large civilization on the battle frontsma”?r civilization(Fig. 2. Thus, foress, thg frontier of
retreats byei, while the other side is not affected. the victor after the warfare event should either retreat or
advance, respectively, compared to its position at the birth
S . - . time of the weaker combatant. This difference suggests the
and drastidsince the loser is annihilatgdhe essential fea- existence of the aforementioned steady state and coarsening

tures of growth and sudden diminishment by war are mcor—regimes that are separated &y- 1.

porated. Thus suitable generalizations of our model may be An interesting feature of the steady state regiemer, is

z)prsroprlate for describing quantitative aspects of social hIS'Ehat a nontrivial joint distribution of civilization age and size

. . rises. The connection between these two attributes is subtle,
There are two general conditions under which our mode

leads to interesting asvmptotic dvnamics. In fheeroqe- ince a long-lived civilization, whose age is much greater
g asymp y : 9 than its size(in appropriately scaled units whexe=3), can

gfzgss\ﬁgg?foﬂgfness?hgt]esjﬁt:&:ri%/mjnvc\jlg?gi %'fct)c\gﬁt'g;?ise py a sequence of fortuitous events. To charapterize this

warfare. In thehomogeneougprocess, there is temporally ge-size d.|str|but|on,. we have formulated a version -Of Fhe

constant and spatially uniform input'of point domains thatr-ate equatlons that S|multaneous_ly :_alccqunts for the distribu-
. tion of domains as well as the distribution of gaps between

Sults for the age-size distribution in one dimension, at least in
‘the analytically tractable case ef1. For the distribution of
domain sizegintegrated over all domain ages(x) we find
n(x)=e X% with xo=1/\/u, in excellent agreement with
simulations. Hereu is the rate per unit length at which new
For the heterogeneous warfare process, we have primarilgivilizations are introduced. More interestingly, the age dis-
concentrated on the cage-1, although qualitatively similar tribution (integrated over all domain sizes(7) has an expo-
results are anticipated for any valueofThis system exhib- nential tailn(7)=e~ 7" as r—o, but with an anomalously
its coarsening, in which the domain size distribution ap-large characteristic age,, which is much larger than the
proaches a scaling form ix/t, wherex is the domain size typical size. Simulations in one dimension give an even
andt is the time. Consequently, the average domain sizdarger value for the ratioy/x,, a result that can be attributed
(x(t)) grows linearly in time. These qualitative results hold to the existence of significant anticorrelations in the ages of
both in the mean-field limit and in one dimension. From theneighboring domains. For the case of generabove the
rate equations, the scaling function for the domain size disthreshold.e,<e<1, our simulations indicate that basic quan-
tribution is one-half of a sinusoid. In contrast, simulations intities, such as the average domain size, domain age, and cov-
one dimension reveal a scaling function for the size distribuerage, all eventually reach steady-state values. Correspond-

viewed as arising from the remnants of destroyed civiliza
tions.

C. Overview of dynamical properties

tion that is triangular in shape. ingly, both the domain size and age distributions decay
The homogeneous warfare process exhibits a richer phexponentially in this regime.
nomenology that is controlled by the fairness parameter In the complementary regime af<e,, warfare events

For 3<e<1, a steady state arises, which is characterized bgufficiently favor the victor that superpowers ultimately
egalitarian competition between domains of similar sizeemerge. The existence of these large domains strongly modi-
while for e<3, coarsening occurs in which a few superpow- fies the effect of the continuous input of small domains, so
ers ultimately dominate. The existence of a threshold bethat a steady state is not achieved. Our simulations indicate a
tween these two regimes can be qualitatively justified bycontinuous coarsening of domains in which basic time-
considering the outcome of a war between two neighboringlependent quantities, such as the mean domain size and the
domains with different birth timesgor, equivalently, sizeés number density of domain, exhibit non-universal
For e=3, when two neighboring domains meet and engage ire-dependent power-law behavior in time. In particular, for
war, the frontier of the survivor after the war will retreat to the extreme limit ofe=0, where the victor in a war suffers
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no casualties, the number of domains and the density demporarily neglect the effect of war. The size distribution
empty space decay dS” in one dimension, withy=3. A for such peacefully flourishing civilizations is found from the
deterministic idealization of the war model is introduced thatrate equatiorc,=\(c,_,—c,). This is just the Poisson pro-
provides a useful description of this coarsening phenomenoress, with the solution, for the “Adam” initial condition of
As e approacheg; from below, coarsening becomes slower, ¢, (t=0)= 6 4,

as evidenced by the dependence of the exponents. For

e~e., marginal behavior occurs in which the average do- (<t 1 (k—\t)?
main size grows extremely slowly, while the average age  Ck(1)= (k=1)! e~ X eXQ -t
continues to grow as a power law in time.

In Sec. Il we study the heterogeneous war model with faifyhjle the exact result is specific for the monodisperse initial
wars e=1. Results from a mean-field theory and numericalcongition, the Gaussian approximation provides universal as-
simulations are presented. We also treat the special casgnptoties for an arbitrary compact initial size distribution.
where domains all have the same initial size, so that bothrhys for peaceful civilizations, the size distribution is
domains disappear in a warfare event. This limiting Sit”atiorbeaked arounét=\t, with dispersionyxt. Clearly, warfare
turns out to be exactly soluble in one dimension for both theproduces sizes with<\t, so that the size distribution for
asymptotic value of the coverage, as well as the domain-sizgaing civilizations should be nonvanishing for &H\t.
distribution. We next turn to the homogeqeous Process ifhis suggests that the appropriate scaling variablex is
Sec. lll. From the rate equations, the equation of the steady- k/\t, with 0<x=<1. The leading region where~\t can
state solution for the joint age-size distribution is obtainedy,q expected to have a fine structure over an extent of the

again for the par_tlcular case of fair V\.’a‘tl' The extension order of J\t, as in the special case of peaceful civilizations.
of the rate equations far<1 is also discussed and an argu- In the following, we ignore this detailed structure.

ment for the existence of a transition in the kinetic behavior To solve the rate equations, it proves useful to consider
at e=¢. is presented. We next present simulation results irﬁrst the civilization number ’densityN(t):Ek> c(t)

one dimension, focusing on general properties as a functioalhich from Eq.(2), satisfies =1 '

of the fairness parametes. Basic features of thee>e, ' o

steady-state regime and tk€ e, coarsening regime are out- _ o

lined. A deterministic self-similar model is then introduced N(t)=—3 >, c(t)2—3N(t)2 3

to help understand the coarsening processefe®. In Sec. =1
IV we give a brief summary and discuss several extension

of our model. Various calculational details are given in the

}. 2

isymptotically, the first term on the right-hand side is
clearly negligible; therefore, as—», N(t)~2/t. We thus

ppendixes expect that the scaling form for the civilization size distribu-
tion is
Il. HETEROGENEOUS WAR
" 1 . k
A. Mean-field theory c(t)= NG C(x), with x= Nt (4)

Consider the mean-field limit, in which pairs of domains

are randomly picked to undergo warfare. With this interac—p,q time-dependent prefactor in E@d) guarantees that
tion rule, the evolution of the domain-size distribution is de'N(t)oct’l. Furthermore, the relatioh(t)~ 2/ is quantita-

scribed by the rate equatiof20] tively satisfied if /3 dx C(x) =2.
% % Substituting the scaling ansatz into the rate equations, one
Ck(t)ZE Ci(t)CiJrk(t)_Ck(t)z ci(t) f!nds tha_t in the c_ontlnuqus limit, .the scaling fupctlon sa.t|s—
i=1 i=1 fies an integro-differential equation of an anticonvolution
form
FA[C-1(t) —ci(D)]. )
1-x
Herec,(t) is the concentration of domains of sikeat time (1=x)C" ()= J; dy Cly)Cx+y), ®

t. The first term accounts for the gain lbfdomains due to a

war between domains of sizeandi +k. Similarly, the sec- where the prime denotes the differentiating with respegt to
ond term accounts for the loss kfdomains because of war We are unable to solve this equation by a systematic ap-
between a domain of sizeand any other domain. The gain proach and therefore resort to trial and error. Si¢e0,

and loss ofk domains due to constant growth at rat@are  C(x) is monotonically increasing ir. On physical grounds,
described by the last two terms. We have implicitly assumedve expect that’(0)=0, while analysis of Eq(5) in the vi-

that the warfare rate is independent of the combatant sizesinity of x=1 gives

Equation(1) also assumes a minimal size of unity, so that all
sizes are integers. The extension to the continuum case is
straightforward; this description will be employed for the
homogeneous war model.

For the system described by Ed), the average civiliza- i.e.,C’'(1)=0 andC"(1)<0. Polynomial test functions fail to
tion size grows linearly with time and the size distribution is satisfy Eq.(5). [For a polynomial, say, of degrag the left-
one-half of a sinusoid. To derive these results, we first idenhand side of Eq(5) is a polynomial of degreg, while the
tify the appropriate scaling variable. For this purpose, let usight-hand side has degregg21.] We find, however, that

C(1)C'(0)

C0O0=C(D)=(1=x)2 ===+ ,

(6)
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the simplest appropriate transcendental test functifx) 20
= sin(wx/2) solves Eq.5). [The constants in this expres-
sion forC(x) are chosen to satisfy (1)=0 and the sum rule
for C(x).] Combining Eq{(6) with the scaling form of Eq4) |
gives the basic result L5
T [ 7k k<At \2
=1 z2>M2xt) S 7) 100
0, k>t =
From this solution, the moments of the size distribution 0.5
M, (1) ==,-,K"c,(t) are given by f
2 an 8(m—2) &
8
2n+1 w2
Mn:< p J;) dx xnsinX))x“t“‘l. FIG. 3. Scaled civilization size distribution(x,t)/N(t) from

numerical simulations of 500 configurations of heterogeneous war
with 10° initial domains in one dimension. The data are for
Thus, e.g.Mq(t) is the civilization number density1(t) is  t~1.5'%~57.7 (O), t~1.5>~129.7 (+), and t~1.5"~291.9 (*).

the mass density, or coveragd, (t)=M(t), etc. From EQ. Also shown is the corresponding mean-field re$uf®)sin(x/2t)

(8), any reasonable measure of the typical domain size, e.g(ashed ling

[M,(t)/Mo(t)]1¥", increases linearly with time.

For a polydisperse initial distribution of civilization sizes,
B. Simulation results in one dimension our simulations show that the time-dependent size distribu-
tion evolves to a nearly universal scaling form in the asymp-
totic limit. Details of the initial condition are irrelevant as
long as they are not singular in character. Our numerical
results are based on using a Poisson initial distribution for
both the sizes of civilizations and the intervening gaps. How-
Bler, the shape of the size distribution is influenced by de-
tails of the warfare event, such as the location of the removed
. ; . . rtion of the victori main. In our simulations, thi
pears and itslarge) nearest neighbor shrinks. After this ft b 71 ote TS TR | L SR e
event, all pairwise conflict times are recomputed and th(Jrules are possible and perhaps natural, e.g., one could define

overall update process is repeated. While simple to |mpleé rule in which the center of mass of the survivor remains

A straightforward way to stimulate our warfare model in
one dimension is by molecular dynamics. Within a con-
tinuum and deterministic description for domain growth, one
identifies the minimum of the conflict times between all pairs
of nearest-neighbor domains at any given stage. The syste
evolves freely until this minimum conflict time, at which
point a war occurs, where one domdthe smaller disap-

computqtlon time is proportional to the square O.f the numbeﬁence of the size distribution, its quantitative characteriza-
of domains. We th_erefore employed an alternative algorlthr_qion is of limited value. For the casualty rule adopted here
that leads to a savings of almost two orders of magnitude e distribution has a simple triangular shdpé. 3 |
time for a system with T0initial civilizations, c_:ompared to An interesting feature from the simulations is that the
moIecuIa.r dypammEZl]. In our appfoa"hx we f|_rst determine sizes of nearby domains are virtually uncorrelated. That is,
the conflict times for all neighboring civilizations and sort the size correlation functiorCy(r)=(ss )/(s->2—1~0
them in ascending order. Instead of recomputing conflick; " =3\ barec is the size of théth dolmlgirn For=1. the
times after each war, we continue to use the presorted times?mulati,ons givéC (1)~—0.01, which is at. least 31times
for carrying out successive warfare events until a threshold iﬁarger than the corsrelation ;‘un'ction for any other value of

reached. This threshold is determined by first computing th hus two large civilizations are less likely to coexist peace-

new nearest-neighbor conflict time that is created as a res ltmy as nearest neighbors; rather, a large domain is slightly

the nearest-neighbor conflict times that are “lost” by the!?ﬂore likely to be surrounded by small neighbors and vice

current war, with the next conflict time on the presorted list.

If any of these putative times are less than this next presorted
time, an inconsistency would arise at the next step. It is then
necessary to recompute and reorder all conflict times. This For heterogeneous war in one dimension, the case of ini-
exhaustive molecular dynamics step needs to be performeahl equal-size civilizations is unique because both combat-
relatively rarely, leading to considerable saving in simulationants are eliminated in a war and the equal-size distribution is
time. It is possible, at the expense of algorithmic simplicity, preserved. This case turns out to be exactly soluble by ap-
to eliminate the molecular dynamics step entirely by con-pealing to a connection with domain coarsening processes
stantly ordering the list of conflict times as conflict times are(see, e.g., Ref$10—14) and generalizing the approaches in

created and destroyed in each warfare event. Refs.[15-18. In domain coarsening, which we may view as

C. Equal-size domains
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scaled lengthy andx—y—1. The step functiorf(x—3) en-
sures that the resulting domain will be at least 3 times larger
than the minimal domain.

From the well-known solution to Eq10) [15-1§ in the
long-time limit or, equivalentlyl. —o, the asymptotic cov-
erage is

1
=0.280 73, (12)

M-=2e7

time

where y=0.577 215 6 is the Euler-Masceroni constant. Ad-

ditionally, the number densitM(L) of these equal-size civi-
FIG. 4. Schematic illustration of the equivalence between thdizations is, asymptotically,

space-time evolution in the one-dimensional war model with equal 1

size domains and the “dual” problem of coarsening of domains N(L)~M.L "% (12)

through the successive elimination of the smallest domain. In thisl'hese behaviors for the number density and the coverage are
equivalence, the centers of the domains in the war model are ideny, 5 jitatively similar to the corresponding mean-field results.
tified with the positions of domain walls in the coarsening process We have also been able to obtain the complete time-
(dashed lings The two domains that are eliminated in the dual dependent solution to E¢LO) and thereby find that the first

bl indicated by the dark shading. . X .
probiem are indicated by the dark shading correction to the asymptotic expansion of the coverage has

being “dual’ to war for equal size domaingFig. 4), the the form
system consists of contiguous domains of arbitrary sizes and
coarsening occurs by successive elimination of the smallest M(L)= 2—ey+ E+"' ' (17)
domain. When the walls associated with this minimal size
domain disappear, the other walls remain fixed. This succes-e., the first dominant correction decayslas’. Herel is a
sive domain elimination corresponds exactly to the pairwisaneasure of the physical time and the coefficidntiepends
annihilation of the two closest domains in the war model, asn the details of the initial size distributiofiThe asymptotic
illustrated in Fig. 4. Note also that since all civilizations havetime-independent solution of Eq10), originally given in
the same size, their growth rate is immaterial, and modelRef. [15], as well as the full time-dependent solution, is de-
with size-dependent growth may be solved by the same apailed in Appendix A.
proach as that used for size-independent growth by using the While it would be interesting to investigate the domain
domain lengthL as the time parameter. evolution in heterogeneous war for generakdx1, the

Let n(l,L)dl be the number of neighboring civilizations equal-size property is lost as the process develops and an
of sizeL whose centers are separated by a distance that isxact treatment does not seem possible. However, the ex-
within [1,1+dl]. Using the equivalence to coarsening, wetreme case of completely unfair wa=0 still enjoys the
term the interval between the centers of neighboring civili-property that an equal-size distribution remains invariant
zations a “domain.” The total number of such surviving during the evolution if one defines that one of the combatants

domains is (picked randomly is annihilated in a war while the other
remains unchanged. In this case, even if one starts from a
ML) = fxn(l L)dl. (9) polydisperse initial distribution of civilization sizes, the sizes
L of all survivors are equal td(1+O(1/t)) in the long-time

] ] ] limit. Following the same line of reasoning as in the case of
It proves useful to normalize this quantitf(l,L)  equal-size domains witle=1, the equal-size system with
=n(l,L)/ML) and then define th¢almos} scaling form  —0 can be mapped onto the so-called “paste-all” model
F(x,L)=Lf(l,L), with x=I/L. The absence of correlations introduced in[9]. In the paste-all model, the time evolution
[16-18 between domains in the dual coarsening process igarts with randomly distributed contiguous intervals on the
crucial since it implies that the mean-field rate equation forjjne. At each step, the shortest interval is joined, or pasted as

F(x,L) is exact. This rate equation reads] a whole, to either of its neighbors, with equal probability.
P P For this latter system, the domain concentration decaystas 1/
L o F(x,L)=F(x,L)+x & F(x,L)+ 6(x—3)G(L) and the coverage asymptotically approaches

IIl. HOMOGENEOUS WARFARE

X—2
X Jl dyF(y,L)F(x=y—1L), (10 We now consider the effect of a temporally and spatially
homogeneous input of size-less civilizations on the dynam-
whereG(L)=F(x=1,L). Equation(10) can be obtained by ics. As discussed in the Introduction, two fundamentally dif-
a straightforward enumeration of the outcomes that ariséerent long-time behaviors can occur, depending on the value
from the elimination of the smallest domaifsee, e.g., the of the fairness parameter For O<e<3, power-law coarsen-
derivation of Eq.(9) in Ref.[18]]. For example, the last term ing occurs, leading to the emergence of a few super-powers.
on the right-hand side of Eq10) describes the formation Conversely, fors<e<1, a steady state arises, with egalitar-
rate of anx domain by elimination of the smallest domain, of ian competition between comparable-size domains. For the
scaled length 1, which is situated between two domains ofatter situation, it is plausible that a mean-field approach
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might be accurate, since the input leads to a well-mixed
state. The rate equations of the preceding section are not y Xy

suitable, however, since the restriction to nearest-neighbor x
interactions is not accounted for. Our goal here is to con-
struct rate equations for the driven one-dimensional process t (@)
that incorporates the obvious restrictions associated with one
spatial dimension. We are able to solve for the steady state of EX%
these governing equations in the fair war case-ofl.
A. Rate equations for fair wars t (b)
In one dimension, civilizations are represented by non- z
overlapping intervals, with the civilization size equal to the X-Z

interval length. It is now convenient to assume continuous
and deterministic civilization growth in which boundaries
move with constant velocity. Thus the random birth times
and placement of new civilizationgvhose initial size may
be taker_l as Ze"me the only sources of _randomness. the terms in the rate equation, E¢$4). (a) lllustration of the first
Consider the fair war case ef=1. To write the rate equa- term on the right-hand side of EGL4a, (b) the third term on the

tions, we fi_rst introduce the.distribution fur.lction(sx.,t.)_ an_d right-hand side of Eq(14b), and(c) the fourth terms on the right-
m(x,t), which are, respectively, the density of civilizations 54 side of Eq(14D).

of sizex and the density of intercivilization gaps of sixet

time t. The number density of civilizations can be written ) )
equivalently as ishes: hence the factony(t). In the mean-field approxima-

tion, the rate for this process is proportional to the product of
(" (= my(t) and the probabilitiea(y,t)/N(t) andn(x+y,t)/N(t);
()= fo dx n(x,t)= fo dx mx.). (13 the factor 4 accounts for the two possible locations of the
combatants \,x+y) and K+y,y) times the rate ¥ at
Thus the fraction of covered spaceNKt)= [ 7dx xn(x,t),  Which the gap vanishes. The second term on the right-hand
while the fraction of empty space B(t)=/jdx xm(x,t),  side of Eq.(14a accounts for wars between ardomain and

FIG. 5. Correspondence between various interaction events and

with M(t) +E(t)=1. an arbitrary-size right or left neighbor. The last term gives
The rate equations far(x,t) andm(x,t) are the rate at which sizeless civilizations are created in empty
space. Only this last term is exagtpriori, because there is
4 4 = n(y,t) n(x+y,t) no factorization of multiparticle correlation functions into
PR 5) n(x,t)=4Vmy(t) fo Y RNO N single-particle densities.

The terms on the right-hand side of E{.4b are ex-
plained similarly. The first two terms arise from the “frag-
mentation” of an empty interval due to the input of new
civilizations. The gain term accounts for the production of an

J ) o X gap due to the two ways in whichyagap can be broken
(ﬁ_ 2V 5) m(X,t)IZ/.Lf dy m(y,t)— uxm(x,t) into a gap sizey—x andx by the input. The second term
% accounts for the loss of gaps due to their total rate of
2Vmy(H)m(x,t)  2Vmy(t) breakup as a result of the input. These two terms are again
— N(D) + No(D) presumably exact. The last two _terms describe mofx,t) o
evolves by war. The loss term arises because a war, which is
X adjacent to ax gap, leads to the removal of tixegap if the
X f dz mz,t)n((x—2)/2,t) adjoining civilization is the loser. There is a cancellation of a

0 factor of 2 to account for the two possible locations of the

foo warfare event, with a factor gfto account for the possibility
X

(

n(x,t)
N(t)

+ ud(X)E(t), (149

dy n(y,t). (14b  that the loser may not be adjacent to the gap. The total rate
for any war, independent of the size of the combatants, is
In these equationsn,(t)=m(x=04) is the density of gaps simply 2V_mp_(t)._FinaIIy,_ the gain term arises from wars be-
of size zero and is the birth rate of new domains per unit Ween a civilization of sizeX—z)/2 andy>(x—z)/2, which
length. The spatial derivative term in these equations ac’S adjace_nt_ to & gap. S_lnce there ane-z casualties in the
counts for the continuous growth of civilizations, in Eq. W' the initial gap of siz& grows to sizex.
(1449, and the shrinking of gaps, in EL4b). The right-hand
sides account for the evolution as a result of interactions
(Fig. 5. The first term on the right-hand side of Ed43
gives the production rate for domains of lengtas a result To determine the steady-state properties of these equa-
of a war between domains of sigeandx+y. Such an event tions, it is first helpful to consider the rate equation for the
occurs only when the gap between these two domains vartetal number density of civilizations

X—2)/2

B. Steady-state properties for fair wars
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dN(t) distributionn(x, 7) defined as the density of civilizations of
= 2Vmo()+uE). (15  sizex and ager (with x<2V7). From this joint distribution,
the steady-state size distribution of civilizations of any age is

This equation is exact; it can be derived directly on physicarlearly given by
grounds and also follows by integrating EG43a over allx.

)

In the steady state, E¢L5) becomes ¥ my= wE. Substitut- n(x)= d7 n(x,7) (183
ing this into the steady-state version of Efj4a gives x/2V o
= o n(y) n(x+y)  n(x) while the steady-state age distribution of any size civiliza-
gx ) =2mg f dy — N N | T Med(x). tions is given by
(16)

2Vt
We seek an exponential solution to this equation. The n(r)=f0 dx n(x,7). (180

presence of thé function implies than(x=0)=m,. Thus
we hypothesize that(x) =mee™*. It is easily verified that By the nature of the warfare process, the joint age-size

this  satisfies  Eq. (16).  Additionally,  from  distribution consists of two components
2Vmy= wE= uf gx m(x)dx andn(x) =mye™ 2% the param-

etera is determined by ¥my= u(1—my/a?). To complete n(x,7)=M(X,7)+Z(1) (x—2V 7). (29
the solution, we now consider the rate equationrfgk). It
is again natural to attempt the same exponential form for thd he first term accounts for “mature” civilizations that have
gap distributiorm(x) = mye~®*. Substituting this ansatz into experienced at least one war. The size of such civilizations is
the steady version of Eq14b), consistency is achieved if strictly less than the maximum possible sizg,(7)=2Vr at
u=2Va?. Combining this with the previous relation gives @ given ager. The secondsingulaj term accounts for “in-
mo= w/4V. Thus we finally arrive at the steady-state solutionnocent” civilizations that have not experienced any war dur-
ing their lifetimes. Thes function ensures that these inno-
n ) cents are at the maximum size for a given age. These two
nx)=mx)= v exp( ERAAVEIVIE (17 components of the age-size distribution obey different rate
equations. The equation for the density of innocents is
This gives the steady-state number density \u/8V and  readily soluble and this facilitates the full solution.
coverageM = E= 3. Results from our numerical simulations ~ The rate equation for the density of innocent civilizations
of the homogeneous warfare model in one dimension aré
indistinguishable from these results, suggesting that this rate a7 o
equation approach gives the exact-size distribution. at Mo
Consider now the civilization age distribution. This turns dr av N L)+ pES(7). (209
out to be a considerably more interesting but subtle charac-
teristic of the steady state. Although the age distribution isThe two terms account for the net change of innocent civili-
asymptotically an exponentially decaying function of age,zations by warfare and input, respectively. Here the fraction
the characteristic age is much larger than the naive expect&f empty space in the steady stdfe-3, as derived above.
tion of the characteristic size divided M=1. Thus a typical ~ Solving Eq.(209 yields Z(7) = 34 exp(—7/8Vu), i.e., the
civilization survives many wars before it is ultimately extin- age distribution of innocent civilizations is purely exponen-
guished. To determine the age distribution, it is helpful totial.
consider the more fundamental steady-state joint age-size The rate equation for the density of mature civilizations is

(20b)

: ff—x/zvd ny) M(x+y,r) M(x,7) v I(7) N(2VT—X)

o YN TN N | VM N

P J
— 42V 5) M(x,r)=4Vmo[

whereN= \/u/8V is the steady-state civilization density. The  The full steady-state civilization density(x) and the
first term on the right-hand side accounts for the gain ofdensity of innocent civilizationsZ(r) are already known.
mature civilizations of siz& and ager due to a war between Therefore, Eq(20b) is a linear integro-differential equation

a mature X+, 7) civilization and one(either mature or in- with nonconstant coefficients. It is possible to reduce Eq.
nocen} of sizey and arbitrary age. Similarly, the second (20b) to the Klein-Gordon equation. This reduction, as well
term accounts for the loss of ar,¢) civilization due to its ~ as the solution to the resulting boundary value problem, is
undergoing warfare. The last term accounts for the creatiodetailed in Appendix B. From this solution, we find the
of (x,7) civilizations due to an innocent civilization of size  steady-state age distribution

and ager=x/2V experiencing its first war with a civilization

of size 2V7—x and arbitrary age. n(r)xr 32 exd — (3— V8) 72V ] (22)
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in the large age limit. Therefore, the characteristic age is a TABLE I. Estimated values of the exponents that characterize
factor (3— \/§)_1~5.82p times larger than the characteris- the time-dependent properties of domains in the coarsening regime
tic size divided by the rate of growth\2 Thus a typical e<3. The estimated error in these numbers is 5% or less.

domain survives approximately six wars before its ultimate

death. Also, it is possible to show that the average cluster age € B Y ¢

(ry=Jgfd7 dx 7 n(X,7)=2/J2Vu. On the other hand, 0.45 0.46 0.15 0.61
the constant input at rate implies that the domain life ex- 0.4 0.55 0.18 0.59
pectancy equals {2Vu. This inequality between life ex- 0.2 0.77 0.25 0.53
pectancy and average age is what may be expected in the g 1 0.33 0.35

harsh environment defined by our war model. Domains are
especially vulnerable close to their time of birth, but become

progressively more robust as they grow. This behavior if the unscaled-size distribution(x,t) is the fraction of cov-
akin to that of sea turtles, which are most susceptible tered space and must clearly be finite. Thus a physically ac-
predation immediately after being hatched. However, if theceptable steady-state solution does not exiskfed. On the
hatching survives its initial trek into the ocean, it has a reaother hand, we have previously seen that @¢) does admit

sonable chance of living to an old age. a reasonable steady soluti®i¢)=e ¢ whene=1. We there-
fore conclude that the character of the solution to the rate
C. Steady-state properties for nearly fair wars equation changes for some valueedfetween 0 and 1. Un-

: fortunately, we are unable to determine the threshold value
In analogy to the case of exactly fair war, we expect that

our rate equation approach should provide an accurate d%ftigrk])elow which Eq.(24) has no physically acceptable so-
scription for steady-state properties in the regime of nearly It ié also worth emphasizing that a rate equation descrip-
fair war e<1. The rate equations in this case are straightfor-

ward generalizations of Eqsl4) which, in the steady state, E?a?cem;%sr:gt '?hveerre] ?Se sffl?it(i::rﬁleethﬂgc é\é\éh:\?a?lastt)?ea(ijz the
become(taking V=3) ' Pty sp

system for the steady input to act as a relatively effective

dn xl(1=¢)  n(y) n(x+ey) n(x) mixing mechanism. This supports the notion that a mean-
&=2m({f N N N +mMgd(X), field rate equation approach could provide an exact descrip-
tion of some steady-state properties, as discussed in the fol-

(223 lowing subsection. On the other hand, if the system coarsens,

dm m(x) the fraction of empty space vanishes and the input becomes

L —uXxm(x)—2 d +m progressively less successful in giving birth to new domains.
dx —# 0 ML Y my) N Under this circumstance, it is not evident that the time-
. dependent rate equations have the potential to fully capture
j dy n(y). the time evolution of the system.
(x—2z)/(1+€)

X—2
1+e€

my (*
——= | dz mz)n

N* Jo
(22b) D. Simulation results in one dimension

To test our analytical predictions fer=1 and to map out
e dynamical behavior for generak@<1, we have per-
8rmed molecular dynamics simulations for one-dimensional

While we have been unable to solve these equations, it iﬁ1
possible to show that the character of their solution change

as e decreases from 1 to 0. This suggests that steady Stasystems with between 1000 and 16 000 initial domains, with

exists only for a limited range oé>e¢;, while a different : . R ) 7

. : . . o an input rate of sizeless civilizations per unit lengts 5 and
type of solution exists otherwise. For this purpose, it is suf-the rowth velocitvV—2 When a steadv state arises. an
ficient to consider Eq(22a. Using the transformation 9 YV=2. y , any

initial condition would be, in principle, suitable. However, to
mo reduce the extent of the early-time regime, we empirically
n(x)=myP(§&), &= N X, (23 found that a good choice for the initial condition is a Poisson
distribution for both the domain and interdomain gap sizes,

each with a characteristic length of unity. A summary of our

one can rewrite the rate equation as . C :
numerical results is given in Tables | and II.

1dP  [éa-e
24" dy P(n)P(é+en)—P(E), (29 TABLE Il. Characteristic exponents of the age and size distri-
3 butions. The estimated error in these numbers is 10% or less.
which is to be solved subject to the boundary condition ¢ p(X) (7
P(é=0)=1. For the case of completely unfair wa=0, we
find the explicit solution >0.5 exponential exponential
0.5 1.75 1.47
1 0.45 1.79 1.49
PE)= (1+¢)% (25 0.4 1.72 1.51
0.2 1.66 1.63
This solution has a serious flaw in that the first moment of 0 1.67 1.67

the distributionP(¢) is divergent. However, the first moment
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o o FIG. 7. r-dependence of the steady-state sizeand age(O)
FIG. 6. Steady state domain sig®) and age(l) distributions . relation functions, Cs(r)5<5i5i+r>/<5i>2—1 and

for the casee=1. The corresponding predictions from the solution CA1)=(r Ti+r>/<7i>2_1: respectively, for the case of fair war

to the rate equations are also show@ashed lines e=1.

For e=1, our analytical predictions for the steady-stateasymptotic formy2V/u(2+ 2v2)—constf. Thus, for a do-
values of the coverage, concentration, and also the form ahain to be long lived, it must not be exceptionally large.
the size distribution are confirmed. In particular, for the size For ¢,<e<<1, our simulations show that a steady state is
distribution, we findn(x)=e"*/*o, with x, very close to the eventually reached, but that the time needed to attain this

exact value ofy2V/=v2 (Fig. 6). Simulations for the do- Steady state grows asapproaches; from above(Fig. 9.
main age distribution also suggest that the asymptotic tail i&orrespondingly, the steady-state values of fraction of empty
exponential, namely,n(r)~e 7™, but with m,=24+2, SPaceE and the concentration of domaifsbecome smaller

H _ _1
which is to be compared with the analytical result from the{)?trici?gaesﬁtlggi.v;r ?\Ixanfp:/(\?ﬁi{gr:(;rl agiﬁ; 2 ?”rsi?n”j'
- — _ 71% = = E, 6:5 /.L: z, -
e om0 ) 300] 020 e s o S e
pancy app 9 sponding domain size and age distributions fgKe<1

correlations in the ages of ne|ghb_or|ng_C|V|I|zat|ons, a_featureappear to have the same functional forms as in the fair-war
that would render the rate equations inaccurate. This corr

lati . b he d . ) p q imit of e=1. In particular, fore=% these distributions are
ation arises because the domain age remains unaffecte X)~e~ %, with x,=5+0.5, and n(r)~e L9070, with

war, so any age correlations that do develop between neigq_—oz300i50. This increase in, and 7, as e—e, from above
boring domains persist until all of these domains die. On the ¢
other hand, the domain size is affected by wars, so that cor-
relations in domain sizes should be inhibited by the evolution
itself. To check this hypothesis we measured the size and age
correlation  functions Cy(r)=(s;s;,)/(s;)>~1 and
C.(n)=(r7,){7)?>—1, wheres; and 7 refer to the size 40 |
and age of theith domain, respectively. As anticipated,
C4(r) is very close to zero for all. However, the age cor-
relation functionC (r) is systematically negative far<5 30 r
(Fig. 7), which implies that old civilizations are less likely to &
coexist close to each other. The absence of size correlations “
and the presence of age correlations suggests that the mean-
field approach should be quantitatively accurate for the size
distribution, but not for the age distribution. 10
Although the geometrical properties of domains are time '
independent in the steady state, their properties as a function
of domain age are not stationary. This age dependence may ¢.0

provide a useful and deeper characterization of the steady 0 20 40 60 80 100
state. One such example that appears especially intriguing is age

the behavior of the average domain size as a function of the

corresponding domain agéig. 8). This size grows very FIG. 8. Average domain size as a function of domain age in the

slowly and ultimately saturates at a finite value tas=,  steady state for the fair war caseef 1. Shown are the simulation
which is estimated to be approximately 4. From the solutionresults(CJ) and the predictions based on the solution to the rate
to the rate equations, we find that the average size has theguationgsolid line).
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FIG. 10. Domain size distribution in the coarsening regime for
€=0 (0), €=0.2(+), e=0.4 (@), ande=3 (A). To distinguish the
‘ different data sets, the points for each values tfave been shifted
, / vertically by a small fixed amount.
107 + 1
T =[dx x n(x,t)/fdx n(x,t)=[1—E(t)]/N(t). Therefore
e — (x(t))c1IN(t)t"®). Furthermore, the fraction of empty
dg*ﬁ' spaceE(t) and concentratioiN(t) have the same time de-
R L& pendence. To establish this, it is helpful to introduce the
10 +d+® normalized domain-size distributiop(x,t)=n(x,t)/N(t).
@ & Numerically, we find that this distribution approaches a sta-
R tionary formp(x,t) — p(x) in the long-time limit and with a
® universal exponentTable 1)
10” ‘ : ‘ -
10” 10° 10° 10* 10° p(x)«x~°  when x—w. (26b
time

This stationarity is, in fact, related to the equivalence be-
tweenN(t) and E(t). Since the concentration of zero size
FIG. 9. Representative simulation results for time-dependenygmains is constant and equalgdor each interdomain gap
quantities for a system that has reached a steadystéé@) and and since empty gaps account for a fractigft) of the sys-
for a system that perpetually coarsensZ (+). Shown area) the tem size,n(x=0%)=pE(t). On the other hand, the time

total number of domaingp) the average domain sizé) the frac- de . _

: . endence in(x,t)=p(x)N(t) appears only througN(t).

tion of empty space, and) the average domain age. These data are\N(!:to therefore c(onc)ludg(trzalgtgjl)zrzt). It shguld begn(()t)ed
based on 20 configurations of system witt? #dmains initially. however, that this relation is valid only {(x) decrease.s:
sufficiently fast for largex, so thatf'p(x)dx converges as
t—oo. Our simulations indicate that this is indeed the case,
'hamely,p(x)~x"5 with §~1.7 (Fig. 10. It is also possible
Whene<e,, the system never reaches a steady it to relate the distribution exponeatwith dynamic exponents

. O and y by substituting Eq(26) into the relation 1-E(t)
9) and the evolution of a finite-size system ends when a[j X : "B ) .
single superpower occupies the entire space. To quantify thiéf dX X 1(X,0). USINgXnmg,(t) ~t7, the integral is found to

; , . = AEC " Behave as~?"#?~9 which leads to the exponent relation
coarsening, we consider several basic quantities including
the average domain siZe(t)), the average maximum do- B(2—8)=1. (27)
main size(Xy,.(t)), the number density of domaihgt), the
fraction of empty spacg(t), the average domain age(t)), Our simulations agree with Eq27); e.g., fore=0, we find
and the exponents associated with their asymptotic behavigg=1, in agreement with the obvious intuition that large do-
mains suffer no damage and therefore must grow linearly in

has been expected. Asis decreased, conflicts become less
devastating for the survivors, so that they may grow large
and live longer.

(Xmad( 1)) tP9, N(t)oct ™79, time. Correspondingly, we find~1.7 and y=~0.3. As the
fairness parameterincreases from 0 te,, our simulations
E(t)oct™ "9, (7(t))octé(®, (268 indicate that the exponengandy decrease and both appear

to go to zero ak=¢;.
As written, these power laws are found to be nonuniver- The borderline case of=¢; can be expected to lead to
sal, with e-dependent exponentFable |). Further, some of marginal behavior that is intermediate to the steady state and
these quantities are interrelated. For examp{e(t))  coarsening regimes. To first establish that0.5, we exam-
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10° FIG. 12. lllustration of the deterministic version of war dynam-
time ics for the casee=0. Domains are created at regular lattice points
and at regular unit time intervals. When equal size domains meet, a
deterministic rule is implemented to decide the survivor.

10
) data is insufficient to permit an unambiguous fit to a loga-
10 rithmic or other slowly varying time dependence.
10' E. Deterministic self-similar model
8 The existence of power-law domain coarsening dete,
@ 0 with a simple relation between length and time scales sug-
10 gests consideration of a deterministic self-similar version of
our war model to explain the coarsening exponents. We dis-
10" cuss here one such example that appears to be particularly
suitable for describing the coarsening dynamicsden0. In
this deterministic model, the system starts with a regular ar-
10° & x = < s ray of domains with spacindx=1 att=0 (Fig. 12. The
10 10 10 10 10 domain walls move with velocity so that the first set of
time warfare events takes placetatl. The outcome is defined to

be that every second domain is annihilated while the remain-
FIG. 11. Simulatlion results for time-dependent quantities for theing domains continue unscathed. This can be viewed as aris-
marginal case oé=7;. Shown are(@ the total number of domains, jng from an infinitesimal difference in the initial domain
(b) the average domain size) the fraction of empty space, afd) ;05 Also at regular time intervalst=1* new domains are
the average domain age. These data are based on 100 configuratiqg, e 4t the same integer spatial positions of the initial do-
of system with 18 domains initially. mains. Only if the seeding occurs in an empty region does
. . . . . the new domain grow. These rules give rise to a pleasing
|r_1ed the evo_lut_|on of a specially prepared system in which %elf-similar pattern of domains that resembles a Sierpinski
single domain is 500 times larger than all others. The evolu- asket, except for the filling of large empty spaces by the
tion of this defect domain turns out to be both a useful an ontimjous input.

computationally efficient way to asc_ertain whether the sys- For this system, it is straightforward to compute the prop-

size. Thuse, can be de_termmed as the point where the_defe Venient to consider guantities that have been averaged over a
no longer shrinks. This approach gives 6:50<0.51 with  fiie time range, which we choose to be betwe8h'2and
relatively small computational effort,. suggesting that thezn. For examplé, by low-order enumeration, it is easy to
value of ¢, equals;. For e=¢;, we do find that the average verify that betweeri=0 and 2 the total number of domains
domain Oage(d;)) still grows as a power law in time . g isience over a length 2starting from the left edge of
(7(t))ect™°% while other basic observables, such as the fracFig_ 12, is given by the sequence 2,7,22,67 for
tion of empty spacéE(t), the concentratiom(t), and the =5 34" " Soing this sequence, the time integrated
average sizex(t)), exhibit extremely slow variations in dens’it)'/ of these domains is asymptoti’cally givenZed)". If
time (Fig. 11). On a double logarithmic scale, each of thesewe hypothesize that the densi(t) varies as " t6r1en the
guantities is nearly linear and a visual fit to the data Sugges?orresponding time integrated density is ’
an exponent that is approximately 0.1 or less. A more carefu
analysis reveals a weak but systematic curvature in these o t1-v|2"
f o217, (28)
0

data, which suggests that the asymptotic behavior will be N(t)dt~1
slower than a power law. However, the time range of the 0 -
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Equating this time integrated density (§)" as determined fair war, where the losses of each combatant are equal, the
above, we find the exponent=2—In 3/In 2~0.415. In view rate equations for the heterogeneous version of this process
of the crudeness of this deterministic model, we regard thigre
exponent value as being in good agreement with the corre-
sponding numerical result of~0.33.

ck<t>=i§l kaci<t>ci+k(t>—ck<t>i§1 [k—i]“c;(t)
IV. SUMMARY AND DISCUSSION +A[Cr_1 (D) —c(D)]. (29)

We have introduced an idealized warfare model in which-l-he constant growth suggests the scaling variabiéd/t
domains grow at a constant rate and where a contact betwegfy the time-dependent prefactor in the domain size distribu-
two domains results in a war, with one or both sides sufferation may be different from t/[compare with Eq(4)]. Mak-
ing casualties. The long-time properues of the model ar(—;ng the scaling ansate,(t)t 2C(x) and substituting into
fundamentally governed by a fairness paramet#tat quan-  gq (29 self-consistency obtains only wherra-+2. Thus
tifies the outcome of a war. In a war between domains of sizc?he scaling ansatz is

i andj>i, the smaller domain is annihilated, while the larger

domain emerges with a sie- €i. Thuse=1 corresponds to _ k

a fair war where the number of casualties in each domain is c(t)=t=*IC(x), with x= e (30

equal, whilee=0 corresponds to a completely unfair war

where the winner suffers no casualties. We have examinegjs scaling form predicts that the size moments behave as

the long-time kinetics of this model fge) the heterogeneous power laws in timeM (t)=t"“~ 1. Hence the coveragge-

process, in which an initial distribution of domains is speci-cayswith time for positive @, M,(t)~t~¢, indicating that

fied and after which evolution by domain growth and inter-aggressiveness that grows with size disparity leads to extinc-

mittent warfare ensues, an#}) the homogeneous process, tion (perhaps a lesson for real civilizations

where there is a continuous input of infinitesimal domains We may further genera“ze to a Size_dependent power-'aw

that then undergo growth and warfare. growth ratex=\,=k “. In the peaceful limit of growth and
For heterogeneous and fair wer=1), the system natu- no war, the size distribution is peaked around

rally coarsens, with the number of domains decreasingtas 1f (t)=[(1+ g)\t]Y**#), while warfare produces civiliza-

and their average size growing 8sso that a constant as- tions in the size range<gk<K(t). This suggests the scaling

ymptotic coverage arises. The domain-size distribution obeygnsatz

scaling in a manner consistent with these temporal behaviors.

While we have not investigated the extension to unfair war ) k

in detail, the case=1 clearly provides a lower bound to the ()=t~ (T AF2IEDe(x),  with x= mgly
domain-size distribution for unfair wars. Thus it is evident (31)
that the same quantitative linear in time coarsening will oc-

cur for both fair and unfair wars. which leads to size moment, (t)~t("~ @ A= DIE+TL)

In the homogeneous process, there is a wider range dihese results are expected to be valid only gor—1. For
phenomenology that is fundamentally controlled by the fair-3=—1, the typical size grows exponentially, while for
ness parameter. From simulations and a heuristic argumen®<—1 the typical size diverges in a finite time, i.e., the most
there exists a threshold valug=3 that separates a steady- aggressive civilization covers the system.
state regime, foe>e., from a regime of continuous coars- (i) Bipolar world. Consider two mutually antagonistic
ening, fore<e.. In the steady state, the joint age-size distri- speciesA andB with aggregation occurring when two same-
bution of domains provides a comprehensivespecies civilizationgallies) meet and war occurring when
characterization. Interestingly, the domain lifetime is rela-dissimilar species meet. If both species grow at the same
tively large, so that a domain typically survives many warsconstant rate, the mean-field evolution Afcivilizations is
before eventual death. In the coarsening regime, the winnatescribed by the rate equatiotis the heterogeneous case
of a war suffers relatively few casualties, which promotes the
tendency for the oldest clusters in the system to grow with- ) - -
out bound. This coarsening evolves according to nonuniver- ak(t):izl bi(t)awk(t)_ak(t)jzl bj (1)
sal e-dependent power laws in time, in which the density of

clusters and the fraction of empty space decay &% and k1 *

the average domain size grows #&. In the completely +3 2 a(ai(h)—ag(t) X, aj(t)

unfair war case 0e=0, B(€)=1, as is intuitively clear, but as =1 =1

e—€; from below B(e) appears to vanish. At the thrgshold + N [ag_1(t) —a(t)], (32
€, there is a very slow evolution of the system that is yet to

be understood. and similarly forB civilizations. Hereg, (t) andb,(t) are the

The war model also suggests interesting generalizationgoncentrations oA and B civilizations of sizek at timet.
A few possibilities and some of their attendant consequencethe first two terms on the right-hand side account for war-
are outlined below. fare, the next two terms account for aggregation, and growth
(i) Size-dependent warfare rateauppose that the process is described by the last term.
(i,i+k)—k occurs at a rateR(i,i + k) that has a power-law For this process, it is straightforward to determine that the
dependence on the size difference, iR(i,i +k)=k® For total number of civilization$\(t) = 1/. However, the identi-
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fication of the appropriate variable in a scaling ansatz for theime-independent solution to E¢A1), given in[14], and
domain size distribution is unclear. In the absence of growttihen generalize to the full time-dependent solution.
(A=0), a previous study of the resulting aggregation- To find the time-independent solution to E&1) we ap-
annihilation process found that the typical size scales aply the Laplace transform
k~/t [22]. On the other hand, growth without aggregation
and war leads to a size distribution that is peaked around
k~\t, while combined constant growth and aggregation, but
without war[23], leads to a typical size that grows tist. A
similar ambiguity exists in one dimension since in single-Note that the relatio{L)= [ {n(l,L)d| can be rewritten as
species aggregation and growth the typical size grows as
[24]. The homogeneous version of the bipolar world model o0
is also of interest; a preliminary treatment seems to indicate e(0L)= L dx F(x,L)=1. (A3)
that a steady state does not arise even in the case of fair war.

(iii) War in two dimengionslt is_ clear_ly more realistic to _Combining Eqs(A2) and (A1) gives
consider our war model in two dimensions, where geometri-
cal effects naturally play a more prominent role in defining
the outcome of a warfare event. If one posits that war is a
localized event at the point of contact between two domains,
<haped domains. and possibly to the breakup of cauniries, EQUAIONA®) has been solved previously i the scaling
These are features that are perhaps best investigated by si it of L —e, where it reduces to the ordinary difierential

CID(p,L)zf:Cdx e PXF(x,L). (A2)

d 3 -
L FIL &—p)¢>(p,L)=—G(L)e P(1—D?). (Ad)

lations. equation[15]

There is a natural simplification that would eliminate the dd
technical difficulties associated with irregularly shaped do- p—=—G.e P(1-d?), (AB)
mains, however. Namely, start with disk-shaped countries dp

and define that after each war the victor retains a disk shape L

with its center remaining fixed. A further simplification is to Whose solution is

consider the situation where all domains have the same size. . o d

In ana]ogy with the correspondlr)g one-dimensional _system, (D(p)=tan}‘( GooJ = dq), (AB)
analytical progress may be possible. For the equal-size case, p 0

intuition suggests that the coverage will approach a constant

value M., in the long-time limit. Under the further assump- which contains an as yet undetermined numerical faGtor

tion of spatial homogeneity, this would suggest that the numThis constant is found from a consideration that also estab-
ber density of civilizations of radiuR, N(R), will vary as  lishes the coverage. Civilizations cover the same spack,

~M./R?, in units of scaled length, so the coverage is clearly
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APPENDIX A In the long-time limit, we use the relation

©

—dg=—Inp—y— 2>, —— (A8)

We wish to solve the rate equation fx e d (—p)"
p Qg h=1 nhXn!

J J
L&L FL=FxL) Xp?x FOxL)+0(x=3)G(L) to expand ®(p) in the smallp limt as ®(p)=1

—2 exp(25.,7)p*®=+---. On the other hand, from the defini-
x—2 . . . .
Xj dy F(y,L)F(x—y—1,L) (A1) tion of &(p) given in Eq.(A2), we have the expansion
1 ®(p)=1—p(x),+--- . Comparing these two forms gives the
constantG..=3 and the(scaled distance between neighbor-
that describes the dynamics of equal-size growing domaining civilizations(x),,=2 exp () [15]. This yields the cover-
that mutually annihilate when they meet. HeFgx,L) age in the long-time limitM.=1(x).=0.280 73, i.e., Eq.
=Ln(l,L)/ML), wheren(l,L)dl is the number of neigh- (11). Having established the asymptotic coverage, the num-
boring civilizations whose centers are separated by a distandeer densityN of these equal-size civilizations asymptotically
that is between I[I+dI], ML)=/{n(l,L)dl is the total is N(t)~M_t %, in agreement with Eq12).
number of surviving civilizationsG(L)=F(x=1L), and Now consider the the full time-dependent behavior for
x=I/L. For a self-contained discussion, we first present thevhich we have to solve the nonlinear partial differential
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equation(A4). From the form of the asymptotic solution of However, several related and interesting properties have not
the time-independent equation, it is natural to attempt theet been computed. One such quantity is the density of feral
ansatz space, i.e., the fraction of space that has been untouched by
any civilization.
@ (p,L)=tanf¥(p,L)], (A9)

which allows us to eliminate the nonlinear factdr—®?2). APPENDIX B

Substituting Eq(A9) into Eq. (A4) gives We outline here a solution to Eq&0) for the joint age-
size domain distribution. For this purpose, it proves conve-

¥(p,L)=—G(L)e P, (A10) nient to rescale length and time by—xy2V/u and
7—7/2V . In these rescaled units, the previous results for
the size distribution become

L Jd J
oL Pop

Transforming from the variablesp(L), to u=pL andv

=/p/L simplifies Eq.(A10) to e 1
P P a-(A10 n(x)= , My=N=_. (B1)
9 u 2 2
— - _ _|a—u
u au V(uw) G(u € (AL1) Then Eq.(209 simplifies to dZ/dr=—2Z(7)+38(7), whose
solution is
The solution to Eq(A11) is now straightforward, ,
e* T
= d I(1)= . (B2)
\I’(u,v)=J g G(vé)eg"nLX(v), (A12) 2
u

This shows that in the steady-state regime the number den-
up to an arbitrary functiony(v). To determinex(v), note  sity of innocent civilizationd =g d7Z(7)=1 is one-half of
that the definition of ®(p,L) [Eg. (A2)] implies the total number density=N/2. Using Eqs(B1) and(B2),
®(p,L)=p e PG(L) in the largep limit. SinceG(L) var-  we now reduce the rate equatic@0b) to
ies ovelr a limited ranggas it is clear, e.g., from the relation P §

G()=3], we conclude that®(p,L)—0 and hence 7, 9 _ T_ iy
¥(p,L)—0 asp—». Choose nowp~L—o; in the (u,v) (ar+ &x)M(X’T)_Z[ fo dy e M(x+y,7)
variables, this corresponds to—« andv finite. Thus the

integral in Eq.(A12) disappears in this limit and we find _ 1+ eX—37 B
W (o,v)=x(v)=0, implying thatx(v) is trivial. MO T) |+ (B3
Returning now to original variables and replaciagy » . 5
defined viaé=nu, we rewrite Eq.(A12) as Introducingg(x, 7) = €™ *M(x, 7) reduces Eq(B3) to
sl d'r’ _ 8 8 i T

‘If(p,L)=L 7G(Ln)e P77, (A13) T2 ox /9T =2 Xdy oy, 7)+1. (B4)
We have thus solved EqA2), up to an as yet unknown Defining nowf(x,7)=2Jidy o(y,7)+1, Eq.(B4) becomes
function G(L). This function can be found, in principle, pr 52
from the initial conditions. Technically, it is convenient to +—|f=—2f(x,7). (B5)
assume that there is a finite small-size cutbff;, in the IXdt  IX

initial distribution that we set to bk ;=1 without loss of
generality. As an example initial distribution, consider a
shifted Poisson

One boundary conditiorf(x=r,7)=1 follows directly
from the definition off. To obtain a second condition, we
compare total number of zero-size civilizatiams<=0) with

D y=1 the number of innocent zero-size civilizatiofisc=0). Both
F(x,l):{o <1 (Al4)  quantites are equal to 3, which means that
’ ' JoM(x=0,7r)d7=0. Since M(x,7) is non-negative for all
In this Case@(p,l):(1+ p)flefp; therefore’G(L) is de- =0, we conclude thaM(XZO,T):O, which leads to the
termined from bOUndary Conditiomf/&X|X:0:0.

Equation(B5) simplifies further after the change of vari-

ables &, 7)—(a,B)=(7,7—X):

»d
f —nG(n)e*pﬂzarctanIﬁ(lJr p) e P]. (A15)
1 7 2f

=2f(a,B). (B6)

Although it is impossible to find explicit expression for dadp

Slj(tl_e)algjzrggti?:fsekl)eerﬁ;r/‘iﬁg fgr&ino_n'\sﬂ, (oLn)eochaﬂ readily “OMIhis Klein-Gordon equation is to be solved in the region
Thus the model of equal-size warring civilizations is ex- a§=0, with the boundary conditions

actly solvable in one dimension. While asymptotic character- of

istics have been computed by exploiting previously known f|B:0=1, oY) =0. (B7)

results, the complete solution for arbitrary time is different. B a=p
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The symmetry of the governing equation under the ex-Returning to the original variablég,7) and the original joint
change of the variables« 8 suggests seeking a symmetric age-size distribution function(x, ), we get, after straight-

solution that depends onsinglevariableag. Further analy- forward computations,
sis indicates that the variabie= \8a8 is especially conve-

nient. Substituting =f(z) reduces the Klein-Gordon equa- n(x, 7)=Z(x,7) + M(X,7)
tion to the modified Bessel equation ( ) e 2x
— 37 1
nmy legr =2x€" 6()(_7-)1
f"+5f' —1=0, (B8) 2
where the prime denotes differentiation with respect.té z=\8(7—X)7. (B14)

potential solution isf=1,(z). This satisfies the boundary

condition Eq.(B6); however, the boundary condition of Eq. The sum rule Eq(18a provides a useful self-consistency

(B7) is not satisfied. To remove this drawback, we make usecheck. Substituting EqB14) into n(x) = [ yd7 n(x, 1) gives

of the linearity of the governing equation and seek a solution

of the form f q
7.

f(a,B)=10(2)+B"9(2). (B9)

The first of the boundary conditions in E@®6) is manifestly
satisfiedwhen the index is positive. Substituting Eq(B9)
into Eq. (B6) we get

1[\/8(7 X)7].
(B15)

This identity is indeed satisfie[26]. Another quantity that
can be calculated exactly is average dge=/yn(7)7 dr,
wheren(7)= [ jdx n(x,7) [Eq. (18b]. Changing the order
2n+1 of integration and usin§26], we obtain tha{7)=2.
g'—g=0. (B10) Let us finally consider the age distribution of mature civi-
lizations M(7). It is given by M(7)=/gdx M(x,7). In the
Equation(B10) is readily solved to findy(z)=Az "l ,(z), large-age limit we use the asymptotic relatif26] 1,(2)
wherel ,(z) is the modified Bessel function of order To ~ =€%\27z to estimate the integral. Thus we arrive at
determine the inder and the amplitudé\ we substitute Eq. B (V34172
(B9), with g(z)=Az "1 ,(2), into the second boundary con- — ~(3-8)r
dition in Eq. (B7). This yields the relation M(n)="gp e » B= a5 =0.977629.

g!/+

(B16)
V21 (z)+2173M2A1 1 (2)=0. (B11)
Since the age distribution of innocent civilizations decays as
In deriving Eqg.(B11) we used the identitief25] e %", Eq. (B16) indicates that old civilizations are mostly
mature. Another interesting computation is the average do-
I (D) =1, 1(2)=—1.(2) main size as a function of age,
B12 T
ln-1(2)+Ins2(2)=211(2) B2 dx x n(x,7)
, . : X(7)=—7 (B17)
and the equalityz= 38 on the diagonakv=g8. Equation f dx n(x,7)
(B11) shows than=2 andA=—8. Thus we determine the 0 '
desired solution to the Klein-Gordon equation with mixed
boundary conditions Using the asymptotic behaviors outlined above, we find
B cons
f(a,ﬁ)=|0(z)—; 15(2). (B13) <x(r)>~(2+2\f2)(1—Tj. (B19)

[1] J. D. Gunton, M. San Miguel, and P. S. SahniPinase Tran- [5] P. Meakin, Rep. Prog. Phys5, 157 (1992.

sitions and Critical Phenomenadited by C. Domb and J. L.  [6] K. Kawasaki, inPhase Transitions and Critical Phenomena

Lebowitz (Academic, London, 1983 Vol. 8. edited by C. Domb and M. S. Gregicademic, London,
[2] J. S. Langer, inSolids Far From Equilibrium edited by C. 1972, Vol. 2.

Godreche (Cambridge University Press, Cambridge, 1992 [7] C. Sire and S. N. Majumdar, Phys. Rev. L&, 4321(1995;
[3] A comprehensive recent review of the coarsening dynamics is  Phys. Rev. E52, 244 (1995.

given by A. J. Bray, Adv. Physt3, 357(1994. [8] D. Weaire and N. Rivier, Contemp. Phy&5, 59 (1984); J. A.
[4] D. A. Beysens and C. M. Knobler, Phys. Rev. L&, 1433 Glazier and J. Stavans, Phys. Rev4®, 7398(1989.

(1986; J. L. Viovy, D. A. Beysens, and C. M. Knobler, Phys. [9] J. Stavans, Rep. Prog. Phs, 733 (1993.

Rev. A 37, 4965(1988; D. Fritter, C. M. Knobler, and D. A. [10] B. Derrida, C. Godreche, and |. Yekutieli, Phys. Rev44,

Beysensjbid. 43, 2858(1991). 6241 (1991)).



54

[11] T. Nagai and K. Kawasaki, Physica 220, 587 (1983; K.
Kawasaki and T. Nagaibid. 121, 175(1983.

[12] J. Zhuo, G. Murthy, and S. Redner, J. Phy23\5889(1992.

[13] J. Carr and R. Pego, Proc. R. Soc. London Se#38 569
(1992.

[14] S. N. Majumdar and D. A. Huse, Phys. Rev5E 270(1995.

[15] T. Nagai and K. Kawasaki, Physica 234, 483 (1986, K.
Kawasaki, A. Ogawa, and T. Nagai, Physicd 40, 97 (1988.

[16] A. D. Rutenberg and A. J. Bray, Phys. Rev5g 1900(1994).

[17] A. J. Bray, B. Derrida, and C. Godreche, Europhys. L2%.
175(1994.

[18] A. J. Bray and B. Derrida, Phys. Rev.H, 1633(1995.

[19] See, e.g., J. KeegaA, History of Warfare(Knopf, New York,
1993; L. N. Gumilev, Searches for an Imaginary Kingdom:
The Legend of the Kingdom of Prester Jdi@ambridge Uni-
versity Press, New York, 1987

WAR: THE DYNAMICS OF VICIOUS CIVILIZATIONS

1289

[20] The rate equations and their solution for this competitive pro-
cess in the absence cluster growth was given in S. Redner, D.
ben-Avraham, and B. Kahng, J. Phys.28, 1231(1987).

[21] A similar algorithm was developed for the simulation of bal-
listic annihilation processes in P. L. Krapivsky, S. Redner, and
F. Leyvraz, Phys. Rev. b1, 3977(1995.

[22] P. L. Krapivsky, Physica A98 135(1993; E. Ben-Naim and
P. L. Krapivsky, Phys. Rev. B2, 6066(1995.

[23] P. L. Krapivsky and S. Rednéunpublishegl

[24] K. Sekimoto, Int. J. Mod. Phys. B, 1843(1991).

[25] C. M. Bender and S. A. Orszaghdvanced Mathematical
Methods for Scientists and Engineef®lcGraw-Hill, New
York, 1978.

[26] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Maricheinte-
grals and SeriesGordon and Breach, New York, 1986/0l.

2, p. 309.



