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The dynamics of ‘‘vicious,’’ continuously growing civilizations~domains!, which engage in ‘‘war’’ when-
ever two domains meet, is investigated. In the war event, the smaller domain is annihilated, while the larger
domain is reduced in size by a fractione of the casualties of the loser. Heree quantifies the fairness of the war,
with e51 corresponding to a fair war with equal casualties on both sides ande50 corresponding to a com-
pletely unfair war where the winner suffers no casualties. In the heterogeneous version of the model, evolution
begins from a specified initial distribution of domains, while in the homogeneous system, there is a continuous
and spatially uniform input of point domains, in addition to the growth and warfare. For the heterogeneous
case, the rate equations are derived and solved and comparisons with numerical simulations are made. An exact
solution is also derived for the case of equal-size domains in one dimension. The heterogeneous system is
found to coarsen, with the typical cluster size growing linearly in timet and the number density of domains
decreases as 1/t. For the homogeneous system, two different long-time behaviors arise as a function ofe. When
1
2,e<1 ~relatively fair wars!, a steady state arises that is characterized by egalitarian competition between
domains of comparable size. In the limiting case ofe51, rate equations that simultaneously account for the
distribution of domains and that of the intervening gaps are derived and solved. The steady state is character-
ized by domains whose age is typically much larger than their size. When 0<e,

1
2 ~unfair wars!, a few

‘‘superpowers’’ ultimately dominate. Simulations indicate that this coarsening process is characterized by
power-law temporal behavior, with nonuniversale-dependent exponents. Some of these features are captured
by a deterministic self-similar model, for which the characteristic exponents can be computed easily. The
transition pointe5ec5

1
2 is characterized by slower than power-law coarsening.@S1063-651X~96!09508-6#

PACS number~s!: 02.50.2r, 01.75.1m, 89.90.1n

I. INTRODUCTION

A. Background

Coarsening phenomena underlie a wide variety of physi-
cal processes, such as phase ordering and spinodal decompo-
sition @1–3#, growth of breath figures@4,5#, spin dynamics
@6,7#, and foams@8,9#. The latter system is especially inter-
esting, as the basic phenomena are readily observable in
many everyday situations. For example, the microscopic
rules that govern the dynamics of individual bubbles are sim-
ply given in terms of the system geometry and yet lead to
varied and intriguing macroscopic behavior in the long-time
limit. In addition to continuous growth and shrinking of in-
dividual bubbles, there are discontinuous bubble ‘‘popping’’
events that lead to rearrangement on a larger length scale
than individual bubbles. Another attractive feature of such
geometric coarsening processes is that they naturally suggest
idealizations that may be exactly soluble. One such example,
which can be viewed as a limiting case for breath figure
growth, is the coarsening of an array of contiguous domains
in one dimension@10–18#.

The mechanisms that govern domain evolution in these
types of coarsening processes appear to have natural coun-
terparts in social phenomena. For example, the competition
between cultures has led to a rich historical record@19# in
which certain civilizations are dominant for long time peri-
ods only to suddenly disappear. Conversely, other civiliza-
tions persist for very long times even though they are rela-
tively small. Motivated by these basic historical facts and by
a qualitative appreciation for coarsening phenomena, we in-

troduce and investigate a simple yet relatively general model
for war between vicious civilizations. In our model, domains
grow continuously and an encounter between two civiliza-
tions leads to a war where the smaller combatant is annihi-
lated and the larger civilization suffers a specified number of
casualties. This model exhibits a rich variety of dynamical
behaviors, including the features of extinction and persis-
tence of civilizations.

B. The war model

In our model, space is populated by a collection of civi-
lizations, each of which is represented by a spatial domain of
a particular size~or population!. Each domain grows either
continuously or in discrete steps at a constant rate, in which
the boundaries move at velocityV. Whenever two civiliza-
tions of sizei and sizej meet ~with j. i without loss of
generality!, they engage in a war where the smaller domain
is annihilated, while the larger domain sufferse i casualties,
so that its size changes toj2e i ~Fig. 1!. We define the
casualties to occur at the battlefront so that the frontier of the
winner retreats by a distancee i in one dimension. Heree
measures the ‘‘fairness’’ of the warfare event;e51 corre-
sponds to a fair war, in which the winner and loser suffer the
same number of casualties, ande50 corresponds to a com-
pletely unfair war, in which the winner emerges unscathed.
Subsequently, the survivor civilization continues its growth
until the next war. We are interested in determining the long-
time dynamical behavior and the spatial distribution of civi-
lizations under these conditions. Although our model is naive
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and drastic~since the loser is annihilated!, the essential fea-
tures of growth and sudden diminishment by war are incor-
porated. Thus suitable generalizations of our model may be
appropriate for describing quantitative aspects of social his-
tory.

There are two general conditions under which our model
leads to interesting asymptotic dynamics. In theheteroge-
neouswarfare process, the system begins with a distribution
of nascent domains that subsequently undergo growth and
warfare. In thehomogeneousprocess, there is temporally
constant and spatially uniform input of point domains that
subsequently grow and experience wars whenever two do-
mains meet. From a social perspective, this input could be
viewed as arising from the remnants of destroyed civiliza-
tions.

C. Overview of dynamical properties

For the heterogeneous warfare process, we have primarily
concentrated on the casee51, although qualitatively similar
results are anticipated for any value ofe. This system exhib-
its coarsening, in which the domain size distribution ap-
proaches a scaling form inx/t, wherex is the domain size
and t is the time. Consequently, the average domain size
^x(t)& grows linearly in time. These qualitative results hold
both in the mean-field limit and in one dimension. From the
rate equations, the scaling function for the domain size dis-
tribution is one-half of a sinusoid. In contrast, simulations in
one dimension reveal a scaling function for the size distribu-
tion that is triangular in shape.

The homogeneous warfare process exhibits a richer phe-
nomenology that is controlled by the fairness parametere.
For 1

2,e<1, a steady state arises, which is characterized by
egalitarian competition between domains of similar size,
while for e,1

2, coarsening occurs in which a few superpow-
ers ultimately dominate. The existence of a threshold be-
tween these two regimes can be qualitatively justified by
considering the outcome of a war between two neighboring
domains with different birth times~or, equivalently, sizes!.
For e51

2, when two neighboring domains meet and engage in
war, the frontier of the survivor after the war will retreat to

exactly the same position that existed at the birth time of the
smaller civilization~Fig. 2!. Thus, for e"1

2, the frontier of
the victor after the warfare event should either retreat or
advance, respectively, compared to its position at the birth
time of the weaker combatant. This difference suggests the
existence of the aforementioned steady state and coarsening
regimes that are separated byec5

1
2.

An interesting feature of the steady state regimee.ec is
that a nontrivial joint distribution of civilization age and size
arises. The connection between these two attributes is subtle,
since a long-lived civilization, whose age is much greater
than its size~in appropriately scaled units whereV5 1

2!, can
arise by a sequence of fortuitous events. To characterize this
age-size distribution, we have formulated a version of the
rate equations that simultaneously accounts for the distribu-
tion of domains as well as the distribution of gaps between
domains. This approach appears to provide some exact re-
sults for the age-size distribution in one dimension, at least in
the analytically tractable case ofe51. For the distribution of
domain sizes~integrated over all domain ages! n(x) we find
n(x)5e2x/x0 with x051/Am, in excellent agreement with
simulations. Herem is the rate per unit length at which new
civilizations are introduced. More interestingly, the age dis-
tribution ~integrated over all domain sizes! n~t! has an expo-
nential tailn(t)}e2t/t0 as t→`, but with an anomalously
large characteristic aget0, which is much larger than the
typical size. Simulations in one dimension give an even
larger value for the ratiot0/x0, a result that can be attributed
to the existence of significant anticorrelations in the ages of
neighboring domains. For the case of generale above the
threshold,ec,e<1, our simulations indicate that basic quan-
tities, such as the average domain size, domain age, and cov-
erage, all eventually reach steady-state values. Correspond-
ingly, both the domain size and age distributions decay
exponentially in this regime.

In the complementary regime ofe,ec , warfare events
sufficiently favor the victor that superpowers ultimately
emerge. The existence of these large domains strongly modi-
fies the effect of the continuous input of small domains, so
that a steady state is not achieved. Our simulations indicate a
continuous coarsening of domains in which basic time-
dependent quantities, such as the mean domain size and the
number density of domain, exhibit non-universal
e-dependent power-law behavior in time. In particular, for
the extreme limit ofe50, where the victor in a war suffers

FIG. 1. Space-time dynamics of vicious civilizations in one di-
mension. Shown is the heterogeneous version of the war model
where the system evolves from a fixed initial state. When two civi-
lizations of sizei and j. i meet, the result is a diminished civiliza-
tion of size j2e i . By definition, casualties occur at the point of
contact, so that the side of the large civilization on the battle front
retreats bye i , while the other side is not affected.

FIG. 2. Space-time evolution of two domains for the special
case ofe5

1
2. The position of the frontier of the winner immediately

after the war and at the birth time of the smaller combatant is the
same.
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no casualties, the number of domains and the density of
empty space decay ast2g in one dimension, withg'1

3. A
deterministic idealization of the war model is introduced that
provides a useful description of this coarsening phenomenon.
As e approachesec from below, coarsening becomes slower,
as evidenced by thee dependence of the exponents. For
e'ec , marginal behavior occurs in which the average do-
main size grows extremely slowly, while the average age
continues to grow as a power law in time.

In Sec. II we study the heterogeneous war model with fair
wars e51. Results from a mean-field theory and numerical
simulations are presented. We also treat the special case
where domains all have the same initial size, so that both
domains disappear in a warfare event. This limiting situation
turns out to be exactly soluble in one dimension for both the
asymptotic value of the coverage, as well as the domain-size
distribution. We next turn to the homogeneous process in
Sec. III. From the rate equations, the equation of the steady-
state solution for the joint age-size distribution is obtained,
again for the particular case of fair ware51. The extension
of the rate equations fore,1 is also discussed and an argu-
ment for the existence of a transition in the kinetic behavior
at e5ec is presented. We next present simulation results in
one dimension, focusing on general properties as a function
of the fairness parametere. Basic features of thee.ec
steady-state regime and thee,ec coarsening regime are out-
lined. A deterministic self-similar model is then introduced
to help understand the coarsening process fore50. In Sec.
IV we give a brief summary and discuss several extensions
of our model. Various calculational details are given in the
Appendixes.

II. HETEROGENEOUS WAR

A. Mean-field theory

Consider the mean-field limit, in which pairs of domains
are randomly picked to undergo warfare. With this interac-
tion rule, the evolution of the domain-size distribution is de-
scribed by the rate equations@20#

ċk~ t !5(
i51

`

ci~ t !ci1k~ t !2ck~ t !(
i51

`

ci~ t !

1l@ck21~ t !2ck~ t !#. ~1!

Hereck(t) is the concentration of domains of sizek at time
t. The first term accounts for the gain ofk domains due to a
war between domains of sizei and i1k. Similarly, the sec-
ond term accounts for the loss ofk domains because of war
between a domain of sizek and any other domain. The gain
and loss ofk domains due to constant growth at ratel are
described by the last two terms. We have implicitly assumed
that the warfare rate is independent of the combatant sizes.
Equation~1! also assumes a minimal size of unity, so that all
sizes are integers. The extension to the continuum case is
straightforward; this description will be employed for the
homogeneous war model.

For the system described by Eq.~1!, the average civiliza-
tion size grows linearly with time and the size distribution is
one-half of a sinusoid. To derive these results, we first iden-
tify the appropriate scaling variable. For this purpose, let us

temporarily neglect the effect of war. The size distribution
for such peacefully flourishing civilizations is found from the
rate equationċk5l(ck212ck). This is just the Poisson pro-
cess, with the solution, for the ‘‘Adam’’ initial condition of
ck(t50)5dk,1,

ck~ t !5
~lt !k21

~k21!!
e2lt;

1

A2plt
expF2

~k2lt !2

lt G . ~2!

While the exact result is specific for the monodisperse initial
condition, the Gaussian approximation provides universal as-
ymptoties for an arbitrary compact initial size distribution.
Thus, for peaceful civilizations, the size distribution is
peaked aroundk5lt, with dispersionAlt. Clearly, warfare
produces sizes withk,lt, so that the size distribution for
warring civilizations should be nonvanishing for allk<lt.
This suggests that the appropriate scaling variable isx
5k/lt, with 0<x<1. The leading region wherek'lt can
be expected to have a fine structure over an extent of the
order ofAlt, as in the special case of peaceful civilizations.
In the following, we ignore this detailed structure.

To solve the rate equations, it proves useful to consider
first the civilization number densityN(t)5(k>1ck(t),
which, from Eq.~2!, satisfies

Ṅ~ t !52 1
2 (
k51

`

ck~ t !
22 1

2N~ t !2. ~3!

Asymptotically, the first term on the right-hand side is
clearly negligible; therefore, ast→`, N(t);2/t. We thus
expect that the scaling form for the civilization size distribu-
tion is

ck~ t !5
1

lt2
C~x!, with x5

k

lt
. ~4!

The time-dependent prefactor in Eq.~4! guarantees that
N(t)}t21. Furthermore, the relationN(t);2/t is quantita-
tively satisfied if*0

1 dx C(x)52.
Substituting the scaling ansatz into the rate equations, one

finds that in the continuous limit, the scaling function satis-
fies an integro-differential equation of an anticonvolution
form

~12x!C8~x!5E
0

12x

dy C~y!C~x1y!, ~5!

where the prime denotes the differentiating with respect tox.
We are unable to solve this equation by a systematic ap-
proach and therefore resort to trial and error. SinceC8.0,
C(x) is monotonically increasing inx. On physical grounds,
we expect thatC~0!50, while analysis of Eq.~5! in the vi-
cinity of x51 gives

C~x!5C~1!2~12x!2
C~1!C8~0!

4
1••• , ~6!

i.e., C8~1!50 andC9~1!,0. Polynomial test functions fail to
satisfy Eq.~5!. @For a polynomial, say, of degreeg, the left-
hand side of Eq.~5! is a polynomial of degreeg, while the
right-hand side has degree 2g11.# We find, however, that
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the simplest appropriate transcendental test functionC(x)
5p sin~px/2! solves Eq.~5!. @The constants in this expres-
sion forC(x) are chosen to satisfyC8~1!50 and the sum rule
for C(x).# Combining Eq.~6! with the scaling form of Eq.~4!
gives the basic result

ck~ t !.H p

lt2
sinS pk

2lt D , k<lt

0, k.lt.
~7!

From this solution, the moments of the size distribution
Mn(t)[(k>1k

nck(t) are given by

M05
2

t
, M15

4l

p
, M25

8~p22!

p2 l2t,...,

~8!

Mn5S 2n11

pn E
0

p/2

dx xnsinxD lntn21.

Thus, e.g.,M0(t) is the civilization number density,M1(t) is
the mass density, or coverage,M1(t)[M (t), etc. From Eq.
~8!, any reasonable measure of the typical domain size, e.g.,
[Mn(t)/M0(t)]

1/n, increases linearly with time.

B. Simulation results in one dimension

A straightforward way to stimulate our warfare model in
one dimension is by molecular dynamics. Within a con-
tinuum and deterministic description for domain growth, one
identifies the minimum of the conflict times between all pairs
of nearest-neighbor domains at any given stage. The system
evolves freely until this minimum conflict time, at which
point a war occurs, where one domain~the smaller! disap-
pears and its~larger! nearest neighbor shrinks. After this
event, all pairwise conflict times are recomputed and the
overall update process is repeated. While simple to imple-
ment, this molecular dynamics is relatively inefficient, as the
computation time is proportional to the square of the number
of domains. We therefore employed an alternative algorithm
that leads to a savings of almost two orders of magnitude in
time for a system with 105 initial civilizations, compared to
molecular dynamics@21#. In our approach, we first determine
the conflict times for all neighboring civilizations and sort
them in ascending order. Instead of recomputing conflict
times after each war, we continue to use the presorted times
for carrying out successive warfare events until a threshold is
reached. This threshold is determined by first computing the
new nearest-neighbor conflict time that is created as a result
of the current war and comparing this new time, as well as
the nearest-neighbor conflict times that are ‘‘lost’’ by the
current war, with the next conflict time on the presorted list.
If any of these putative times are less than this next presorted
time, an inconsistency would arise at the next step. It is then
necessary to recompute and reorder all conflict times. This
exhaustive molecular dynamics step needs to be performed
relatively rarely, leading to considerable saving in simulation
time. It is possible, at the expense of algorithmic simplicity,
to eliminate the molecular dynamics step entirely by con-
stantly ordering the list of conflict times as conflict times are
created and destroyed in each warfare event.

For a polydisperse initial distribution of civilization sizes,
our simulations show that the time-dependent size distribu-
tion evolves to a nearly universal scaling form in the asymp-
totic limit. Details of the initial condition are irrelevant as
long as they are not singular in character. Our numerical
results are based on using a Poisson initial distribution for
both the sizes of civilizations and the intervening gaps. How-
ever, the shape of the size distribution is influenced by de-
tails of the warfare event, such as the location of the removed
portion of the victorious domain. In our simulations, this
removed portion is adjacent to the battlefront~Fig. 1!. Other
rules are possible and perhaps natural, e.g., one could define
a rule in which the center of mass of the survivor remains
fixed after the warfare event. Because of this detail depen-
dence of the size distribution, its quantitative characteriza-
tion is of limited value. For the casualty rule adopted here,
the distribution has a simple triangular shape~Fig. 3!.

An interesting feature from the simulations is that the
sizes of nearby domains are virtually uncorrelated. That is,
the size correlation functionCs(r )[^sisi1r&/^si&

221'0
for r.1, wheresi is the size of thei th domain. Forr51, the
simulations giveCs~1!'20.01, which is at least 3 times
larger than the correlation function for any other value ofr .
Thus two large civilizations are less likely to coexist peace-
fully as nearest neighbors; rather, a large domain is slightly
more likely to be surrounded by small neighbors and vice
versa.

C. Equal-size domains

For heterogeneous war in one dimension, the case of ini-
tial equal-size civilizations is unique because both combat-
ants are eliminated in a war and the equal-size distribution is
preserved. This case turns out to be exactly soluble by ap-
pealing to a connection with domain coarsening processes
~see, e.g., Refs.@10–14#! and generalizing the approaches in
Refs.@15–18#. In domain coarsening, which we may view as

FIG. 3. Scaled civilization size distributionn(x,t)/N(t) from
numerical simulations of 500 configurations of heterogeneous war
with 105 initial domains in one dimension. The data are for
t'1.510'57.7 ~s!, t'1.512'129.7 ~1!, and t'1.514'291.9 ~* !.
Also shown is the corresponding mean-field result~p/2!sin(px/2t)
~dashed line!.
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being ‘‘dual’’ to war for equal size domains~Fig. 4!, the
system consists of contiguous domains of arbitrary sizes and
coarsening occurs by successive elimination of the smallest
domain. When the walls associated with this minimal size
domain disappear, the other walls remain fixed. This succes-
sive domain elimination corresponds exactly to the pairwise
annihilation of the two closest domains in the war model, as
illustrated in Fig. 4. Note also that since all civilizations have
the same size, their growth rate is immaterial, and models
with size-dependent growth may be solved by the same ap-
proach as that used for size-independent growth by using the
domain lengthL as the time parameter.

Let n( l ,L)dl be the number of neighboring civilizations
of size L whose centers are separated by a distance that is
within [ l ,l1dl]. Using the equivalence to coarsening, we
term the interval between the centers of neighboring civili-
zations a ‘‘domain.’’ The total number of such surviving
domains is

N~L !5E
L

`

n~ l ,L !dl. ~9!

It proves useful to normalize this quantityf ( l ,L)
5n( l ,L)/N(L) and then define the~almost! scaling form
F(x,L)5L f ( l ,L), with x5 l /L. The absence of correlations
@16–18# between domains in the dual coarsening process is
crucial since it implies that the mean-field rate equation for
F(x,L) is exact. This rate equation reads@15#

L
]

]L
F~x,L !5F~x,L !1x

]

]x
F~x,L !1u~x23!G~L !

3E
1

x22

dyF~y,L !F~x2y21,L !, ~10!

whereG(L)[F(x51,L). Equation~10! can be obtained by
a straightforward enumeration of the outcomes that arise
from the elimination of the smallest domains@see, e.g., the
derivation of Eq.~9! in Ref. @18##. For example, the last term
on the right-hand side of Eq.~10! describes the formation
rate of anx domain by elimination of the smallest domain, of
scaled length 1, which is situated between two domains of

scaled lengthsy andx2y21. The step functionu~x23! en-
sures that the resulting domain will be at least 3 times larger
than the minimal domain.

From the well-known solution to Eq.~10! @15–18# in the
long-time limit or, equivalently,L→`, the asymptotic cov-
erage is

M`5
1

2eg >0.280 73, ~11!

whereg>0.577 215 6 is the Euler-Masceroni constant. Ad-
ditionally, the number densityN(L) of these equal-size civi-
lizations is, asymptotically,

N~L !;M`L
21. ~12!

These behaviors for the number density and the coverage are
qualitatively similar to the corresponding mean-field results.

We have also been able to obtain the complete time-
dependent solution to Eq.~10! and thereby find that the first
correction to the asymptotic expansion of the coverage has
the form

M ~L !5
1

2eg 1
A

L
1••• , ~118!

i.e., the first dominant correction decays asL21. HereL is a
measure of the physical time and the coefficientA depends
on the details of the initial size distribution.@The asymptotic
time-independent solution of Eq.~10!, originally given in
Ref. @15#, as well as the full time-dependent solution, is de-
tailed in Appendix A#.

While it would be interesting to investigate the domain
evolution in heterogeneous war for general 0<e,1, the
equal-size property is lost as the process develops and an
exact treatment does not seem possible. However, the ex-
treme case of completely unfair ware50 still enjoys the
property that an equal-size distribution remains invariant
during the evolution if one defines that one of the combatants
~picked randomly! is annihilated in a war while the other
remains unchanged. In this case, even if one starts from a
polydisperse initial distribution of civilization sizes, the sizes
of all survivors are equal tot„11O(1/t)… in the long-time
limit. Following the same line of reasoning as in the case of
equal-size domains withe51, the equal-size system with
e50 can be mapped onto the so-called ‘‘paste-all’’ model
introduced in@9#. In the paste-all model, the time evolution
starts with randomly distributed contiguous intervals on the
line. At each step, the shortest interval is joined, or pasted as
a whole, to either of its neighbors, with equal probability.
For this latter system, the domain concentration decays as 1/t
and the coverage asymptotically approaches1

2.

III. HOMOGENEOUS WARFARE

We now consider the effect of a temporally and spatially
homogeneous input of size-less civilizations on the dynam-
ics. As discussed in the Introduction, two fundamentally dif-
ferent long-time behaviors can occur, depending on the value
of the fairness parametere. For 0<e,1

2, power-law coarsen-
ing occurs, leading to the emergence of a few super-powers.
Conversely, for12,e<1, a steady state arises, with egalitar-
ian competition between comparable-size domains. For the
latter situation, it is plausible that a mean-field approach

FIG. 4. Schematic illustration of the equivalence between the
space-time evolution in the one-dimensional war model with equal
size domains and the ‘‘dual’’ problem of coarsening of domains
through the successive elimination of the smallest domain. In this
equivalence, the centers of the domains in the war model are iden-
tified with the positions of domain walls in the coarsening process
~dashed lines!. The two domains that are eliminated in the dual
problem are indicated by the dark shading.
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might be accurate, since the input leads to a well-mixed
state. The rate equations of the preceding section are not
suitable, however, since the restriction to nearest-neighbor
interactions is not accounted for. Our goal here is to con-
struct rate equations for the driven one-dimensional process
that incorporates the obvious restrictions associated with one
spatial dimension. We are able to solve for the steady state of
these governing equations in the fair war case ofe51.

A. Rate equations for fair wars

In one dimension, civilizations are represented by non-
overlapping intervals, with the civilization size equal to the
interval length. It is now convenient to assume continuous
and deterministic civilization growth in which boundaries
move with constant velocityV. Thus the random birth times
and placement of new civilizations~whose initial size may
be taken as zero! are the only sources of randomness.

Consider the fair war case ofe51. To write the rate equa-
tions, we first introduce the distribution functionsn(x,t) and
m(x,t), which are, respectively, the density of civilizations
of sizex and the density of intercivilization gaps of sizex at
time t. The number density of civilizations can be written
equivalently as

N~ t !5E
0

`

dx n~x,t !5E
0

`

dx m~x,t !. ~13!

Thus the fraction of covered space isM (t)[* 0
`dx xn(x,t),

while the fraction of empty space isE(t)[* 0
`dx xm(x,t),

with M (t)1E(t)51.
The rate equations forn(x,t) andm(x,t) are

S ]

]t
12V

]

]xD n~x,t !54Vm0~ t !F E
0

`

dy
n~y,t !

N~ t !

n~x1y,t !

N~ t !

2
n~x,t !

N~ t ! G1md~x!E~ t !, ~14a!

S ]

]t
22V

]

]xDm~x,t !52mE
x

`

dy m~y,t !2mxm~x,t !

2
2Vm0~ t !m~x,t !

N~ t !
1
2Vm0~ t !

N3~ t !

3E
0

x

dz m~z,t !n„~x2z!/2,t…

3E
~x2z!/2

`

dy n~y,t !. ~14b!

In these equations,m0(t)[m(x50,t) is the density of gaps
of size zero andm is the birth rate of new domains per unit
length. The spatial derivative term in these equations ac-
counts for the continuous growth of civilizations, in Eq.
~14a!, and the shrinking of gaps, in Eq.~14b!. The right-hand
sides account for the evolution as a result of interactions
~Fig. 5!. The first term on the right-hand side of Eq.~14a!
gives the production rate for domains of lengthx as a result
of a war between domains of sizey andx1y. Such an event
occurs only when the gap between these two domains van-

ishes: hence the factorm0(t). In the mean-field approxima-
tion, the rate for this process is proportional to the product of
m0(t) and the probabilitiesn(y,t)/N(t) andn(x1y,t)/N(t);
the factor 4V accounts for the two possible locations of the
combatants (y,x1y) and (x1y,y) times the rate 2V at
which the gap vanishes. The second term on the right-hand
side of Eq.~14a! accounts for wars between anx domain and
an arbitrary-size right or left neighbor. The last term gives
the rate at which sizeless civilizations are created in empty
space. Only this last term is exacta priori, because there is
no factorization of multiparticle correlation functions into
single-particle densities.

The terms on the right-hand side of Eq.~14b! are ex-
plained similarly. The first two terms arise from the ‘‘frag-
mentation’’ of an empty interval due to the input of new
civilizations. The gain term accounts for the production of an
x gap due to the two ways in which ay gap can be broken
into a gap sizey2x and x by the input. The second term
accounts for the loss ofx gaps due to their total rate of
breakup as a result of the input. These two terms are again
presumably exact. The last two terms describe howm(x,t)
evolves by war. The loss term arises because a war, which is
adjacent to anx gap, leads to the removal of thex gap if the
adjoining civilization is the loser. There is a cancellation of a
factor of 2 to account for the two possible locations of the
warfare event, with a factor of12 to account for the possibility
that the loser may not be adjacent to the gap. The total rate
for any war, independent of the size of the combatants, is
simply 2Vm0(t). Finally, the gain term arises from wars be-
tween a civilization of size (x2z)/2 andy.(x2z)/2, which
is adjacent to az gap. Since there arex2z casualties in the
war, the initial gap of sizez grows to sizex.

B. Steady-state properties for fair wars

To determine the steady-state properties of these equa-
tions, it is first helpful to consider the rate equation for the
total number density of civilizations

FIG. 5. Correspondence between various interaction events and
the terms in the rate equation, Eqs.~14!. ~a! Illustration of the first
term on the right-hand side of Eq.~14a!, ~b! the third term on the
right-hand side of Eq.~14b!, and~c! the fourth terms on the right-
hand side of Eq.~14b!.
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dN~ t !

dt
522Vm0~ t !1mE~ t !. ~15!

This equation is exact; it can be derived directly on physical
grounds and also follows by integrating Eq.~14a! over allx.
In the steady state, Eq.~15! becomes 2Vm05mE. Substitut-
ing this into the steady-state version of Eq.~14a! gives

d

dx
n~x!52m0F E

0

`

dy
n~y!

N

n~x1y!

N
22

n~x!

N G1m0d~x!.

~16!

We seek an exponential solution to this equation. The
presence of thed function implies thatn(x50)5m0 . Thus
we hypothesize thatn(x)5m0e

2ax. It is easily verified that
this satisfies Eq. ~16!. Additionally, from
2Vm05mE5m* 0

`x m(x)dx andn(x)5m0e
2ax, the param-

etera is determined by 2Vm05m(12m0/a
2). To complete

the solution, we now consider the rate equation form(x). It
is again natural to attempt the same exponential form for the
gap distributionm(x)5m0e

2ax. Substituting this ansatz into
the steady version of Eq.~14b!, consistency is achieved if
m52Va2. Combining this with the previous relation gives
m05m/4V. Thus we finally arrive at the steady-state solution

n~x!5m~x!5
m

4V
expS 2xA m

2VD . ~17!

This gives the steady-state number densityN5Am/8V and
coverageM5E5 1

2 . Results from our numerical simulations
of the homogeneous warfare model in one dimension are
indistinguishable from these results, suggesting that this rate
equation approach gives the exact-size distribution.

Consider now the civilization age distribution. This turns
out to be a considerably more interesting but subtle charac-
teristic of the steady state. Although the age distribution is
asymptotically an exponentially decaying function of age,
the characteristic age is much larger than the naive expecta-
tion of the characteristic size divided byV51

2. Thus a typical
civilization survives many wars before it is ultimately extin-
guished. To determine the age distribution, it is helpful to
consider the more fundamental steady-state joint age-size

distributionn(x,t) defined as the density of civilizations of
sizex and aget ~with x<2Vt!. From this joint distribution,
the steady-state size distribution of civilizations of any age is
clearly given by

n~x!5E
x/2V

`

dt n~x,t!, ~18a!

while the steady-state age distribution of any size civiliza-
tions is given by

n~t!5E
0

2Vt

dx n~x,t!. ~18b!

By the nature of the warfare process, the joint age-size
distribution consists of two components

n~x,t!5M~x,t!1I~t!d~x22Vt!. ~19!

The first term accounts for ‘‘mature’’ civilizations that have
experienced at least one war. The size of such civilizations is
strictly less than the maximum possible sizexmax~t!52Vt at
a given aget. The second~singular! term accounts for ‘‘in-
nocent’’ civilizations that have not experienced any war dur-
ing their lifetimes. Thed function ensures that these inno-
cents are at the maximum size for a given age. These two
components of the age-size distribution obey different rate
equations. The equation for the density of innocents is
readily soluble and this facilitates the full solution.

The rate equation for the density of innocent civilizations
is

dI
dt

524V
m0

N
I~t!1mEd~t!. ~20a!

The two terms account for the net change of innocent civili-
zations by warfare and input, respectively. Here the fraction
of empty space in the steady stateE5 1

2, as derived above.
Solving Eq.~20a! yields I(t)5 1

2m exp(2tA8Vm), i.e., the
age distribution of innocent civilizations is purely exponen-
tial.

The rate equation for the density of mature civilizations is

S ]

]t
12V

]

]xDM~x,t!54Vm0F E
0

t2x/2V

dy
n~y!

N

M~x1y,t!

N
2
M~x,t!

N G14Vm0

I~t!

N

n~2Vt2x!

N
, ~20b!

whereN5Am/8V is the steady-state civilization density. The
first term on the right-hand side accounts for the gain of
mature civilizations of sizex and aget due to a war between
a mature (x1y,t) civilization and one~either mature or in-
nocent! of size y and arbitrary age. Similarly, the second
term accounts for the loss of an (x,t) civilization due to its
undergoing warfare. The last term accounts for the creation
of (x,t) civilizations due to an innocent civilization of sizex
and aget5x/2V experiencing its first war with a civilization
of size 2Vt2x and arbitrary age.

The full steady-state civilization densityn(x) and the
density of innocent civilizationsI~t! are already known.
Therefore, Eq.~20b! is a linear integro-differential equation
with nonconstant coefficients. It is possible to reduce Eq.
~20b! to the Klein-Gordon equation. This reduction, as well
as the solution to the resulting boundary value problem, is
detailed in Appendix B. From this solution, we find the
steady-state age distribution

n~t!}t23/2 exp@2~32A8!tA2Vm# ~21!
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in the large age limit. Therefore, the characteristic age is a
factor (32A8)21'5.82p times larger than the characteris-
tic size divided by the rate of growth 2V. Thus a typical
domain survives approximately six wars before its ultimate
death. Also, it is possible to show that the average cluster age
^t&5*0

`*0
tdt dx t n(x,t)52/A2Vm. On the other hand,

the constant input at ratem implies that the domain life ex-
pectancy equals 1/A2Vm. This inequality between life ex-
pectancy and average age is what may be expected in the
harsh environment defined by our war model. Domains are
especially vulnerable close to their time of birth, but become
progressively more robust as they grow. This behavior is
akin to that of sea turtles, which are most susceptible to
predation immediately after being hatched. However, if the
hatching survives its initial trek into the ocean, it has a rea-
sonable chance of living to an old age.

C. Steady-state properties for nearly fair wars

In analogy to the case of exactly fair war, we expect that
our rate equation approach should provide an accurate de-
scription for steady-state properties in the regime of nearly
fair war e&1. The rate equations in this case are straightfor-
ward generalizations of Eqs.~14! which, in the steady state,
become~takingV51

2!

dn

dx
52m0F E

0

x/~12e!

dy
n~y!

N

n~x1ey!

N
2
n~x!

N G1m0d~x!,

~22a!

dm

dx
5mxm~x!22mE

x

`

dy m~y!1m0

m~x!

N

2
m0

N3 E
0

x

dz m~z!nS x2z

11e D E
~x2z!/~11e!

`

dy n~y!.

~22b!

While we have been unable to solve these equations, it is
possible to show that the character of their solution changes
as e decreases from 1 to 0. This suggests that steady state
exists only for a limited range ofe.ec , while a different
type of solution exists otherwise. For this purpose, it is suf-
ficient to consider Eq.~22a!. Using the transformation

n~x!5m0P~j!, j5
m0

N
x, ~23!

one can rewrite the rate equation as

1

2

dP
dj

5E
0

j/~12e!

dh P~h!P~j1eh!2P~j!, ~24!

which is to be solved subject to the boundary condition
P~j50!51. For the case of completely unfair ware50, we
find the explicit solution

P~j!5
1

~11j!2
. ~25!

This solution has a serious flaw in that the first moment of
the distributionP~j! is divergent. However, the first moment

of the unscaled-size distributionn(x,t) is the fraction of cov-
ered space and must clearly be finite. Thus a physically ac-
ceptable steady-state solution does not exist fore50. On the
other hand, we have previously seen that Eq.~24! does admit
a reasonable steady solutionP~j!5e2j whene51. We there-
fore conclude that the character of the solution to the rate
equation changes for some value ofe between 0 and 1. Un-
fortunately, we are unable to determine the threshold value
of e below which Eq.~24! has no physically acceptable so-
lution.

It is also worth emphasizing that a rate equation descrip-
tion may not even be applicable whene,ec . When a steady
state exists, there is sufficient empty space available in the
system for the steady input to act as a relatively effective
mixing mechanism. This supports the notion that a mean-
field rate equation approach could provide an exact descrip-
tion of some steady-state properties, as discussed in the fol-
lowing subsection. On the other hand, if the system coarsens,
the fraction of empty space vanishes and the input becomes
progressively less successful in giving birth to new domains.
Under this circumstance, it is not evident that the time-
dependent rate equations have the potential to fully capture
the time evolution of the system.

D. Simulation results in one dimension

To test our analytical predictions fore51 and to map out
the dynamical behavior for general 0<e<1, we have per-
formed molecular dynamics simulations for one-dimensional
systems with between 1000 and 16 000 initial domains, with
an input rate of sizeless civilizations per unit lengthm51

2 and
the growth velocityV5 1

2. When a steady state arises, any
initial condition would be, in principle, suitable. However, to
reduce the extent of the early-time regime, we empirically
found that a good choice for the initial condition is a Poisson
distribution for both the domain and interdomain gap sizes,
each with a characteristic length of unity. A summary of our
numerical results is given in Tables I and II.

TABLE I. Estimated values of the exponents that characterize
the time-dependent properties of domains in the coarsening regime
e,

1
2. The estimated error in these numbers is 5% or less.

e b g z

0.45 0.46 0.15 0.61
0.4 0.55 0.18 0.59
0.2 0.77 0.25 0.53
0 1 0.33 0.35

TABLE II. Characteristic exponents of the age and size distri-
butions. The estimated error in these numbers is 10% or less.

e p(x) p~t!

.0.5 exponential exponential
0.5 1.75 1.47
0.45 1.79 1.49
0.4 1.72 1.51
0.2 1.66 1.63
0 1.67 1.67
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For e51, our analytical predictions for the steady-state
values of the coverage, concentration, and also the form of
the size distribution are confirmed. In particular, for the size
distribution, we findn(x)>e2x/x0, with x0 very close to the
exact value ofA2V/m5& ~Fig. 6!. Simulations for the do-
main age distribution also suggest that the asymptotic tail is
exponential, namely,n(t);e2t/t0, but with t052462,
which is to be compared with the analytical result from the
rate equationt05@(32A8)A2Vm#21'8.23. The source of
this discrepancy appears to be the existence of significant
correlations in the ages of neighboring civilizations, a feature
that would render the rate equations inaccurate. This corre-
lation arises because the domain age remains unaffected by
war, so any age correlations that do develop between neigh-
boring domains persist until all of these domains die. On the
other hand, the domain size is affected by wars, so that cor-
relations in domain sizes should be inhibited by the evolution
itself. To check this hypothesis we measured the size and age
correlation functions Cs(r )[^sisi1r&/^si&

221 and
Ct(r )[^t it i1r&/^t i&

221, wheresi and ti refer to the size
and age of thei th domain, respectively. As anticipated,
Cs(r ) is very close to zero for allr . However, the age cor-
relation functionCt(r ) is systematically negative forr<5
~Fig. 7!, which implies that old civilizations are less likely to
coexist close to each other. The absence of size correlations
and the presence of age correlations suggests that the mean-
field approach should be quantitatively accurate for the size
distribution, but not for the age distribution.

Although the geometrical properties of domains are time
independent in the steady state, their properties as a function
of domain age are not stationary. This age dependence may
provide a useful and deeper characterization of the steady
state. One such example that appears especially intriguing is
the behavior of the average domain size as a function of the
corresponding domain age~Fig. 8!. This size grows very
slowly and ultimately saturates at a finite value ast→`,
which is estimated to be approximately 4. From the solution
to the rate equations, we find that the average size has the

asymptotic formA2V/m(212&)2const/t. Thus, for a do-
main to be long lived, it must not be exceptionally large.

For ec,e,1, our simulations show that a steady state is
eventually reached, but that the time needed to attain this
steady state grows ase approachesec from above~Fig. 9!.
Correspondingly, the steady-state values of fraction of empty
spaceE and the concentration of domainsN become smaller
for decreasinge. For example, fore51 andm51

2, our ana-
lytical results giveE5N5 1

2 , while for e52
3 andm51

2, simu-
lations giveE'0.35 andN'0.25. Additionally, the corre-
sponding domain size and age distributions forec,e,1
appear to have the same functional forms as in the fair-war
limit of e51. In particular, fore52

3 these distributions are
n(x);e2x/x0, with x05560.5, and n(t);e2@g#t/t0, with
t05300650. This increase inx0 andt0 ase→ec from above

FIG. 6. Steady state domain size~s! and age~h! distributions
for the casee51. The corresponding predictions from the solution
to the rate equations are also shown~dashed lines!.

FIG. 7. r -dependence of the steady-state size~* ! and age~s!
correlation functions, Cs(r )[^sisi1r&/^si&

221 and
Ct(t)[^t it i1r&/^t i&

221, respectively, for the case of fair war
e51.

FIG. 8. Average domain size as a function of domain age in the
steady state for the fair war case ofe51. Shown are the simulation
results ~h! and the predictions based on the solution to the rate
equations~solid line!.
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has been expected. Ase is decreased, conflicts become less
devastating for the survivors, so that they may grow larger
and live longer.

Whene,ec , the system never reaches a steady state~Fig.
9! and the evolution of a finite-size system ends when a
single superpower occupies the entire space. To quantify this
coarsening, we consider several basic quantities including
the average domain sizêx(t)&, the average maximum do-
main sizê xmax(t)&, the number density of domainsN(t), the
fraction of empty spaceE(t), the average domain age^t(t)&,
and the exponents associated with their asymptotic behavior

^xmax~ t !&}t
b~e!, N~ t !}t2g~e!,

E~ t !}t2g~e!, ^t~ t !&}tz~e!. ~26a!

As written, these power laws are found to be nonuniver-
sal, with e-dependent exponents~Table I!. Further, some of
these quantities are interrelated. For example,^x(t)&

5*dx x n(x,t)/*dx n(x,t)5[12E(t)]/N(t). Therefore
^x(t)&}1/N(t)}tg(e). Furthermore, the fraction of empty
spaceE(t) and concentrationN(t) have the same time de-
pendence. To establish this, it is helpful to introduce the
normalized domain-size distributionp(x,t)[n(x,t)/N(t).
Numerically, we find that this distribution approaches a sta-
tionary formp(x,t)→p(x) in the long-time limit and with a
universal exponent~Table II!

p~x!}x2d when x→`. ~26b!

This stationarity is, in fact, related to the equivalence be-
tweenN(t) andE(t). Since the concentration of zero size
domains is constant and equal tom for each interdomain gap
and since empty gaps account for a fractionE(t) of the sys-
tem size,n(x50,t)5mE(t). On the other hand, the time
dependence inn(x,t)5p(x)N(t) appears only throughN(t).
We therefore conclude thatN(t);E(t). It should be noted,
however, that this relation is valid only ifp(x) decreases
sufficiently fast for largex, so that*tp(x)dx converges as
t→`. Our simulations indicate that this is indeed the case,
namely,p(x);x2d with d'1.7 ~Fig. 10!. It is also possible
to relate the distribution exponentd with dynamic exponents
b and g by substituting Eq.~26! into the relation 12E(t)
5*xmaxdx x n(x,t). Usingxmax(t);tb, the integral is found to
behave ast2g1b~22d!, which leads to the exponent relation

b~22d!5g. ~27!

Our simulations agree with Eq.~27!; e.g., fore50, we find
b51, in agreement with the obvious intuition that large do-
mains suffer no damage and therefore must grow linearly in
time. Correspondingly, we findd'1.7 andg'0.3. As the
fairness parametere increases from 0 toec , our simulations
indicate that the exponentsb andg decrease and both appear
to go to zero ate5ec .

The borderline case ofe5ec can be expected to lead to
marginal behavior that is intermediate to the steady state and
coarsening regimes. To first establish thatec50.5, we exam-

FIG. 9. Representative simulation results for time-dependent
quantities for a system that has reached a steady statee5

2
3 ~s! and

for a system that perpetually coarsense5
2
5 ~1!. Shown are~a! the

total number of domains,~b! the average domain size,~c! the frac-
tion of empty space, and~d! the average domain age. These data are
based on 20 configurations of system with 103 domains initially.

FIG. 10. Domain size distribution in the coarsening regime for
e50 ~s!, e50.2 ~1!, e50.4 ~d!, ande5

1
2 ~n!. To distinguish the

different data sets, the points for each value ofe have been shifted
vertically by a small fixed amount.
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ined the evolution of a specially prepared system in which a
single domain is 500 times larger than all others. The evolu-
tion of this defect domain turns out to be both a useful and
computationally efficient way to ascertain whether the sys-
tem is in the steady state or coarsening regimes. In the steady
state, the defect domain will eventually shrink to the average
size. Thusec can be determined as the point where the defect
no longer shrinks. This approach gives 0.50<ec,0.51 with
relatively small computational effort, suggesting that the
value ofec equals

1
2. For e5ec , we do find that the average

domain age^t(t)& still grows as a power law in time
^t(t)&}t0.61, while other basic observables, such as the frac-
tion of empty spaceE(t), the concentrationN(t), and the
average sizê x(t)&, exhibit extremely slow variations in
time ~Fig. 11!. On a double logarithmic scale, each of these
quantities is nearly linear and a visual fit to the data suggests
an exponent that is approximately 0.1 or less. A more careful
analysis reveals a weak but systematic curvature in these
data, which suggests that the asymptotic behavior will be
slower than a power law. However, the time range of the

data is insufficient to permit an unambiguous fit to a loga-
rithmic or other slowly varying time dependence.

E. Deterministic self-similar model

The existence of power-law domain coarsening fore,ec
with a simple relation between length and time scales sug-
gests consideration of a deterministic self-similar version of
our war model to explain the coarsening exponents. We dis-
cuss here one such example that appears to be particularly
suitable for describing the coarsening dynamics fore50. In
this deterministic model, the system starts with a regular ar-
ray of domains with spacingDx51 at t50 ~Fig. 12!. The
domain walls move with velocity12 so that the first set of
warfare events takes place att51. The outcome is defined to
be that every second domain is annihilated while the remain-
ing domains continue unscathed. This can be viewed as aris-
ing from an infinitesimal difference in the initial domain
sizes. Also at regular time intervalsDt511 new domains are
seeded at the same integer spatial positions of the initial do-
mains. Only if the seeding occurs in an empty region does
the new domain grow. These rules give rise to a pleasing
self-similar pattern of domains that resembles a Sierpinski
gasket, except for the filling of large empty spaces by the
continuous input.

For this system, it is straightforward to compute the prop-
erties of domain. These exhibit strong fluctuations, however,
because of the determinism of the model. It is therefore con-
venient to consider quantities that have been averaged over a
finite-time range, which we choose to be between 2n21 and
2n. For example, by low-order enumeration, it is easy to
verify that betweent50 and 2n the total number of domains
in existence over a length 2n, starting from the left edge of
Fig. 12, is given by the sequence 2,7,22,67, . . . for
n52,3,4, . . . . Solving this sequence, the time integrated
density of these domains is asymptotically given by5

6~
2
3!
n. If

we hypothesize that the densityN(t) varies ast2g, then the
corresponding time integrated density is

E
0

2n

N~ t !dt;
t12g

12gU
0

2n

}2n~12g!. ~28!

FIG. 11. Simulation results for time-dependent quantities for the
marginal case ofe5

1
2. Shown are~a! the total number of domains,

~b! the average domain size,~c! the fraction of empty space, and~d!
the average domain age. These data are based on 100 configurations
of system with 103 domains initially.

FIG. 12. Illustration of the deterministic version of war dynam-
ics for the casee50. Domains are created at regular lattice points
and at regular unit time intervals. When equal size domains meet, a
deterministic rule is implemented to decide the survivor.

1284 54I. ISPOLATOV, P. L. KRAPIVSKY, AND S. REDNER



Equating this time integrated density to~23!
n as determined

above, we find the exponentg522ln 3/ln 2'0.415. In view
of the crudeness of this deterministic model, we regard this
exponent value as being in good agreement with the corre-
sponding numerical result ofg'0.33.

IV. SUMMARY AND DISCUSSION

We have introduced an idealized warfare model in which
domains grow at a constant rate and where a contact between
two domains results in a war, with one or both sides suffer-
ing casualties. The long-time properties of the model are
fundamentally governed by a fairness parametere that quan-
tifies the outcome of a war. In a war between domains of size
i and j. i , the smaller domain is annihilated, while the larger
domain emerges with a sizej2e i . Thuse51 corresponds to
a fair war where the number of casualties in each domain is
equal, whilee50 corresponds to a completely unfair war
where the winner suffers no casualties. We have examined
the long-time kinetics of this model for~a! the heterogeneous
process, in which an initial distribution of domains is speci-
fied and after which evolution by domain growth and inter-
mittent warfare ensues, and~b! the homogeneous process,
where there is a continuous input of infinitesimal domains
that then undergo growth and warfare.

For heterogeneous and fair war~e51!, the system natu-
rally coarsens, with the number of domains decreasing as 1/t
and their average size growing ast, so that a constant as-
ymptotic coverage arises. The domain-size distribution obeys
scaling in a manner consistent with these temporal behaviors.
While we have not investigated the extension to unfair war
in detail, the casee51 clearly provides a lower bound to the
domain-size distribution for unfair wars. Thus it is evident
that the same quantitative linear in time coarsening will oc-
cur for both fair and unfair wars.

In the homogeneous process, there is a wider range of
phenomenology that is fundamentally controlled by the fair-
ness parameter. From simulations and a heuristic argument,
there exists a threshold valueec5

1
2 that separates a steady-

state regime, fore.ec , from a regime of continuous coars-
ening, fore,ec . In the steady state, the joint age-size distri-
bution of domains provides a comprehensive
characterization. Interestingly, the domain lifetime is rela-
tively large, so that a domain typically survives many wars
before eventual death. In the coarsening regime, the winner
of a war suffers relatively few casualties, which promotes the
tendency for the oldest clusters in the system to grow with-
out bound. This coarsening evolves according to nonuniver-
sal e-dependent power laws in time, in which the density of
clusters and the fraction of empty space decay ast2g~e! and
the average domain size grows astb~e!. In the completely
unfair war case ore50,b~e!51, as is intuitively clear, but as
e→ec from belowb~e! appears to vanish. At the threshold
ec , there is a very slow evolution of the system that is yet to
be understood.

The war model also suggests interesting generalizations.
A few possibilities and some of their attendant consequences
are outlined below.

~i! Size-dependent warfare rates.Suppose that the process
( i ,i1k)→k occurs at a rate.R( i ,i1k) that has a power-law
dependence on the size difference, i.e.,R( i ,i1k)5ka. For

fair war, where the losses of each combatant are equal, the
rate equations for the heterogeneous version of this process
are

ċk~ t !5(
i51

`

kaci~ t !ci1k~ t !2ck~ t !(
i51

`

uk2 i uaci~ t !

1l@ck21~ t !2ck~ t !#. ~29!

The constant growth suggests the scaling variablex5k/lt,
but the time-dependent prefactor in the domain size distribu-
tion may be different from 1/t @compare with Eq.~4!#. Mak-
ing the scaling ansatzck(t)}t

2aC(x) and substituting into
Eq. ~29!, self-consistency obtains only whena5a12. Thus
the scaling ansatz is

ck~ t !5t2~a12!C~x!, with x5
k

lt
. ~30!

This scaling form predicts that the size moments behave as
power laws in timeMn(t)}t

n2a21. Hence the coveragede-
cayswith time for positivea, M1(t);t2a, indicating that
aggressiveness that grows with size disparity leads to extinc-
tion ~perhaps a lesson for real civilizations!.

We may further generalize to a size-dependent power-law
growth ratel5lk5k2b. In the peaceful limit of growth and
no war, the size distribution is peaked around
K(t)5[(11b)lt] 1/(11b), while warfare produces civiliza-
tions in the size range 0,k<K(t). This suggests the scaling
ansatz

ck~ t !5t2~a1b12!/~b11!C~x!, with x5
k

K~ t !
<1,

~31!

which leads to size momentsMn(t);t (n2a2b21)/(b11).
These results are expected to be valid only forb.21. For
b521, the typical size grows exponentially, while for
b,21 the typical size diverges in a finite time, i.e., the most
aggressive civilization covers the system.

(ii) Bipolar world. Consider two mutually antagonistic
speciesA andB with aggregation occurring when two same-
species civilizations~allies! meet and war occurring when
dissimilar species meet. If both species grow at the same
constant rate, the mean-field evolution ofA civilizations is
described by the rate equations~in the heterogeneous case!

ȧk~ t !5(
i51

`

bi~ t !ai1k~ t !2ak~ t !(
j51

`

bj~ t !

1 1
2 (
i51

k21

ai~ t !ak2 i~ t !2ak~ t !(
j51

`

aj~ t !

1l@ak21~ t !2ak~ t !#, ~32!

and similarly forB civilizations. Hereak(t) andbk(t) are the
concentrations ofA andB civilizations of sizek at time t.
The first two terms on the right-hand side account for war-
fare, the next two terms account for aggregation, and growth
is described by the last term.

For this process, it is straightforward to determine that the
total number of civilizationsN(t).1/t. However, the identi-
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fication of the appropriate variable in a scaling ansatz for the
domain size distribution is unclear. In the absence of growth
~l50!, a previous study of the resulting aggregation-
annihilation process found that the typical size scales as
k;At @22#. On the other hand, growth without aggregation
and war leads to a size distribution that is peaked around
k;lt, while combined constant growth and aggregation, but
without war@23#, leads to a typical size that grows ast lnt. A
similar ambiguity exists in one dimension since in single-
species aggregation and growth the typical size grows aset

@24#. The homogeneous version of the bipolar world model
is also of interest; a preliminary treatment seems to indicate
that a steady state does not arise even in the case of fair war.

(iii) War in two dimensions. It is clearly more realistic to
consider our war model in two dimensions, where geometri-
cal effects naturally play a more prominent role in defining
the outcome of a warfare event. If one posits that war is a
localized event at the point of contact between two domains,
then the continued action of war will lead to irregularly
shaped domains and possibly to the breakup of countries.
These are features that are perhaps best investigated by simu-
lations.

There is a natural simplification that would eliminate the
technical difficulties associated with irregularly shaped do-
mains, however. Namely, start with disk-shaped countries
and define that after each war the victor retains a disk shape
with its center remaining fixed. A further simplification is to
consider the situation where all domains have the same size.
In analogy with the corresponding one-dimensional system,
analytical progress may be possible. For the equal-size case,
intuition suggests that the coverage will approach a constant
valueM` in the long-time limit. Under the further assump-
tion of spatial homogeneity, this would suggest that the num-
ber density of civilizations of radiusR, N(R), will vary as
;M`/R

2.
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APPENDIX A

We wish to solve the rate equation

L
]

]L
F~x,L !5F~x,L !1x

]

]x
F~x,L !1u~x23!G~L !

3E
1

x22

dy F~y,L !F~x2y21,L ! ~A1!

that describes the dynamics of equal-size growing domains
that mutually annihilate when they meet. HereF(x,L)
5Ln( l ,L)/N(L), wheren( l ,L)dl is the number of neigh-
boring civilizations whose centers are separated by a distance
that is between [l ,l1dl], N(L)5* L

`n( l ,L)dl is the total
number of surviving civilizations,G(L)5F(x51,L), and
x5 l /L. For a self-contained discussion, we first present the

time-independent solution to Eq.~A1!, given in @14#, and
then generalize to the full time-dependent solution.

To find the time-independent solution to Eq.~A1! we ap-
ply the Laplace transform

F~p,L !5E
1

`

dx e2pxF~x,L !. ~A2!

Note that the relationN(L)5* L
`n( l ,L)dl can be rewritten as

F~0,L !5E
1

`

dx F~x,L !51. ~A3!

Combining Eqs.~A2! and ~A1! gives

S L ]

]L
1p

]

]pDF~p,L !52G~L !e2p~12F2!. ~A4!

Equation~A4! has been solved previously in the scaling
limit of L→`, where it reduces to the ordinary differential
equation@15#

p
dF

dp
52G`e

2p~12F2!, ~A5!

whose solution is

F~p!5tanhSG`E
p

` e2q

q
dqD , ~A6!

which contains an as yet undetermined numerical factorG` .
This constant is found from a consideration that also estab-
lishes the coverage. Civilizations cover the same spacex51,
in units of scaled length, so the coverage is clearly

M ~L !5

E
1

`

dxF~x,L !

E
1

`

dxxF~x,L !

[
1

^x&L
. ~A7!

Here we use Eq. ~A3! and define ^x&L by
^x&L5* 1

`dx x F(x,L).
In the long-time limit, we use the relation

E
p

` e2q

q
dq52 lnp2g2 (

n51

`
~2p!n

n3n!
~A8!

to expand F(p) in the small-p limit as F(p)51
22 exp(2G`g)p2G`1•••. On the other hand, from the defini-
tion of F(p) given in Eq. ~A2!, we have the expansion
F(p)512p^x&`1••• . Comparing these two forms gives the
constantG`51

2 and the~scaled! distance between neighbor-
ing civilizations ^x&`52 exp ~g! @15#. This yields the cover-
age in the long-time limitM`51/̂ x&`>0.280 73, i.e., Eq.
~11!. Having established the asymptotic coverage, the num-
ber densityN of these equal-size civilizations asymptotically
is N(t);M`t

21, in agreement with Eq.~12!.
Now consider the the full time-dependent behavior for

which we have to solve the nonlinear partial differential
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equation~A4!. From the form of the asymptotic solution of
the time-independent equation, it is natural to attempt the
ansatz

F~p,L !5tanh@C~p,L !#, ~A9!

which allows us to eliminate the nonlinear factor~12F2!.
Substituting Eq.~A9! into Eq. ~A4! gives

S L ]

]L
1p

]

]pDC~p,L !52G~L !e2p. ~A10!

Transforming from the variables (p,L), to u5ApL and v
5Ap/L simplifies Eq.~A10! to

u
]

]u
C~u,v !52GS uv De2uv. ~A11!

The solution to Eq.~A11! is now straightforward,

C~u,v !5E
u

` dj

j
GS j

v De2jv1x~v !, ~A12!

up to an arbitrary functionx(v). To determinex(v), note
that the definition of F(p,L) @Eq. ~A2!# implies
F(p,L).p21e2pG(L) in the large-p limit. SinceG(L) var-
ies over a limited range@as it is clear, e.g., from the relation
G~`!5 1

2#, we conclude that F(p,L)→0 and hence
C(p,L)→0 asp→`. Choose nowp;L→`; in the (u,v)
variables, this corresponds tou→` and v finite. Thus the
integral in Eq.~A12! disappears in this limit and we find
C(`,v)5x(v)50, implying thatx(v) is trivial.

Returning now to original variables and replacingj by h
defined viaj5hu, we rewrite Eq.~A12! as

C~p,L !5E
1

` dh

h
G~Lh!e2ph. ~A13!

We have thus solved Eq.~A2!, up to an as yet unknown
function G(L). This function can be found, in principle,
from the initial conditions. Technically, it is convenient to
assume that there is a finite small-size cutoffLmin in the
initial distribution that we set to beLmin51 without loss of
generality. As an example initial distribution, consider a
shifted Poisson

F~x,1!5 H e2~x21!, x>1
0, x,1. ~A14!

In this caseF(p,1)5(11p)21e2p; therefore,G(L) is de-
termined from

E
1

` dh

h
G~h!e2ph5arctanh@~11p!21e2p#. ~A15!

Although it is impossible to find explicit expression for
G(L) in terms of elementary functions, one can readily com-
pute asymptotics behaviors, e.g.,M`2M (L)}L21.

Thus the model of equal-size warring civilizations is ex-
actly solvable in one dimension. While asymptotic character-
istics have been computed by exploiting previously known
results, the complete solution for arbitrary time is different.

However, several related and interesting properties have not
yet been computed. One such quantity is the density of feral
space, i.e., the fraction of space that has been untouched by
any civilization.

APPENDIX B

We outline here a solution to Eqs.~20! for the joint age-
size domain distribution. For this purpose, it proves conve-
nient to rescale length and time byx→xA2V/m and
t→t/A2Vm. In these rescaled units, the previous results for
the size distribution become

n~x!5
e2x

2
, m05N5

1

2
. ~B1!

Then Eq.~20a! simplifies todI/dt522I~t!11
2d~t!, whose

solution is

I~t!5
e22t

2
. ~B2!

This shows that in the steady-state regime the number den-
sity of innocent civilizationsI5*0

` dt I~t!51
4 is one-half of

the total number densityI5N/2. Using Eqs.~B1! and ~B2!,
we now reduce the rate equation~20b! to

S ]

]t
1

]

]xDM~x,t!52F E
0

t2x

dy e2yM~x1y,t!

2M~x,t!G1ex23t. ~B3!

Introducingg(x,t)5e3t2xM(x,t) reduces Eq.~B3! to

S ]

]t
1

]

]xDg~x,t!52E
x

t

dy g~y,t!11. ~B4!

Defining now f (x,t)[2* x
tdy g(y,t)11, Eq.~B4! becomes

S ]2

]x]t
1

]2

]x2D f522 f ~x,t!. ~B5!

One boundary conditionf (x5t,t)51 follows directly
from the definition off . To obtain a second condition, we
compare total number of zero-size civilizationsn(x50) with
the number of innocent zero-size civilizationsI~x50!. Both
quantities are equal to 1

2, which means that
*0

`M(x50,t)dt50. SinceM(x,t) is non-negative for all
t>0, we conclude thatM~x50,t!50, which leads to the
boundary condition] f /]xux5050.

Equation~B5! simplifies further after the change of vari-
ables (x,t)→(a,b)5(t,t2x):

]2f

]a]b
52 f ~a,b!. ~B6!

This Klein-Gordon equation is to be solved in the region
a>b>0, with the boundary conditions

f ub5051,
] f

]bU
a5b

50. ~B7!
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The symmetry of the governing equation under the ex-
change of the variablesa↔b suggests seeking a symmetric
solution that depends on asinglevariableab. Further analy-
sis indicates that the variablez5A8ab is especially conve-
nient. Substitutingf5 f (z) reduces the Klein-Gordon equa-
tion to the modified Bessel equation

f 91 1
2 f 82 f50, ~B8!

where the prime denotes differentiation with respect toz. A
potential solution isf5I 0(z). This satisfies the boundary
condition Eq.~B6!; however, the boundary condition of Eq.
~B7! is not satisfied. To remove this drawback, we make use
of the linearity of the governing equation and seek a solution
of the form

f ~a,b!5I 0~z!1bng~z!. ~B9!

The first of the boundary conditions in Eq.~B6! is manifestly
satisfied~when the indexn is positive!. Substituting Eq.~B9!
into Eq. ~B6! we get

g91
2n11

z
g82g50. ~B10!

Equation~B10! is readily solved to findg(z)5Az2nI n(z),
where I n(z) is the modified Bessel function of ordern. To
determine the indexn and the amplitudeA we substitute Eq.
~B9!, with g(z)5Az2nI n(z), into the second boundary con-
dition in Eq. ~B7!. This yields the relation

&I 1~z!12~123n!/2AIn21~z!50. ~B11!

In deriving Eq.~B11! we used the identities@25#

I n21~z!2I n11~z!5
2n

z
I n~z!,

~B12!
I n21~z!1I n11~z!52I n8~z!

and the equalityz5bA8 on the diagonala5b. Equation
~B11! shows thatn52 andA528. Thus we determine the
desired solution to the Klein-Gordon equation with mixed
boundary conditions

f ~a,b!5I 0~z!2
b

a
I 2~z!. ~B13!

Returning to the original variables~x,t! and the original joint
age-size distribution functionn(x,t), we get, after straight-
forward computations,

n~x,t!5I~x,t!1M~x,t!

52xex23t
I 1~z!

z
1
e22x

2
d~x2t!,

z[A8~t2x!t. ~B14!

The sum rule Eq.~18a! provides a useful self-consistency
check. Substituting Eq.~B14! into n(x)5* x

`dt n(x,t) gives

e2x2e22x

2
5E

x

`

dt
xex23t

A2~t2x!t
I 1@A8~t2x!t#.

~B15!

This identity is indeed satisfied@26#. Another quantity that
can be calculated exactly is average age^t&[*0

`n(t)t dt,
wheren(t)5* 0

tdx n(x,t) @Eq. ~18b!#. Changing the order
of integration and using@26#, we obtain that̂t&52.

Let us finally consider the age distribution of mature civi-
lizationsM~t!. It is given byM~t!5*0

tdxM~x,t!. In the
large-age limit we use the asymptotic relation@25# I 1(z)
.ez/A2pz to estimate the integral. Thus we arrive at

M~t!.
B

t3/2
e2~32A8!t, B5

~&11!2

p1/2
•27/4

>0.977 629.

~B16!

Since the age distribution of innocent civilizations decays as
e22t, Eq. ~B16! indicates that old civilizations are mostly
mature. Another interesting computation is the average do-
main size as a function of age,

^x~t!&5

E
0

t

dx x n~x,t!

E
0

t

dx n~x,t!

. ~B17!

Using the asymptotic behaviors outlined above, we find

^x~t!&;~212& !S 12
const

t D . ~B18!
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