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We investigate a simple dynamical model of a microtubule that evolves by attachment of guanosine tri-
phosphate �GTP� tubulin to its end, irreversible conversion of GTP to guanosine diphosphate �GDP� tubulin by
hydrolysis, and detachment of GDP at the end of a microtubule. As a function of rates of these processes, the
microtubule can grow steadily or its length can fluctuate wildly. In the regime where detachment can be
neglected, we find exact expressions for the tubule and GTP cap length distributions, as well as power-law
length distributions of GTP and GDP islands. In the opposite limit of instantaneous detachment, we find the
time between catastrophes, where the microtubule shrinks to zero length, and determine the size distribution of
avalanches �sequence of consecutive GDP detachment events�. We obtain the phase diagram for general rates
and verify our predictions by numerical simulations.
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I. INTRODUCTION AND MODEL

Microtubules are polar linear polymers that perform ma-
jor organizational tasks in living cells �1,2�. Through a
unique feature of microtubule assembly, termed dynamic in-
stability �3�, they function as molecular machines �4� that
move cellular structures during processes such as cell repro-
duction �2,5�. A surprising feature of microtubules is that
they remain out of equilibrium under fixed external condi-
tions and can undergo alternating periods of rapid growth
and even more rapid shrinking �Fig. 1�.

These sudden polymerization changes are driven by the
interplay between several fundamental processes. Microtu-
bules grow by the attachment of guanosine triphosphate tu-
bulin complexes �GTP� at one end �3,6�. Structural studies
indicate that the end of a microtubule must consist of a “cap”
of consecutive GTP monomers �7� for growth to continue
�6�. Once polymerized, the GTP of this complex can irrevers-
ibly hydrolyze into guanosine diphosphate �GDP�. If all the
monomers in the cap convert to GDP, the microtubule is
destabilized and rapid shrinkage ensues by the detachment of
GDP tubulin units. The competition between GTP attach-
ment and hydrolysis from GTP to GDP is believed to lead to
the dynamic instability in which the GTP cap hydrolyzes to
GDP and then the microtubule rapidly depolymerizes. The
stochastic attachment of GTP can, however, lead to a rescue
to the growing phase before the microtubule length shrinks
to zero �1,8�.

The origin of this dynamic instability has been actively
investigated. One avenue of theoretical work on this dynami-
cal instability is based on models of mechanical stability
�9–11�. For example, a detailed stochastic model of a micro-
tubule that includes all of the 13 constituent protofilaments
has been investigated in �10�. By using model parameters
that were inferred from equilibrium statistical physics, Van-
Buren et al. �10� found some characteristics of microtubule
evolution that agreed with experimental data �12�. The dis-
advantage of this detailed modeling, however, is its complex-
ity, so that it is generally not possible to develop an intuitive
understanding of microtubule evolution.

Another approach for modeling the dynamics of microtu-
bules is based on effective two-state models that describe the
dynamics in terms of a switching between a growing and a
shrinking state �8,13–17�. The essence of many of these
models is that a microtubule exists either in a growing phase
�where a GTP cap exists at the end of the microtubule� or a
shrinking phase �without a GTP cap�, and that there are sto-
chastic transitions between these two states. By tuning pa-
rameters appropriately, it is possible to reproduce the phase
changes between the growing and shrinking phases of micro-
tubules that have been observed experimentally �3�. While
the two-state model has the advantage of having only few
parameters, a constant rate of switching between a growing
and shrinking microtubule is built into the model. Thus,
switching models cannot account for the stochastic ava-
lanches and catastrophes that occur in real microtubules.

On the other hand, a minimalist model of microtubule
dynamics has been proposed and investigated by Flyvbjerg et
al. �18�. In their model, they dispense with attempts to cap-
ture all of the myriad of experimental parameters within a
detailed model, but instead constructed an effective continu-
ous theory to describe microtubule dynamics. Their goal was
to construct an effective theory that contained as few details
as possible. As stated in Ref. �18�, they envision that their
effective theory should be derivable from a fundamental, mi-
croscopic theory and its parameters.

This minimalist modeling is the approach that we adopt in
the present work. We investigate a recently introduced
�19,20� kinetic model that accounts for many aspects of mi-
crotubule evolution. Our main result is that only a few es-
sential parameters with simple physical interpretations are
needed to describe the rich features of microtubule growth,
catastrophes, and rescues �21�.

We treat a microtubule as a linear polymer that consists of
GTP or GDP monomers that we denote as + and −, respec-
tively. To emphasize this connection between chemistry and
the model, we will write the former as GTP+ and the latter as
GDP−. The state of a microtubule evolves due to the follow-
ing three processes:
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�1� Attachment. A microtubule grows by attachment of a
guanosine triphosphate �GTP+� monomer,

�¯+� ⇒ �¯ + +� rate � ,

�¯− � ⇒ �¯− +� rate p� .

�2� Conversion. Once part of the microtubule, each GTP+

can independently convert by hydrolysis to a guanosine
diphosphate �GDP−�,

�¯ + ¯� ⇒ �¯− ¯� rate 1.

�3� Detachment. A microtubule shrinks due to detachment
of a GDP− monomer only from the end of the microtubule,

�¯− � ⇒ � ¯ � rate � .

Here the symbols � and � denote the terminal and the
active end of the microtubule. It is worth mentioning that
these steps are similar to those in a recently introduced
model of DNA sequence evolution �22�, and that some of the
results about the structure of DNA sequences seem to be
related to our results about island size distributions in micro-
tubules.

Generically, the �� ,� , p� phase space separates into a re-
gion where the microtubule grows �on average� with a cer-
tain rate V�� ,� , p�, and a compact phase where the average
microtubule length is finite. These two phases are separated
by a phase boundary �=���� , p� along which the growth
rate V�� ,� , p� vanishes. While the behavior of a microtubule
for general parameter values is of interest, we will primarily
focus on extreme values of the governing parameters where
we can obtain a detailed statistical characterization of the
microtubule structure. For certain properties, such as the
shape of the phase diagram, we will also present results of
numerical simulations of the model.

In Sec. II, we study the evolution of a microtubule under
unrestricted growth conditions—namely no detachment and
an attachment rate that does not depend on the identity of the
last monomer. Our results here are relevant to understanding
the distribution of cap length and the diffusion coefficient of
the tip of the microtubule in the growth phase. The predic-
tions of the model in this limit could also be useful in under-
standing the binding pattern of proteins to microtubules �23�.
Since proteins are important regulatory factors in microtu-
bule polymerization, these results could prove useful in in-
terpreting the effects of proteins on microtubule growth.

By a master equation approach, we will determine both
the number of GTP+ monomers on a microtubule, as well as
the length distributions of GTP+ and GDP− islands �Fig. 2�.
Many of these analytical predictions are verified by numeri-
cal simulations. In Sec. III, we extend our approach to the
case of constrained growth, p�1, in which microtubule
growth depends on whether the last monomer is a GTP+ or a
GDP−. In Sec. IV, we investigate the phenomenon of “catas-
trophe” for infinite detachment rate �, in which a microtu-
bule shrinks to zero length when all of its constituent mono-
mers convert to GDP−. We derive the asymptotic behavior of
the catastrophe probability by expressing it as an infinite
product and recognizing the connection of this product with
modular functions. We also determine the asymptotic behav-
ior of the size distribution of avalanches, namely, sequences
of consecutive GDP− detachment events. Finally, in Sec. V,
we discuss the behavior of a microtubule for general param-
eter values through a combination of numerical and analytic
results. Here numerical simulations are useful to extract
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FIG. 1. Numerical simulations of typical microtubule lengths
versus time for detachment rate �=5 and attachment rates: �a� �
=1.4, where the microtubule generally remains short, �b� �=1.5,
where the length fluctuates strongly, and �c� �=1.6, where the mi-
crotubule grows nearly steadily.

FIG. 2. �Color online� Cartoon of a microtubule in unrestricted
growth. Regions of GTP+ are shown dark �blue� shading and re-
gions of GDP− are light �yellow� shading. The GTP+ regions get
shorter further from the tip that advances as �t, while the GDP−

regions get longer.

ANTAL et al. PHYSICAL REVIEW E 76, 041907 �2007�

041907-2



quantitative results for parameter values that are note ame-
nable to theoretical analysis. Several calculational details are
given in the appendixes.

II. UNRESTRICTED GROWTH

We define unrestricted growth as the limit of detachment
rate �=0, so that a microtubule grows without bound. Here
we consider the special case where the attachment rate does
not depend on the identity of the last monomer; that is, the
limit of p=1, where the attachment is unconstrained. Be-
cause of the latter condition, the number N of GTP+ mono-
mers decouples from the number of GDP−, a greatly simpli-
fying feature.

A. Distribution of positive monomers

The average number of GTP+ monomers evolves as

d

dt
�N� = � − �N� . �1�

The gain term accounts for the adsorption of a GTP+ at rate
�, while the loss term accounts for the conversion events
GTP+→GDP−, each of which occurs with rate 1. Thus �N�
approaches its stationary value of � exponentially quickly,

�N� = ��1 − e−t� . �2�

More generally, consider the probability �N�t� that there are
N GTP+ monomers at time t. This probability evolves ac-
cording to

d�N

dt
= − �N + ���N + ��N−1 + �N + 1��N+1. �3�

The loss term �N+���N accounts for conversion events
GTP+→GDP− that occur with total rate N, and the attach-
ment of a GTP+ at the end of the microtubule of length N
with rate �. The gain terms can be explained similarly.

In terms of generating function ��z��	N=0
� �NzN, Eq. �3�

can be recast as the differential equation

��

�t
= �1 − z�
 ��

�z
− ��� . �4�

Introducing Q=�e−�z and y=ln�1−z�, we transform Eq. �4�
into the wave equation

�Q
�t

+
�Q
�y

= 0, �5�

whose solution is an arbitrary function of t–y or, equiva-
lently, �1−z�e−t. If the system initially is a microtubule of
zero length, �N�t=0�=�N,0, the initial generating function
��z , t=0�=1, so that Q=e−�z=e��1−z�e−�. Thus, for t�0, Q
=e��1−z�e−t

e−�, from which

��z,t� = e−��1−z��1−e−t�. �6�

Expanding this expression in a power series in z, the prob-
ability for the system to contain N GTP+ monomers is the
time-dependent Poisson distribution

�N�t� =
���1 − e−t��N

N!
e−��1−e−t�. �7�

From this result, the mean number of GTP+ monomers and
its variance are

�N� = �N2� − �N�2 = ��1 − e−t� . �8�

B. Tubule length distributions

The length distribution P�L , t� of the microtubule evolves
according to the master equation

dP�L,t�
dt

= ��P�L − 1,t� − P�L,t�� . �9�

For the initial condition P�L ,0�=�L,0, the solution is again
the Poisson distribution

P�L,t� =
��t�L

L!
e−�t, �10�

from which the average and the variance are

�L� = �t, �L2� − �L�2 = �t . �11�

Thus the growth rate of the microtubule and the diffusion
coefficient of the tip are

V = �, D = �/2. �12�

A more comprehensive description is provided by the joint
distribution P�L ,N , t�, that a microtubule has length L and
contains N GTP+ monomers at time t. This distribution
evolves as

dP�L,N�
dt

= �P�L − 1,N − 1� − �N + ��P�L,N�

+ �N + 1�P�L,N + 1� . �13�

This joint distribution does not factorize, that is, P�L ,N , t�
� P�L , t��N�t�, because �LN�� �L��N�. To demonstrate this
inequality, we compute �LN� by multiplying Eq. �13� by LN
and summing over all L�N�0 to give

d

dt
�LN� = ���L� + �N� + 1� − �LN� . �14�

Using Eqs. �8� and �11� for �N� and �L� and integrating we
obtain

�LN� = �2t�1 − e−t� + ��1 − e−t� = �L��N� + �N� . �15�

Using Eq. �11�, we have �LN�= �L��N��1+ 1
�t

�, so that the
joint distribution is factorizable asymptotically. For com-
pleteness, we give the full solution for P�L ,N , t� in Appendix
A.

C. Cap length distribution

Because of the conversion process GTP+→GDP−, the tip
of the microtubule is comprised predominantly of GTP+,
while the tail exclusively consists of GDP−. The region from
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the tip until the first monomer is known as the cap �Fig. 3�
and it plays a fundamental role in microtubule function. We
now use the master equation approach to determine the cap
length distribution.

Consider a cap of length k. Its length increases by 1 due to
the attachment of a GTP+ at rate �. The conversion of any
GTP+ into a GDP− at rate 1 reduces the cap length from k to
an arbitrary value s	k. These processes lead to the follow-
ing master equation for the probability nk, that the cap length
is equal to k:

ṅk = ��nk−1 − nk� − knk + 	
s�k+1

ns. �16�

Equation �16� is also valid for k=0 if we set n−1�0. Note
that n0�Prob��− � is the probability for a cap of length zero.
We now solve for the stationary distribution by summing the
first k−1 of Eq. �16� with ṅk set to zero to obtain

nk−1 =
k

�
	
s�k

ns. �17�

The cumulative distribution, Nk=	s�kns, thus satisfies the
recursion

Nk =
�

k + �
Nk−1. �18�

Using the normalization N0=1 and iterating, we obtain the
solution in terms of the gamma function �24�

Nk =
�k
�1 + ��


�k + 1 + ��
. �19�

Hence, the cap length distribution is

nk =

�1 + ��


�k + 2 + ��
�k + 1��k �20�

and the first few terms are

n0 =
1

1 + �
, n1 =

2�

�1 + ���2 + ��
,

n2 =
3�2

�1 + ���2 + ���3 + ��
. �21�

Results of direct simulation of the kinetic model are com-
pared to the predicted cap length distribution �Eq. �20�� in
Fig. 4. Because of the finite length of the simulated micro-
tubule, there is a largest cap length that is accessible numeri-
cally. Aside from this limitation, the simulations results are
in agreement with theoretical predictions.

It is instructive to determine the dependence of the aver-
age cap length �k�=	k�0knk on �. Using nk=Nk−Nk+1, we
rearrange �k� into

�k� = 	
k�1

Nk. �22�

Using �19�, the above sum may be written in terms of the
confluent hypergeometric series �24�:

�k� = − 1 + F�1;1 + �;�� . �23�

We now determine the asymptotic behavior of �k� by using
the integral representation

F�a;b;z� =

�b�


�b − a�
�a��0

1

dt eztta−1�1 − t�b−a−1

to recast the average cap length �23� as

�k� = − 1 + �
 e

�
��

���,�� , �24�

where ��a ,x�=�0
xdt ta−1e−t is the �lower� incomplete gamma

function.
In the realistic limit of ��1, we use the large � asymp-

totics

���,�� →
1

2

���, 
��� ��2�

�

�

e
��

,

to give

�k� → ���/2 as � → � . �25�

Thus, even though the number of GTP+ monomers is equal
to �, only �� of them comprise the microtubule cap, as
qualitatively illustrated in Fig. 2. Note that the average cap
length is proportional to the square root of the velocity; es-
sentially the same result was obtained from the coarse-
grained theory of Flyvbjerg et al. �18�.

captail

populated zone

FIG. 3. Representative configuration of a microtubule, with a
GTP+ cap of length 4, then three GTP+ islands of lengths 1, 3, and
2, and three GDP− islands of lengths 3, 2, and a “tail” of length 5.
The rest of the microtubule consists of GDP−.
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FIG. 4. �Color online� Cap length distribution obtained from
simulations at �=0, �=100, and p=1 compared to the theoretical
prediction of Eq. �20�.
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D. Island size distributions

At a finer level of resolution, we determine the distribu-
tion of island sizes at the tip of a microtubule �Fig. 3�. A
simple characteristic of this population is the average num-
ber I of GTP+ islands. If all GTP+ islands were approxi-
mately as long as the cap, we would have I��N� / �k����.
As we shall see, however, I scales linearly with � because
most islands are short. A similar dichotomy arises for nega-
tive islands.

To write the master equation for the average number of
islands, note that the conversion GTP+→GDP− eliminates
islands of size 1. Additionally, an island of size k�3 splits
into two daughter islands, and hence the number of islands
increases by one, if conversion occurs at any one of the
k−2 in the interior of an island as illustrated below:

Conversely, if the cap has length 0, attachment creates a new
cap of length 1 at rate �. The net result of these processes is
encoded in the rate equation

dI

dt
= 	

k�1
�k − 2�Ik + �n0, �26�

with Ik the average number of GTP+ islands of size k.
We now use the sum rules I=	k�1Ik and �N�=	k�1kIk to

recast �26� as

dI

dt
= �N� − 2I + �n0 �27�

from which the steady-state average number of islands is

I =
�N� + �n0

2
=

�

2

2 + �

1 + �
. �28�

For large �, the number of islands approaches � /2, while the
number of GTP+ monomers equals �. Thus the typical island
size is 2. Nevertheless, as we now show, the GTP+ and GDP−

island distributions actually have power-law tails, with dif-
ferent exponents for each species.

The GTP+ island size distribution evolves according to
the master equation

İk = − kIk + 2 	
s�k+1

Is + ��nk−1 − nk� . �29�

This equation is similar in spirit to Eq. �16� for the cap length
distribution. As a useful self-consistency check, the sum of
Eq. �29� gives �27�, while multiplying �29� by k and sum-
ming over all k�1 gives Eq. �1�.

The stationary distribution satisfies

kIk = 2 	
s�k+1

Is + ��nk−1 − nk� . �30�

Using 	s�2Is= I− I1, we transform �30� at k=1 to

3I1 = 2I + ��n0 − n1� .

Similarly, using 	s�3Is= I− I1− I2 we transform �30� at k=2
to

4I2 = 2�I − I1� + ��n1 − n2� .

Thus using �20� and �30� we obtain

I1 =
�

3
+

4�

3�1 + ���2 + ��
, �31a�

I2 =
�

12
+

25�2 − 6�

12�1 + ���2 + ���3 + ��
. �31b�

The same procedure gives Ik for larger k.
Since the Ik represent the average number of islands of

size k, they become meaningful only for �→� where an
appreciable number of such islands exist. In this limit, we
write Ik more compactly by first rearranging �30� into the
equivalent form

�k − 1�Ik−1 − �k + 2�Ik = ��nk−2 − 2nk−1 + nk� . �32�

We then use �20� and the asymptotic properties of the gamma
function to find that the right-hand side of Eq. �32� is

��nk−2 − 2nk−1 + nk� = −
3k + 1

�
+ O
 1

�2� ,

and is therefore negligible in the large-� limit. Thus
Eq. �32� reduces to �k−1�Ik−1= �k+2�Ik, with solution
Ik=A / �k�k+1��k+2��. We find the amplitude A by matching
with the exact result, Eq. �31a�, to give I1=� /3 for large �.
The final result is

Ik =
2�

k�k + 1��k + 2�
. �33�

In the large � limit, I=� /2, and the above result can be
rewritten as

Ik

I
=

4

k�k + 1��k + 2�
. �34�

Remarkably, the size distribution of the positive islands is
identical to the degree distribution of a growing network
with strictly linear preferential attachment �25–27�.

The results for the island size distribution in the large �
limit are compared to simulation results in Fig. 5. These
asymptotic results are expected to apply to island sizes k
much smaller than the size of the cap which scales as ��.
The distributions obtained from the numerical simulations
should then obey the theoretical form but with a finite-size
cutoff. The results in Fig. 5 are consistent with this picture
but, interestingly, the numerical distribution rises above the
theoretical curve before falling sharply below it. This
anomaly occurs in many heterogeneous growing network
models, and it can be fully characterized in terms of finite-
size effects �28�.

E. Continuum limit, �\�

When �→�, both the length of the cap and the length of
the region that contains GTP+ become large. In this limit, the
results from the discrete master equation can be expressed
much more elegantly and completely by a continuum ap-
proach. The fundamental feature is that the conversion pro-
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cess GTP+→GDP− occurs independently for each monomer.
Since the residence time of each monomer increases linearly
with distance from the tip, the probability that a GTP+ does
not convert decays exponentially with distance from the tip.
This fact alone is sufficient to derive all the island distribu-
tions.

Consider first the length � of the populated region
�Fig. 3�. For a GTP+ that is a distance x from the tip, its
residence time is =x /� in the limit of large �. Thus the
probability that this GTP+ does not convert is e−=e−x/�. We
thus estimate � from the extremal criterion �29�

1 = 	
x��

e−x/� = �1 − e−1/��−1e−�/� �35�

that merely states that there is of the order of a single GTP+

further than a distance � from the tip. Since �1−e−1/��−1

→� when � is large, the length of the active region scales as

� = � ln � . �36�

The probability that the cap has length k is given by

�1 − e−�k+1�/���
j=1

k

e−j/�.

The product ensures that all monomers between the tip and a
distance k from the tip are GTP+, while the prefactor gives
the probability that a monomer is a distance k+1 from the tip
is a GDP−. Expanding the prefactor for large � and rewriting
the product as the sum in the exponent, we obtain

nk �
k + 1

�
e−k�k+1�/2�, �37�

a result that also can be obtained by taking the large-� limit
of the exact result for nk given in Eq. �20�.

Similarly, the probability to find a positive island of
length k that occupies sites x+1,x+2, . . . ,x+k is

�1 − e−x/���1 − e−�x+k+1�/���
j=1

k

e−�x+j�/�. �38�

The two prefactors ensure that sites x and x+k+1 consist of
GDP−, while the product ensures that all sites between x+1
and x+k are GTP+.

Most islands are far from the tip and they are relatively
short, k�x, so that �38� simplifies to

�1 − e−x/��2e−kx/�e−k2/2�. �39�

The total number of islands of length k is obtained by sum-
ming the island density �39� over all x. Since ��1, we
replace the summation by integration and obtain

Ik = �
0

�

dx�1 − e−x/��2e−kx/�e−k2/2� =
2�

k�k + 1��k + 2�
e−k2/2�.

�40�

The power-law tail agrees with Eq. �33�, whose derivation
explicitly invoked the �→� limit.

We can also obtain the density of negative islands in this
continuum description, a result that seems impossible to de-
rive by a microscopic master equation description. In parallel
with �39�, the density of negative islands of length k�x with
one end at x is given by

e−2x/��1 − e−x/��k, �41�

and the total number of negative islands of length k is

Jk = �
0

�

dx e−2x/��1 − e−x/��k =
�

�k + 1��k + 2�
. �42�

Again, we find a power-law tail for the GDP− island size
distribution, but with exponent 2. The total number of GDP−

monomers within the populated zone is then 	k�1kJk. While
this sum formally diverges, we use the upper size cutoff,
k��� to obtain 	k�1kJk�� ln �. Since the length of the
populated zone ��� ln �, this zone therefore predominantly
consists of GDP− islands.

In analogy with the cap, consider now the “tail”—the last
island of GDP− within the populated zone �see Fig. 3�. The
probability mk that it has length k is

mk = e−�/��1 − e−�/��k. �43�

Using �36� we simplify the above expression to

mk = �−1�1 − �−1�k = �−1e−k/�.

Hence, the average length of the tail is

�k� = 	
k�1

kmk = � , �44�

which is much longer �on average� than the cap.

III. CONSTRAINED GROWTH

When p�1, the rate of attachment depends on the state of
the tip of the microtubule—attachment to a GTP+ occurs
with rate � while attachment to a GDP− occurs with rate p�.
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FIG. 5. �Color online� Simulation results at �=0, �=100, and
p=1 for the size distribution of positive islands, Ik /�. The solid line
is the theoretical prediction of Eq. �33�.
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While this state dependence makes the master equation de-
scription for the properties of the tubule more complicated,
qualitative features about the structure of the populated zone
are the same as those in the case p=1. In this section, we
outline some of the basic features of the populated zone
when p�1, but we still keep �=0.

A. Distribution of GTP+

The average number of GTP+ monomers now evolves ac-
cording to the rate equation

d

dt
�N� = − �N� + p�n0 + ��1 − n0� , �45�

which should be compared to the rate equation �1� for the
case p=1. The loss term on the right-hand side describes the
conversion GTP+→GDP−, while the remaining terms repre-
sent gain due to attachment to a GTP+ with rate � and to a
GDP− with rate p�. Here n0 is the probability for a cap of
length zero, that is, the last site is a GDP−. The stationary
solution to �45� is

�N� = p�n0 + ��1 − n0� , �46�

so we need to determine n0. By extending Eq. �16� to the
case p�1, we then find that n0 is governed by the rate equa-
tion

ṅ0 = − p�n0 + �1 − n0� . �47�

Thus, asymptotically n0= 1
1+p� and substituting into �46�, the

average number of GTP+ monomers is

�N� = p�
1 + �

1 + p�
. �48�

More generally, we can determine the distribution of the
number of GTP+ monomers; the details of this calculation
are presented in Appendix B.

B. Growth rate and diffusion coefficient

The growth rate of a microtubule equals p� when the cap
length is zero and to � otherwise. Therefore,

V�p,�� = p�n0 + ��1 − n0� = p�
1 + �

1 + p�
. �49�

For the diffusion coefficient of the tip of a microtubule, we
need its mean-square position. As in the case p=1, it is con-
venient to determine the probability distribution for the tip
position. Thus, we introduce X�L , t� and Y�L , t�, the prob-
abilities that the microtubule length equals L and the last
monomer is a GTP+ or a GDP−, respectively. These prob-
abilities satisfy

dX�L�
dt

= �X�L − 1� + p�Y�L − 1� − �1 + ��X�L� , �50a�

dY�L�
dt

= X�L� − p�Y�L� . �50b�

Summing these equations, the length distribution
P�L�=X�L�+Y�L� satisfies

dP�L�
dt

= �X�L − 1� + p�Y�L − 1� − �X�L� − p�Y�L� .

�51�

The state of the last monomer does not depend on the micro-
tubule length L for large L. Thus asymptotically

X�L� = �1 − n0�P�L�, Y�L� = n0P�L� . �52�

Substituting �52� into �51� we obtain a master equation for
the tubule length distribution of the same form as Eq. �9�, but
with prefactor V given by �49� instead of �. As a result of
this correspondence, we infer that the diffusion coefficient is
one-half of the growth rate,

D�p,�� =
1

2
p�

1 + �

1 + p�
. �53�

For large � both the growth rate of the tip of the microtubule
and its diffusion coefficient approach the corresponding ex-
pressions in Eq. �12� for the case p=1.

C. Cap length distribution

The master equations for the cap length distribution are
the same as in the p=1 case when k�2. The master equa-
tions for k=0 and k=1 are slightly changed to account for
the different rates at which attachment occurs at a GDP−

monomer,

p�n0 = N1 = 1 − n0,

�1 + ��n1 − p�n0 = N2 = 1 − n0 − n1.

Solving iteratively we recover n0= 1
1+p� and also obtain

n1 =
2p�

�1 + p���2 + ��
, �54a�

n2 =
3p�2

�1 + p���2 + ���3 + ��
, �54b�

etc. The general solution for the nk is found by the same
method as in Sec. II C to be

nk = �k + 1��k p

1 + p�


�2 + ��

�k + 2 + ��

, �55�

which are valid for k�1. With this length distribution, the
average cap length is then

�k� =
p

1 + p�
	
k�1

k�k + 1��k 
�2 + ��

�k + 2 + ��

, �56�

and the sum can again be expressed in terms of hypergeo-
metric series as in Eq. �23�. Rather than following this path,
we focus on the most interesting limit of large �. Then the
cap length distribution �55� approaches to the previous solu-
tion �20� for the case p=1 and the mean length reduces to
�25�, independent of p.
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D. Island size distribution

For the distribution of island sizes, the master equation
remains the same as in the p=1 case when k�2. However,
when k=1, the master equation becomes

I1 = 2	
s�2

Is + p�n0 − �n1 �57�

in the stationary state. Then the average number of islands
and the average number of islands of size 1 are found from

2I = �N� + p�n0, 3I1 = 2I + p�n0 − �n1.

Using n0= 1
1+p� and Eqs. �48� and �54a� we obtain

I =
p�

2

2 + �

1 + p�
, �58a�

I1 =
p�

1 + p�

�

3
+

2 + �/3

2 + �
� . �58b�

Again, in the limit of large �, the average island size distri-
bution reduces to our previously-quoted results in �33� or
equivalently �34�. The leading behavior in the �→� limit is
again independent of p.

IV. INSTANTANEOUS DETACHMENT

For ��0, a microtubule can recede if its tip consists of
GDP−. The competition between this recession and growth
by the attachment of GTP+ leads to a rich dynamics in which
the microtubule length can fluctuate wildly under steady con-
ditions. In this section, we focus on the limiting case of
infinite detachment rate, �=�. In this limit, any GDP−

monomer�s� at the tip of a microtubule are immediately re-
moved. Thus the the tip is always a GTP+; this means that
the parameter p become immaterial. Finally, for �=�, we
also require the growth rate �→� to have a microtubule
with an appreciable length. This is the limit considered be-
low.

As soon as the last monomer of the tubule changes from a
GTP+ to a GDP−, a string of k contiguous GDP− monomers
exist at the tip and they detach immediately. We term such an
event an avalanche of size k. We now investigate the statis-
tical properties of these avalanches.

A. Catastrophes

The switches from a growing to a shrinking state of a
microtubule are called catastrophes �8�. If in a newly at-
tached GTP+ at the tip converts to a GDP− and the rest of the
microtubule consists only of GDP− at that moment, the mi-
crotubule instantaneously shrinks to zero length, a phenom-
enon that can be termed a global catastrophe. We now de-

termine the probability for such a catastrophe to occur. For-
mally, the probability of a global catastrophe is

C��� =
1

1 + �
�
n=1

�

�1 − e−n/�� . �59�

The factor �1+��−1 gives the probability that the monomer at
the tip converts to a GDP− before the next attachment event,
while the product gives the probability that the rest of the
microtubule consists of GDP−. In principle, the upper limit in
the product is set by the microtubule length. However, for
n��, each factor in the product is close to 1 and the error
made in extending the product to infinity is small. The ex-
pression within the product is obtained under the assumption
that the tubule grows steadily between these complete catas-
trophes and the smaller, local catastrophes, are therefore ig-
nored in this calculation.

The leading asymptotic behavior of the infinite product in
�59� is found by expressing it in terms of the Dedekind �
function �30�

��z� = ei�z/12�
n=1

�

�1 − e2�inz� , �60�

and using a remarkable identity satisfied by this function,

��− 1/z� = �− iz��z� .

For our purposes, we define a=−i�z to rewrite this identity
as

�
n=1

�

�1 − e−2an� =��

a
e�a−b�/12�

n=1

�

�1 − e−2bn� ,

where b=�2 /a. Specializing to the case a= �2��−1 yields

C��� =
�2��

1 + �
e−�2�/6e1/24� �

n�1
�1 − e−4�2�n� ��2�

�
e−�2�/6.

�61�

Since the time between catastrophes scales as the inverse of
the occurrence probability, this interevent time becomes very
long for large �.

B. Avalanche size distribution

In the instantaneous detachment limit, �=�, the catastro-
phes are avalanches whose size is determined by the number
of GDP− between the tip and the first GTP+ island. A global
catastrophe is an avalanche of size equal to the length of the
tubule, whose occurrence probability was calculated in the
preceding section. Similar arguments can be used to calcu-
late the size distribution of the smaller avalanches.

Since the cap is large when � is large, an avalanche of
size 1 arises only through the reaction scheme

�¯ + +� ⇒ �¯ + − � ⇒ �¯+� ,

where the first step occurs at rate 1 and the second step
is instantaneous. Since attachment proceeds with rate �,
the probability that conversion occurs before attachment is
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A1= �1+��−1; this expression gives the relative frequency of
avalanches of sizes �1. Analogously, an avalanche of size 2
is formed by the events

�¯ + + +� ⇒ �¯ + − +� ⇒ �¯ + − − � ⇒ �¯+� ,

and the probability that the first two steps occur before an
attachment event is A2��−2 to lowest order. At this level of
approximation, the relative frequency of avalanches of size
equal to 1 is A1−A2��−1. Since we are interested in the
regime ��1, we shall only consider the leading term in the
avalanche size distribution.

Generally an avalanche of size k is formed if the system
starts in the configuration

then k−1 contiguous GTP+ monomers next to the tip con-
vert, and finally the GTP+ at the tip converts to GDP− before
the next attachment event. The probability for the first k−1
conversion events is �−�k−1��k−1�!, where the factorial arises
because the order of these steps is irrelevant. The probability
of the last step is �−1. Thus, the relative frequency of ava-
lanches of size k is

Ak � �−k
�k� . �62�

The result can also be derived by the approach of Sec.
II E. We use the fact that the configuration

occurs with probability �1�n�k−1�1−e−n/��. Multiplying by
the probability that the monomer at the tip converts before
the next attachment event then gives the probability for an
avalanche of size k,

Ak = �1 + ��−1�
n=1

k−1

�1 − e−n/�� . �63�

Using 1−e−n/�=n /� we recover �62�. If we expand the ex-
ponent to the next order, 1−e−n/��n /�−n2 / �2�2�, Eq. �63�
becomes

Ak = �−k
�k��
n=1

k−1 
1 −
n

2�
� � �−k
�k�e−k2/4�.

V. GENERAL GROWTH CONDITIONS

The general situation where the attachment and detach-
ment rates, � and �, have arbitrary values, and where the
parameter p�1 seems analytically intractable because the
master equations for basic observables are coupled to an in-
finite hierarchy of equations to higher-order variables. For
example, the quantity n0�Prob��− �, the probability for a
cap of length zero, satisfies the exact equation

ṅ0 = − p�n0 + �1 − n0� − �N0, �64�

and the speed of the tip is

V��,�,p� = p�n0 + ��1 − n0� − �n0. �65�

Here N0�Prob��+−� is the probability that there is a GDP−

at the front position with a GTP+ on its left. Thus, to deter-
mine n0 we must find N0, which then requires higher-order
correlation functions, etc. This hierarchical nature prevents
an exact analysis and we turn to approximate approaches to
map out the behavior in different regions of the parameter
space.

A. Limiting cases

For � ,��1, the conversion GTP+→GDP− at rate one
greatly exceeds the rates � , p� ,� of the other three basic
processes that govern microtubule dynamics. Hence, we can
assume that conversion is instantaneous. Consequently, the
end of a microtubule consists of a string of GDP−, �¯−−−�,
in which the tip advances at rate p� and retreats at rate �.
Thus from �65� the speed of the tip is

V�p,�,�� = p� − � �66�

when p���.
On the other hand, for ��1, n0�Prob��− � is small and

Prob��−−� is exceedingly small. Hence n0=Prob��−−�+N0

�N0. Substituting this result into �64� and solving for n0 we
find

n0 =
1

1 + p� + �
. �67�

Note that indeed n0�1 when ��1. Using �67� in �65� we
obtain the general result for the growth velocity

V = � −
�1 − p�� + �

1 + p� + �
when � � 1. �68�

B. The phase boundary

A basic characteristic of microtubule dynamics is the
phase boundary in the parameter space that separates the
region where the microtubule grows without bound and a
region where the mean microtubule length remains finite. For
small �, this boundary is found from setting V=0 in Eq. �66�
to give ��= p� for ��1. The phase boundary is a straight
line in this limit, but for larger � the boundary is a convex
function of � �see Fig. 6�. We can compute the velocity to
second order in � and � by assuming N0=0 and then using
�64� and �65�. This leads to the phase boundary

�� = p� + p�2, �69�

that is both convex and more precise. On this phase bound-
ary, the average tubule length grows as �t.

When � is large, Eq. �68� implies that V is positive and it
reduces to V=�−1 for ���. This simple result follows
from the fact that recession of the microtubule is controlled
by the unit conversion rate. As soon as conversion occurs,
detachment occurs immediately for ��� and the microtu-
bule recedes by one step. Since advancement occurs at rate
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�, the speed of the tip is simply �−1. However, for ex-
tremely large � the prediction V=�−1 breaks down and the
microtubule becomes compact. To determine the phase
boundary in this limit, consider first the case �=�. As shown
in the preceding section, the probability of a catastrophe
roughly scales as e−�2�/6 so that the typical time between
catastrophes is e�2�/6. Since V=�−1, the typical length of a
microtubule just before a catastrophe is ��−1�e�2�/6. Sup-
pose now the detachment rate � is very large but finite. The
microtubule is compact if the time to shrink a microtubule of
length �e�2�/6 /� is smaller than the time �p��−1 required to
generate a GTP+ by the attachment �¯−�⇒ �¯−+� and
thereby stop the shrinking. We estimate the location of the
phase boundary by equating the two times to give

�� � p�2e�2�/6 when � � 1. �70�

We checked the theoretical predictions �69� and �70� for the
phase boundary numerically �Fig. 6�. For small �, the agree-

ment between theory and the simulation is excellent. For
larger �, the tubule growth is more intermittent and it be-
comes increasingly difficult to determine the phase boundary
with precision. Nevertheless, the qualitative expectations of
our theory remain valid.

C. Fluctuations of the tip

Finally, we study the fluctuations of the tip in the small
and large � limits. In the former case but also on the growth
phase p���, the tip undergoes a biased random walk with
diffusion coefficient

D�p,�,�� =
p� + �

2
when 1 � p� � � . �71�

For large �, the analysis is simplified by the principle that
can be summarized by the following sentence: “The leading
behaviors in the �→� limit are universal, that is, indepen-
dent of p and �.” This is not true if p is particularly small
�like �−1� and/or if � is particularly large �like �� given by
�70��. But when p��1 and ����, the above principle is
true, and

V = �, D =
�

2
�72�

in the leading order.
The computation of subleading behaviors is more chal-

lenging. We merely state here two asymptotic results. When
���, we again have the relation D=V /2, with V=�+1
− p−1. If �������1, we find

V = � − 1, D =
� + 1

2
. �73�

The derivation of the latter uses the probabilities X�L , t� and
Y�L , t� and follows similar steps as in Sec. III B.

VI. SUMMARY

We investigated a simple dynamical model of a microtu-
bule that grows by attachment of a GTP+ to its end at rate �,
irreversible conversion of any GTP+ to GDP− at rate 1, and
detachment of a GDP− from the end of a microtubule at rate
�. Remarkably, these simple update rules for a one-
dimensional system lead to steady growth, wild fluctuations,
or a steady state. Our model has a minimalist formulation
and therefore is not meant to account for all of the micro-
scopic details of microtubule dynamics. Rather, our main
goal has been to solve for the structural and dynamical prop-
erties of this idealized microtubule model. Some of the quan-
tities that we determined, such as island size distributions,
have not been studied previously. Thus our predictions about
the cap and island size distributions may help motivate ex-
perimental studies of these features of microtubules.

A rich phenomenology was found as a function of the
three fundamental rates in our model. When GTP+ attach-
ment is dominant ���1� and the attachment is independent
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FIG. 6. �Color online� Phase diagrams of a microtubule from
simulations for �a� p=1 and �b� p=0.1. The dashed line represents
the prediction �69� that is appropriate for small �. The extremes of
the error bars are the points for which the tubule velocities are
0.005 and 0.015, and their average defines the data point.
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of the identity of the last monomer on the free end of the
microtubule �p=1�, the GTP+ and GDP− organize into alter-
nating domains, with gradually longer GTP+ domains and
gradually shorter GDP− domains toward the tip of the micro-
tubule �Fig. 2�. Here, the parameter � could naturally be
varied experimentally by either changing the temperature or
the concentration of tubulins �free GTP+� in the solution.

The basic geometrical features in this growing phase of a
microtubule can be summarized as follows:

Symbol Meaning Scaling behavior

N No. of GTP+ monomers �

L Tubule length �t

�k� Average cap length ��� /2

I No. of islands � /2

Ik No. of GTP+ k islands 2� /k3

Jk No. of GDP− k islands � /k2

We emphasize that the island size distributions of GTP+ and
GDP− are robust power laws with respective exponents of 3
and 2. In the limit of p�1, in which attachment is sup-
pressed when a GDP− is at the free end of the microtubule,
the average number of GTP+ monomers on the microtubule
asymptotically is p�, while the rest of the results in the
above table remain robust in the long-time limit.

Conversely, when detachment of GDP− from the end of
the tubule is dominant �detachment rate �→�, a rate that
also could be controlled by the temperature�, the microtubule
length remains bounded but its length can fluctuate strongly.
When the attachment rate is also large, the strong competi-
tion between attachment and detachment leads to wild fluc-
tuations in the microtubule length even with steady external
conditions. We developed a probabilistic approach that
shows that the time between catastrophes, where the micro-
tubule shrinks to zero length, scales exponentially with the
attachment rate �. Thus, a microtubule can grow essentially
freely for a very long time before undergoing a catastrophe.

For the more biologically relevant case of intermediate
parameter values, we extended our theoretical approaches to
determine basic properties of the tubule, such as its rate of
growth, fluctuations of the tip around this mean growth be-
havior, and the phase diagram in the �� ,�� parameter space.
In this intermediate regime, numerical simulations provide a
more detailed picture of the geometrical structure and time
history of a microtubule.
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APPENDIX A: JOINT DISTRIBUTION FOR p=1

Introducing the two-variable generating function

P�x,y,t� = 	
L�N�0

xLyNP�L,N,t� , �A1�

we recast �13� into a partial differential equation

�P
�t

= �1 − y�
�P
�y

− ��1 − xy�P . �A2�

Writing

P�x,y,t� = e��xy−�1−x�ln�1−y��Q�x,y,t� , �A3�

we transform �A2� into a wave equation for an auxiliary
function Q�x ,y , t�,

�Q
�t

= �1 − y�
�Q
�y

, �A4�

whose general solution is

Q�x,y,t� = ��x, ln�1 − y� − t� . �A5�

The initial condition P�L ,N ,0�=�L,0�N,0 implies P�x ,y ,0�
=1 and, therefore,

e��xy−�1−x�ln�1−y����x, ln�1 − y�� = 1,

from which

��a,b� = e���1−a�b+a�eb−1��. �A6�

Combining Eqs. �A3�, �A5�, and �A6� we arrive at

�−1 ln P = xy�1 − e−t� − t − x�1 − e−t − t� . �A7�

APPENDIX B: JOINT DISTRIBUTION FOR pÅ1

For p�1, we consider the distributions XN and YN, de-
fined as the probabilities to have N GTP+ monomers with the
tip being either GTP+ or GDP−, respectively. These prob-
abilities satisfy a closed set of coupled equations. In the sta-
tionary state these equations become

�N + ��XN = �XN−1 + p�YN−1 + NXN+1, �B1a�

�N + p��YN = XN+1 + �N + 1�YN+1. �B1b�

Since X0�0, it is convenient to define the generating func-
tions corresponding to XN and YN as follows:

X�z� = 	
N�1

zN−1XN, �B2a�

Y�z� = 	
N�0

zNYN. �B2b�

Now multiply Eq. �B1a� by zN and Eq. �B1b� by zN−1 and
sum over all N�1 or N�0, respectively, to obtain

p�Y = X − ��X − X�� , �B3a�
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p�Y = X − �Y�, �B3b�

where �=��z−1� and the prime denotes a derivative in �. We
can reduce these two coupled first-order differential equa-
tions to uncoupled second-order equations

�X � + �2 + p� − ��X� − �1 + p��X = 0, �B4a�

�Y � + �2 + p� − ��Y� − p�Y = 0. �B4b�

The solutions are the confluent hypergeometric functions

X�z� =
p�

1 + p�
F�1 + p�;2 + p�;�� , �B5a�

Y�z� =
1

1 + p�
F�p�;2 + p�;�� . �B5b�

These generating functions have seemingly compact expres-
sions but one must keep in mind that the X and Y probabili-
ties are actually infinite sums. For instance, Y0=Y�z=0�
=Y��=−��. Recalling the definition of the confluent hyper-
geometric function we obtain

Y0 =
1

1 + p�
F�p�;2 + p�;− �� =

1

1 + p�
	
n�0

�p��n

�2 + p��n

�− ��n

n!
,

where �a�n=a�a+1�¯ �a+n−1�=
�a+n� /
�a� is the rising
factorial. Note that �0=Y0. Computing

X1 =
p�

1 + p�
F�1 + p�;2 + p�;− �� ,

Y1 = �
p�

�1 + p���2 + p��
F�1 + p�;3 + p�;− �� ,

one can determine �1=X1+Y1. Some of these formulas can
be simplified using the Kummer relation

F�a;b;�� = e�F�b − a;b;− �� .

For instance,

Y0 = 	
n�0

�n + 1��ne−�

�1 + p��n+1
,

X1 = p�	
n�0

�ne−�

�1 + p��n+1
,

Y1 = p�2 	
n�0

�n + 1��ne−�

�1 + p��n+2
.
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