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Abstract. We investigate an idealized model of microtubule dynamics that
involves: (i) attachment of guanosine triphosphate (GTP) at rate λ, (ii)
conversion of GTP to guanosine diphosphate (GDP) at rate 1, and (iii)
detachment of GDP at rate μ. As a function of these rates, a microtubule can
grow steadily or its length can fluctuate wildly. For μ = 0, we find the exact
tubule and GTP cap length distributions, and power-law length distributions of
GTP and GDP islands. For μ = ∞, we argue that the time between catastrophes,
where the microtubule shrinks to zero length, scales as eλ. We also discuss the
nature of the phase boundary between a growing and shrinking microtubule.
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Figure 1. Schematic illustration of the growth and catastrophic shrinkage of a
microtubule as a function of time (adapted from [1]).

Microtubules are linear polymers of the protein tubulin that perform major organizational
tasks in living cells [1, 2]. They provide transport tracks for molecular machines [3, 4],
and move cellular structures during cellular processes such as reproduction [2, 5]. A
surprising feature of microtubules is that they remain out of equilibrium under fixed
external conditions and can undergo alternating periods of growth and rapid shrinking
(figure 1).

These sudden polymerization changes are driven by the interplay between growth
by the attachment of guanosine triphosphate tubulin complexes (GTP) at the free
end [1, 3, 6, 7], irreversible hydrolysis of GTP into guanosine diphosphate (GDP) anywhere
in the tubule, and subsequent GDP detachment from the free end of the tubule. One
avenue of theoretical work on this dynamical instability is based on detailed models of
mechanical stability [8, 9]. For example, a detailed stochastic model of a microtubule
that includes all the thirteen constituent protofilaments has been investigated in [9]. By
using model parameters that were inferred from equilibrium statistical physics, VanBuren
et al [9] found characteristics of the tip evolution of a microtubule that agreed with
experimental data [10].

Another approach for modelling the dynamics of microtubules is based on effective
two-state models that describe the dynamics in terms of a switching between a growing and
a shrinking state [7], [11]–[15]. The essence of many of these models is that a microtubule
exists either in a growing phase (where a GTP cap exists at the end of the microtubule)
or a shrinking phase (without a GTP cap), and that there are stochastic transitions
between these two states. By tuning parameters appropriately, it is possible to reproduce
the phase changes between the growing and shrinking phases of microtubules that have
been observed experimentally [3]. In another important contribution, Flyvbjerg et al [16]
constructed an effective continuous theory to describe the dynamics of the cap length.

What is missing in these models is a clear connection between microscopic parameters
and the evolution of the spatial structure of the microtubule. Most of the models discussed
thus far are too complicated to permit a complete solution. Thus the present work is
motivated by the goal of formulating and solving a minimal model of microtubule dynamics
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that incorporates the main features of growth and shrinking. We view this model as an
Ising-like description that captures the most interesting features of microtubule dynamics
even though the connection between model parameters and experimental variables is
indirect. The main advantage of the model is its simplicity so that many of its geometrical
and dynamical features can be determined analytically. These solutions reveal many
rich geometrical and time-dependent features that should help our understanding of real
microtubule dynamics.

The model studied in this letter [17, 18] treats a microtubule as a linear polymer that
consists of GTP or GDP monomers that we denote as + and −, respectively. To emphasize
this connection between chemistry and the model, we write the former as GTP+ and the
latter as GDP−. The state of a microtubule evolves by the following steps:

(1) Attachment of GTP+ at the end of a microtubule:

|· · ·〉 =⇒ |· · ·+〉 rate λ.

(2) Independent conversion of each GTP+ to GDP−:

|· · ·+ · · ·〉 =⇒ |· · · − · · ·〉 rate 1.

(3) Detachment of a GDP− from the microtubule end:

|· · ·−〉 =⇒ |· · ·〉 rate μ.

Here the symbols | and 〉 denote the terminal and the free end of the microtubule. It is
worth mentioning that these steps are similar to those in a recently introduced model of
DNA sequence evolution [19], and that some of the results about the structure of DNA
sequences seem to be related to our results about island size distributions in microtubules.

With the above steps for the evolution of a microtubule, we find that the (λ, μ)
phase plane separates into a region where the microtubule grows, on average, and a phase
where the microtubule length is finite. On the boundary between these two regions, the
microtubule length fluctuates wildly. To understand these different phases, we first focus
on the extreme cases of no detachment μ = 0 and infinite detachment rate μ = ∞, where
we can analytically solve the microtubule structure.

No detachment: Here GTP+ monomers attach at rate λ and convert to GDP− at
rate 1. The probability ΠN(t) that the microtubule consists of N GTP+ monomers at
time t evolves according to

dΠN

dt
= −(N + λ)ΠN + λΠN−1 + (N + 1)ΠN+1. (1)

The loss term (N + λ)ΠN accounts for the attachment of a GTP+ at the end of the
microtubule of length N with rate λ and the conversion events GTP+ → GDP− that
occur with total rate N . The gain terms can be explained similarly. This equation can
be solved by the generating function method and the final result is [20]

ΠN(t) =
[λ(1 − e−t)]N

N !
e−λ(1−e−t). (2)

From this Poisson distribution, the mean number of GTP+ monomers and its variance
are

〈N〉 = 〈N2〉 − 〈N〉2 = λ(1 − e−t). (3)
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Figure 2. Representative configuration of a microtubule, with a cap of length 4,
three GTP+ islands of lengths 1, 3, and 2, and three GDP− islands of lengths 3,
2, and a ‘tail’ of length 5. The rest of the microtubule consists of GDP−.

Similarly, the length distribution P (L, t) of the microtubule evolves according to the
master equation

dP (L, t)

dt
= λ[P (L − 1, t) − P (L, t)]. (4)

For the initial condition P (L, 0) = δL,0, the solution is again the Poisson distribution

P (L, t) =
(λt)L

L!
e−λt (5)

from which the growth rate of the microtubule and the diffusion coefficient of the tip are
V = λ and D = λ/2.

Because of the conversion of GTP+ to GDP−, the tip of the microtubule is comprised
predominantly of GTP+, while the end exclusively consists of GDP−. The region from
the tip until the first GDP− is known as the cap (figure 2) and it plays a fundamental role
in microtubule function. We use a master equation approach to determine the cap length
distribution [20].

Consider a cap of length k. Its length increases by 1 due to the attachment of a
GTP+ at rate λ. The conversion of any GTP+ into a GDP− at rate 1 reduces the cap
length from k to an arbitrary value s < k. These processes lead to the following master
equation for the probability nk that the cap length equals k:

ṅk = λ(nk−1 − nk) − knk +
∑

s≥k+1

ns. (6)

Equation (6) remains valid for k = 0 if we set n−1 ≡ 0. We solve for the stationary
distribution by summing the first k − 1 of equations (6) with ṅk set to zero to obtain

nk−1 =
k

λ

∑

s≥k

ns. (7)

The cumulative distribution, Nk =
∑

s≥k ns, thus satisfies the recursion

Nk = λNk−1/(k + λ).

Using the normalization N0 = 1 and iterating, we obtain the solution in terms of the
Gamma function [21]:

Nk =
λk Γ(1 + λ)

Γ(k + 1 + λ)
. (8)

Hence the cap length distribution is

nk =
Γ(1 + λ)

Γ(k + 2 + λ)
(k + 1)λk. (9)
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From this distribution, we find that in the realistic limit of λ � 1 the average cap
length is given by

〈k〉 →
√

πλ

2
as λ → ∞. (10)

Thus even though the average number of GTP+ monomers equals λ, only
√

λ of them
organize themselves into the microtubule cap.

At a finer level of resolution, we determine the distribution of island sizes in the
GTP+-populated zone of a microtubule (figure 2). When λ → ∞, both the length of
the cap and the length of the region that contains GTP+ become large and a continuum
description is appropriate. Since the residence time of each monomer increases linearly
with distance from the tip and the conversion GTP+ → GDP− occurs independently, the
probability that a monomer remains a GTP+ decays exponentially with distance from the
tip. This fact alone is sufficient to derive all the island distributions.

Consider first the length � of the populated zone (figure 2). For a monomer at a
distance x from the tip, its residence time is τ = x/λ for large λ. Thus the probability
that this monomer remains a GTP+ is e−τ = e−x/λ. We thus estimate � from the extremal
criterion [22]

1 =
∑

x≥�

e−x/λ = (1 − e−1/λ)−1e−�/λ, (11)

that merely states that there is of the order of a single GTP+ further than a distance �
from the tip. When λ is large, (1 − e−1/λ)−1 → λ, and the length of the active region
scales as

� = λ ln λ. (12)

The probability that the cap has length k is given by

(1 − e−(k+1)/λ)

k∏

j=1

e−j/λ.

The product ensures that all monomers between the tip and a distance k from the tip are
GTP+, while the prefactor gives the probability that a monomer a distance k + 1 from
the tip is a GDP−. Expanding the prefactor for large λ and rewriting the product as the
sum in the exponent, we obtain

nk ∼ k + 1

λ
e−k(k+1)/2λ, (13)

a result that agrees with the large-λ limit of the exact result for nk in equation (9).
Similarly, the probability to find a positive GTP+ island of length k that occupies

sites x + 1, x + 2, . . . , x + k is

(1 − e−x/λ)(1 − e−(x+k+1)/λ)
k∏

j=1

e−(x+j)/λ. (14)

The two prefactors ensure that sites x and x+k+1 are GDP−, while the product ensures
that all sites between x + 1 and x + k are GTP+.
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Figure 3. Cartoon of a microtubule. The GTP+ regions (dark) get shorter further
from the tip that advances as λt, while the GDP− regions (light) get longer.

Most islands are far from the tip and they are short, k � x, so that (14) simplifies to
(1−e−x/λ)2e−kx/λ. The total number of GTP+ islands of length k is obtained by summing
this island density over all x. Since λ � 1, we replace the summation by integration and
obtain

Ik =

∫ ∞

0

dx (1 − e−x/λ)2e−kx/λ =
2λ

k(k + 1)(k + 2)
. (15)

By similar reasoning, we find that the density of negative GDP− islands of length
k � x with one end at x is given by e−2x/λ(1 − e−x/λ)k. The total number of negative
islands of length k is therefore

Jk =

∫ ∞

0

dx e−2x/λ(1 − e−x/λ)k =
λ

(k + 1)(k + 2)
. (16)

Again, we find a power-law tail for the GDP− island size distribution, but one that is much
broader than the corresponding GTP+ distribution. Strikingly, these two distributions are
of the same form as those found for the degree distribution of growing networks [23, 24].
The total number of GDP− monomers within the populated zone is

∑
k≥1 kJk. While this

sum formally diverges, we invoke the upper size cut-off, k∗ ∼ λ that again follows from
an extremal criterion [22] to obtain

∑
k≥1 kJk � λ ln λ. Since the length of the populated

zone � ∼ λ ln λ, we thus see that this zone predominantly consists of GDP− islands.
In analogy with the cap, consider now the ‘tail’—the last island of GDP− within the

populated zone (figure 2). The probability mk that it has length k is

mk = e−�/λ(1 − e−�/λ)k. (17)

Hence, by summing the geometric series and using � = λ ln λ from (12), the average length
of the tail is

〈k〉 ≡
∑

k≥1

kmk = e�/λ − 1 → λ. (18)

Thus the tail is (on average) much longer than the cap. In summary, the microtubule
consists of GTP+ islands that systematically get shorter away from the tip and vice versa
for GDP− islands (figure 3).

Instantaneous detachment: For μ > 0, a microtubule can recede if the monomer(s)
at its tip are GDP−. If there are many such GDP− end monomers the microtubule
length can fluctuate wildly under steady conditions. Here we focus on the limiting
case of instantaneous detachment, μ = ∞. As soon as the monomer at the tip
changes from a GTP+ to a GDP−, this monomer and any contiguous GDP− monomers
detach immediately. We term such an event an avalanche of size k. If the avalanche
encompasses the entire microtubule, we have a global catastrophe. The probability for
such a catastrophe to occur is

C(λ) =
1

1 + λ

∞∏

n=1

(1 − e−n/λ). (19)
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The factor (1+λ)−1 gives the probability that the monomer at the tip converts to a GDP−

before the next attachment event, while the product gives the probability that all other
monomers in the microtubule are GDP−. In principle, the upper limit in the product is
set by the microtubule length. However, for n > λ, each factor in the product is close to
1 and the error made in extending the product to infinity is small.

The asymptotic behaviour of the infinite product in equation (19) is found by first
expressing it in terms of the Dedekind η function [25]

η(z) = eiπz/12
∞∏

n=1

(1 − e2πinz), (20)

and then recalling a remarkable identity satisfied by this function, η(−1/z) =
√
−iz η(z).

Using these facts, the probability of a catastrophe is given by

C(λ) =

√
2πλ

1 + λ
e−π2λ/6 e1/24λ

∏

n≥1

(1 − e−4π2λn)

∼
√

2π

λ
e−π2λ/6. (21)

Since the time between catastrophes scales as the inverse of the occurrence probability,
this inter-event time becomes extremely long for large λ.

Similar arguments can be used to calculate the size distribution of finite avalanches.
We first notice that the configuration |+− · · ·−︸ ︷︷ ︸

k−1

+〉 occurs with probability

k−1∏

n=1

(1 − e−n/λ).

Then multiplying by the probability that the monomer at the tip converts before the next
attachment event gives the probability for an avalanche of size k:

Ak = (1 + λ)−1

k−1∏

n=1

(1 − e−n/λ). (22)

Using 1 − e−n/λ ≈ n/λ − n2/(2λ2), equation (22) becomes

Ak = λ−kΓ(k)

k−1∏

n=1

(
1 − n

2λ

)
∼ λ−kΓ(k) e−k2/4λ.

General growth conditions: For arbitrary attachment and detachment rates λ and
μ, we can approximately map out the boundary between different phases of microtubule
dynamics in the λ, μ parameter space. For λ, μ � 1, the unit conversion rate GTP+ →
GDP− is much faster than the rates λ, μ of the other dynamical microtubule processes.
Hence we assume that conversion is instantaneous. Consequently, a microtubule consists
of a string of GDP− monomers |· · ·−−−〉 in which the tip advances at rate λ and retreats
at rate μ. Thus the tip performs a biased random walk, and its velocity is V (λ, μ) = λ−μ
when λ > μ. The boundary between the growing phase, where the average tubule length
grows as V t, and the compact phase, where the average tubule length is finite, is found
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Figure 4. Schematic phase diagram for a microtubule in the λ–μ parameter
space.

by setting V = 0. This condition gives μ∗ = λ when λ � 1. On this phase boundary, the
average tubule length grows as

√
t.

For the phase boundary for large μ, consider first μ = ∞. Since the leading behaviour
for the probability of a catastrophe scales as e−π2λ/6, the typical time between catastrophes
is eπ2λ/6. Since V ≈ λ for large λ, the typical length of a microtubule just before a
catastrophe is again (ignoring all power-law factors) eπ2λ/6. Suppose now the detachment
rate μ is very large but finite. The microtubule is compact if the time to shrink a
microtubule of length eπ2λ/6/μ is smaller than the time λ−1 required to generate a GTP+

by |· · ·−〉 =⇒ |· · · − +〉 and thereby stop the shrinking. We estimate the location of the

phase boundary by equating these two times to give μ∗ ∼ eπ2λ/6 when λ � 1 (figure 4).

To summarize, our model predicts rich microtubule dynamics as a function of GTP+

attachment and GDP− detachment. In the growing phase, GTP+ and GPD− organize
into alternating domains, with gradually longer GTP+ domains and gradually shorter
GDP− domains toward the tip of the microtubule. The size distributions of these two
species are exact power laws with respective exponents of 3 and 2. Between the limiting
cases of a finite-length and a growing microtubule, its length can fluctuate wildly under
steady external conditions. This unusual behaviour emerges naturally in our model.
From a simple probabilistic approach and in the limit instantaneous detachment of GDP−

(μ = ∞), we found that the time between catastrophes, where the microtubule shrinks
to zero length, scales exponentially with the attachment rate λ. Thus for large λ,
the microtubule will grow essentially freely for a very long time before undergoing a
catastrophe.

We thank Bulbul Chakraborty for introducing us to this problem and the model presented
here. We also acknowledge financial support to the Program for Evolutionary Dynamics
at Harvard University by Jeffrey Epstein and NIH grant R01GM078986 (TA), NSF grant
CHE0532969 (PLK), and NSF grant DMR0535503 (SR) at Boston University.
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