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Abstract – We study a stochastic process that mimics single-game elimination tournaments. In
our model, the outcome of each match is stochastic: the weaker player wins with upset probability
q� 1/2, and the stronger player wins with probability 1− q. The loser is eliminated. Extremal
statistics of the initial distribution of player strengths governs the tournament outcome. For a
uniform initial distribution of strengths, the rank of the winner, x∗, decays algebraically with
the number of players, N , as x∗ ∼N−β . Different decay exponents are found analytically for
sequential dynamics, βseq = 1− 2q, and parallel dynamics, βpar = 1+ ln(1−q)

ln 2
. The distribution of

player strengths becomes self-similar in the long time limit with an algebraic tail. Our theory
successfully describes statistics of the US college basketball national championship tournament.

Copyright c© EPLA, 2007

A wide variety of processes in nature and society
involve competition. In animal societies, competition is
responsible for social differentiation and the emergence
of social strata. Competition is also ubiquitous in human
society: auctions, election of public officials, city plans,
grant awards, and sports involve competition. Minimalist,
physics-based competition processes have been recently
developed to model relevant competitive phenomena such
as wealth distributions [1–3], auctions [4–6], social dyna-
mics [7–10], and sports leagues [11]. In physics, compe-
tition also underlies phase ordering kinetics, in which
large domains grow at the expense of small domains that
eventually are eliminated [13,14].
In this study, we investigate N -player tournaments

with head-to-head matches. The winner of each match
remains in the tournament while the loser is eliminated.
At the end of a tournament, a single undefeated player,
the tournament winner, remains. Each player is endowed
with a fixed intrinsic strength x� 0 that is drawn from
a normalized distribution f0(x). We define strength so
that smaller x corresponds to a stronger player and we
henceforth refer to this strength measure as “rank”
The result of competition is stochastic: in each match

the weaker player wins with the upset probability q� 1/2
and the stronger player wins with probability p= 1− q.
Schematically, when two players with ranks x1 and x2

compete, assuming x1 <x2, the outcome is

(x1, x2)→
{
x1 with probability 1− q,
x2 with probability q.

(1)

For q= 0, the best player is always victorious, while for
q= 1/2, game outcomes are completely random. We are
interested in the evolution of the rank distribution, as well
as the rank of the tournament winner.
We find that the rank of the winner, x∗, decays alge-

braically with the number of players N as

x∗ ∼N−β (2)

with the exponent β ≡ β(q) a function of the upset
probability. When the ranks of the tournament players
are uniformly distributed, we find different values for
sequential and parallel dynamics: βseq = 1− 2q and βpar =
1+ ln(1−q)ln 2 . Moreover, the rank distribution becomes
asymptotically self-similar and has a power-law tail. We
also extend these results to arbitrary initial distributions.
The extreme of this distribution governs statistical
properties of the rank of the ultimate winner.

Sequential dynamics. – We formulate the competi-
tion process by assuming that each pair of players compete
at a constant rate. In this formulation, games are held
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sequentially, and players are eliminated from the tourna-
ment one at a time. The fraction of players remaining in
the competition at time t, c(t), decays according to

dc

dt
=−c2. (3)

Solving this equation subject to the initial condition
c(0) = 1, the surviving fraction is

c(t) = (1+ t)−1. (4)

The tournament ends with a single player and this occurs
at time t∗, that can be estimated from c(t∗)∼N−1.
Therefore the time to complete the competition scales
linearly with the number of players t∗ ∼N .
Let f(x, t)dx be the fraction of remaining players with

rank in the range (x, x+dx) at time t. The density f(x, t)
obeys the nonlinear integro-differential equation

∂f(x)

∂t
=−2p f(x)

∫ x
0

dyf(y) − 2q f(x)
∫ ∞
x

dyf(y). (5)

The first term accounts for games where the favorite wins
and the second term for games where the underdog wins.
The initial condition is f(x, 0) = f0(x) with

∫
dxf0(x) = 1.

Integrating (5), the total fraction of remaining players,
c(t) =

∫
dxf(x, t), indeed decays according to (3). We note

that this master equation is exact in the limit of an infinite
number of players and applicable only as long as the
fraction of remaining players is finite.
The rank distribution can be obtained by introducing

the cumulative distribution F (x), defined as the fraction
of players with rank smaller than x,

F (x) =

∫ x
0

dyf(y). (6)

The distribution of player ranks is obtained from
the cumulative distribution by differentiation,
f(x) = dF (x)/dx. By integrating the master equa-
tion (5), the cumulative distribution obeys the closed
nonlinear equation

∂F

∂t
= (2q− 1)F 2− 2qcF. (7)

The initial condition is F (x, 0) = F0(x) =
∫ x
0
dyf0(y).

Substituting H(x) = 1/F (x), we transform (7) to the
linear equation

∂H

∂t
= (1− 2q)+ 2qcH. (8)

Integrating this equation with respect to time, we
find H(x) = [H0(x)− 1](1+ t)2q +(1+ t). Substituting
the initial condition H0(x) = 1/F0(x), we obtain the
cumulative rank distribution

F (x, t) =
F0(x)

[1−F0(x)](1+ t)2q +F0(x)(1+ t) . (9)

From this, the actual density of player rank is obtained by
differentiation

f(x, t) =
f0(x)(1+ t)

2q

[(1−F0(x))(1+ t)2q +F0(x)(1+ t)]2
. (10)

Notice that when the game outcome is random, q= 1/2,
the normalized distribution of rank does not evolve with
time as f(x, t)/c(t) = f0(x).

Uniform initial distribution. – Consider first the
special case of a uniform initial distribution, f0(x) = 1
for 0� x� 1, and deterministic games, q= 0. Then the
initial cumulative distribution is F0(x) = x for x� 1 and
F0(x) = 1 for x� 1. The time-dependent cumulative distri-
bution (9) is

F (x, t) =
x

1+xt
, (11)

for x� 1 and F (x, t) = c(t) for x� 1. Similarly, the rank
distribution itself is f(x, t) = (1+xt)−2, for 0� x� 1. As
expected, weaker players are more likely to be eliminated
as the tournament proceeds and the remaining field
becomes stronger. Quantitatively, the average rank of
surviving players, 〈x〉= ∫ dxxf(x)/∫ dxf(x), is

〈x〉= t−2 [(1+ t) ln(1+ t)− t ] . (12)

Therefore, the average rank asymptotically decays with
time, 〈x〉 � t−1ln t.
We can write the cumulative distribution in the scal-

ing form F (x, t)→ t−1Φ(xt), by multiplying and divid-
ing (11) by time. Here, the scaling function is Φ(z) = z

1+z ,
which approaches unity Φ(z)→ 1 when z→∞, consistent
with total density decay c� t−1. In the long-time limit,
the cumulative distribution retains the same shape as the
initial distribution, Φ(z)� z, for z� 1. The scaling vari-
able z = xt indicates that players with rank larger than
the characteristic rank x∼ t−1 are eliminated from the
tournament.
Let us generalize these results to arbitrary q. In this

case, the cumulative distribution is

F (x, t) =
x

(1−x)(1+ t)2q +x(1+ t) , (13)

for x� 1 and F (x, t) = c(t) otherwise. In the long time
limit, we may replace 1+ t with t, and also replace
1−x with 1, since the rank decays with time. Then the
cumulative distribution approaches the scaling form

F (x, t)→ t−1Φ
(
x t1−2q

)
. (14)

The scaling function remains as above

Φ(z) =
z

1+ z
. (15)

The scaling form (14) implies that the typical rank decays
algebraically with time

x∼ t−(1−2q). (16)
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Interestingly, the exponent governing this decay depends
on the upset probability. The larger the upset probability,
the smaller the decay exponent. Thus weaker players
can persist in a tournament when q approaches 1/2. For
completely random games, q= 1/2, the exponent vanishes
and the strength of the typical surviving player does not
change with time.
A similar scaling law characterizes the rank of the

tournament winner. From (4), the number of players
remaining in the tournament, M , and the initial number
of players N , are related by t∼N/M . Using (16), when
M players remain, the typical rank is x∼ (N/M)−(1−2q).
Substituting M = 1, we find that the typical rank of
the winner decays algebraically with the total number of
players, as in (2), with the exponent

βseq = 1− 2q. (17)

Therefore, the smaller the tournament or the higher the
upset probability the weaker the winner, on average. We
note that due to strong fluctuations, the master equa-
tion (5) is not applicable when the number of players is
of order one, and consequently, our theoretical framework
cannot be used to obtain the distribution of the tourna-
ment winner.

General initial distributions. – Our findings in the
case of uniform distributions suggest that the behavior of
the initial distribution in the x→ 0 limit governs the long
time asymptotics. Let us consider rank distributions with
a power law behavior near the origin,

F0(x)�C xµ+1, (18)

as x→ 0 with µ>−1 so that the distribution is normal-
ized. The rank density then scales as f0(x)�C(µ+1)xµ.
Since the rank x decays with time, the term (1−F0)
(1+ t)2q in the denominator of (9) can be replaced by
t2q and similarly, the term F0(x)(1+ t) can be replaced
by Cxµ+1t. Therefore, the scaling form (14) becomes

F (x, t)→ t−1Φ
(
x t

1−2q
µ+1

)
, with the scaling function Φ(z) =

Czµ+1/(1+Czµ+1). Thus the typical player rank decays

with time according to x∼ t− 1−2qµ+1 . Similarly, the rank of
the winner decays with the number of players as in (2)
with βseq =

1−2q
µ+1 .

Like the cumulative distribution, the density of players
with given rank also becomes self-similar asymptotically,
f(x, t)→ tβ−1φ

(
x tβ
)
with β = 1−2q

µ+1 and φ(z) =Φ
′(z). As

noted earlier, the shape of the distribution is preserved:
f(z)∼ zµ as z→ 0. The large argument behavior is

φ(z)∼ z−µ−2, (19)

as z→∞. The algebraic decay shows that the likelihood
of finding weak players in the tournament is appreciable.
Surprisingly, when initially most players are strong they
can eliminate each other, leading to an appreciable prob-
ability for weak players to survive.

The scaling behavior (2) refers to the typical rank
of the winner. The algebraic tail (19) suggests that the
average rank may scale differently than the typical rank.
For example, for compact uniform distributions (µ= 0),
the average is characterized by a logarithmic correction as
in (12), 〈x∗〉 ∼N−(1−2q)lnN .
Parallel dynamics. – Thus far, we addressed sequen-

tial games with a single team eliminated at a time.
However, actual sports tournaments typically proceed via
rounds of parallel play with half of the teams eliminated
in each round. We thus consider such round-play tourna-
ments with N = 2k players. Let gN (x) be the normalized
distribution of the rank of the winner with

∫
dx gN (x) = 1

and let GN (x) =
∫ x
0
dy gN (y) be the corresponding cumu-

lative distribution.
Consider first a tournament with N = 2 players. Similar

to eq. (5), the rank distribution of the winner is

g2(x) = 2pg1(x)[1−G1(x)]+ 2qg1(x)G1(x). (20)

Integrating this equation, we arrive at an explicit expres-
sion for the distribution of the rank of the winner G2(x) =
2pG1(x)+ (1− 2p)[G1(x)]2. Clearly, this nonlinear recur-
sion relation applies to every round of the tournament and
therefore,

G2N (x) = 2pGN (x)+ (1− 2p)[GN (x)]2. (21)

Iterating this equation starting with G1(x), we obtain
explicit expressions for the distribution of the winner for
N = 2, 4, 8, . . . Explicit expressions can be obtained for
the extreme cases of deterministic competitions (q= 0),
where 1−GN (x) = [1−G1(x)]N and random competi-
tions (q= 1/2) where GN (x) =G1(x).
Let us restrict our attention to uniform initial distribu-

tions, G1(x) = x for x� 1. For small-x, we may neglect the
nonlinear term in (21) and then, G2(x)� (2p)x, G4(x)�
(2p)2x, and in general,

G2k(x)� (2p)k x. (22)

To obtain the asymptotic behavior, we substitute k=
lnN
ln 2 into (22) and then GN (x)�Nβx with β = 1+ ln pln 2 .
Therefore, the cumulative distribution of the rank of the
winner follows the scaling form

GN (x)→Ψ
(
xNβ

)
, (23)

when N →∞. The scaling function is linear, Ψ(z)� z, in
the limit z→ 0, reflecting that the extremal statistics are
invariant under the competition dynamics.
The scaling form (23) shows that the rank of the tour-

nament winner decays algebraically with the tournament
size as in (2). Surprisingly, the decay exponent

βpar = 1+
ln(1− q)
ln 2

(24)
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Fig. 1: The decay exponent β versus the upset probability
q. Shown are the values for the sequential case (17) and the
parallel case (24).

for parallel dynamics, differs from the decay exponent (17)
for sequential dynamics. The two exponents coincide in
the extreme cases, β(0) = 1 and β(1/2) = 0. The inequality
βpar � βseq (fig. 1) shows that parallel play benefits the
strong players. Indeed, in sequential play weak players
may survive by being idle. The source of this discrepancy
is fluctuations in the number of games. In sequential
dynamics, the number of games played by each player is
variable while in parallel dynamics the number of games
is fixed.
Substituting the scaling form (23) into the recur-

sion (21), the scaling function obeys the nonlinear-
nonlocal equation

Ψ(2pz) = 2pΨ(z)+ (1− 2p)Ψ2(z). (25)

The boundary condition are Ψ(0) = 0 and Ψ(∞) = 1.
An exact solution is feasible only when there are no
upsets: Ψ(z) = 1− e−z for q= 0. Otherwise, we perform
an asymptotic analysis. As shown above, the small-z
behavior is generic, Ψ(z)� z. At large arguments, we
write U(z) = 1−Ψ(z) and since U � 1, we can neglect the
nonlinear terms and then U(2pz) = 2qU(z). This implies
the algebraic decay U(z)∼ z(ln 2q)/(ln 2p). As a result, the
likelihood of finding weak winners, gN (x)→Nβψ

(
xNβ

)
with ψ(z) =Ψ′(z), decays algebraically

ψ(z)∼ z ln 2qln 2p−1 (26)

as z→∞. This algebraic behavior is very different from
the exponential decay ψ(z) = e−z for deterministic games.
In contrast to sequential play, the exponent depends on
the upset probability. This large likelihood of finding weak
winners reflects that the number of games played by the
tournament winner scales logarithmically with the number
of teams. For example, as N = 2k, the likelihood that the
weakest player wins, qk =N ln q/ln 2, is appreciable as it
decays only algebraically with N .

Empirical study. – To test our theoretical approach,
we studied the US men’s NCAA college basketball national

0 4 8 12 16
x

0

0.2

0.4

0.6

0.8

1

G
16

(x
)

Theory
Simulation
Tournament Data

Fig. 2: The cumulative distribution of the rank of the group
winnerG16(x). The empirical distribution for college basketball
(circle) is compared with Monte Carlo simulations (squares),
and the parallel dynamics theory (diamonds).

championship where 64 teams are divided into 4 groups
of 16, with teams in each group ranked 1 (best) to 16
(worst). The winner of each group advances to the “final
four”. As in the parallel dynamics, half of the teams are
eliminated in each round. The schedule, however, is not
random: the games are arranged so that if there are no
upsets the bottom half is eliminated in each round. We
analyzed the results of all 1680 games since this format was
established (1979-2006) [15]. We calculated the cumulative
rank distribution of the team advancing to the final four,
G16(x), with x= 1, 2, . . . , 16 (fig. 2). Additionally, we
measured the upset frequency q= 0.275 by counting the
number of games won by the underdog [12].
To compare with the theoretical model, we simulated

the NCAA tournament schedule in which the lower-ranked
team wins with upset probability q. The parameter q
was treated as a tunable variable, and we present results
for the value that best matched the empirical data. The
simulation results produce a rank distribution that agrees
well with the empirical findings (fig. 2). The fitted upset
probability q= 0.22 is close to the observed frequency.
Alternatively, we modeled the data by iterating (21)
starting with the uniform distribution G1(x) = x/16
using a fitted upset probability of q= 0.175 (the theory
assumes a random schedule and an approximate uniform
distribution). We thus found that the competition model
has predictive power that quantitatively captures emp-
irical rank distributions, and enables estimates of upset
frequencies from observed rank distributions.
In summary, we studied dynamics of single-elimination

tournaments, in which there is a finite probability for a
lower-ranked player to upset a higher-ranked player. We
obtained an exact solution for the distribution of player
ranks for arbitrary initial conditions. Generally, the
likelihood of upset winners is relatively large since the
tail of the distribution function decays algebraically with
rank. The characteristic rank of the winning player decays
algebraically with the number of players and the larger
the upset probability, the slower this decay (small tour-
naments are more likely to produce a surprise winner).
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Different decay exponents are found for sequential and
parallel play with the latter generally larger (weak
players fare better by avoiding competition). We demon-
strated the utility of this model using college basketball
results.
Extreme properties of the initial distribution fully

governs the asymptotic behavior. In the long time limit,
the player distribution becomes self-similar. Both the form
of the scaling distribution and the time dependence of the
characteristic rank depend only on the small-x behavior
of the initial distribution. A similar phenomenology where
extremal statistics governs long-time asymptotics was
found in studies of clustering in traffic flows [16] and
species abundance in biological evolution [17,18].
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