A Guide to First-Passage Processes

1. First Passage Fundamentals

1.1 What is a First-Passage Process?
 1.1.1 A Simple Illustration
 1.1.2 Fundamental Issues

1.2 Connection Between First-Passage and Occupation Probabilities

1.3 Probability Distribution of a One-Dimensional Random Walk
 1.3.1 Discrete Space and Time
 1.3.2 Discrete Space and Continuous Time
 1.3.3 Continuous Space and Time
 Scaling Solution
 Fourier Transform Solution
 Laplace Transform Solution
 Fourier-Laplace Transform Solution

1.4 Relation Between Laplace Transforms and Real Time Quantities

1.5 Asymptotics of the First-Passage Probability

1.6 Connection Between First-Passage and Electrostatics
 1.6.1 Background
 1.6.2 Green's Function Formalism
 Hitting Probability
 Hitting Time
 1.6.3 Laplacian Formalism
 Splitting Probabilities
 Unconditional and Conditional Mean First-Passage Times

1.7 Random Walks and Resistor Networks
 1.7.1 Introduction
 1.7.2 The Basic Relation
 1.7.3 Escape Probabilities, Resistance, and Pólya's Theorem

1.8 Epilogue

2. First Passage in a Finite Interval

2.1 Introduction
 2.1.1 Basic Questions

2.2 Time-Dependent Formulation
 2.2.1 Survival Probability: Absorption Mode
 Isotropic Diffusion
 Biased Diffusion
 2.2.2 First-Passage Probability and Mean Exit Times
 Isotropic Diffusion
 Absorption Mode
 Reflection Mode
 Biased Diffusion
 Absorption Mode
 Transmission Mode

2.3 Time-Integrated Formulation
 2.3.1 Splitting Probabilities and Unconditional Exit Time: Absorption Mode
 Isotropic Diffusion
 Biased Diffusion
 The Freely Accelerated Particle
 2.3.2 Conditional Mean Exit Times: Absorption Mode
 2.3.3 Transmission Mode
 2.3.4 Biased Diffusion as a Singular Perturbation

2.4 Discrete Random Walk
 2.4.1 A Simple Illustration for a Short Chain
 Discrete Random Walk
 Continuous Time Random Walk
 2.4.2 First-Passage Probabilities
 Absorption Mode
 Transmission Mode
3. Semi-Infinite System

3.1 The Basic Dichotomy
3.2 Image Method
 3.2.1 The Concentration Profile
 3.2.2 First-Passage Properties
 Isotropic Diffusion
 Biased Diffusion
 Long-Range Hopping
 Semi-Infinite Slab
3.3 Systematic Approach
 3.3.1 Green’s Function Solution
 3.3.2 Constant-Density Initial Condition
3.4 Discrete Random Walk
 3.4.1 The Reflection Principle
 3.4.2 Consequences for First Passage
 3.4.3 Origin Crossing Statistics
 Qualitative Picture and Basic Questions
 Number of Returns to the Origin
 Lead Probability and the Arcsine Law
3.5 Imperfect Absorption
 3.5.1 Motivation
 3.5.2 Radiation Boundary Condition
 3.5.3 Connection to a Composite Medium
 Diffusion-Absorption Equation
 Single Particle Initial Condition
 Uniform Initial Condition
 3.5.4 Equivalence to the Radiation Boundary Condition
3.6 The Quasi-Static Approximation
 3.6.1 Motivation
 3.6.2 Quasi-Static Solution at an Absorbing Boundary
 3.6.3 Quasi-Static Solution at a Radiation Boundary

4. Illustrations of First Passage in Simple Geometries

4.1 First Passage in Real Systems
4.2 Neuron Dynamics
 4.2.1 Some Basic Facts
 4.2.2 Integrate and Fire Model
4.3 Self-Organized Criticality
 4.3.1 Isotropic and Directed Sandpile Models
 4.3.2 Bak-Sneppen Model
 4.3.3 Related Systems
 One-Dimensional Traffic Jams
 Anisotropic Interface Depinning
4.4 Kinetics of Spin Systems
 4.4.1 Background
 4.4.2 Solution to the One-Dimensional Ising-Glauber Model
 4.4.3 Solution to the Voter Model in all Dimensions
4.5 First Passage in Composite and Fluctuating Systems
 4.5.1 Motivation
 4.5.2 Segments with Different Diffusivities
 4.5.3 Segments with Different Bias Velocities
 Two Segments
 Three Segments
 4.5.4 Resonant First Passage in a Fluctuating Medium
4.6 Interval with Spatially Variable Diffusion
 4.6.1 Basic Examples
4.6.2 Diffusivity $1 - (x/N)^2$
4.6.3 Diffusivity $1 - |x|/N$
4.6.4 Diffusivity $(1 - |x|/N)^\mu$

4.7 The Growing “Cage”
 4.7.1 General Considerations
 4.7.2 Slowly Growing Cage: Adiabatic Approximation
 4.7.3 Rapidly Growing Cage: “Free” Approximation
 4.7.4 Marginally Growing Cage
 Heuristics
 Asymptotics
 4.7.5 Iterated Logarithm Law for Ultimate Survival

4.8 The Moving “Cliff”
 4.8.1 Rapidly Moving Cliff
 4.8.2 Marginally Moving Cliff
 4.8.3 Diffusing Cliff

5. Branched and Hierarchical Media

5.1 Beyond One Dimension
5.2 Cayley Tree
5.3 Hierarchical 3-Tree
 5.3.1 Transmission in the First-Order Tree
 5.3.2 Exact Renormalization in the Nth-Order Tree
 5.3.3 Reflection in the 3-Tree
 5.3.4 Conclusions
5.4 Comb Structures
 5.4.1 Introduction
 5.4.2 Homogeneous Comb
 One Sidebranch
 Periodic Sidebranching
 Infinite-Length Sidebranches
 5.4.3 Hierarchical Comb
 First-Passage Time
 First-Passage Probability
5.5 Hydrodynamic Transport
 5.5.1 Single Sidebranch System
 Solution to the Diffusion Equation
 Infinite Length Sidebranch
 The Role of Bias
 5.5.2 Single Junction Network
 5.5.3 The Hierarchical Blob
 First-Passage Time
 First-Passage Probability

6. Systems with Spherical Symmetry

6.1 Introduction
6.2 First Passage between Concentric Spheres
 6.2.1 Splitting Probabilities
 6.2.2 First Passage to a Sphere in Radial Potential Flow
 6.2.3 Connection between Diffusion in General Dimension and Radial Drift in Two Dimensions
6.3 First Passage to a Sphere
 6.3.1 Image Solution
 6.3.2 Efficient Simulation of Diffusion-Limited Aggregation
6.4 Time-Dependent First-Passage Properties
 6.4.1 Overview
 6.4.2 Both Boundaries Absorbing
 6.4.3 One Reflecting and One Absorbing Boundary
 Isotropic diffusion in arbitrary spatial dimension
 Radially Biased Diffusion in Two Dimensions
6.5 Reaction Rate Theory
 6.5.1 Background
6.5.2 Time-Dependent Solution for General d
 The Case $v < 0$ or $d > 2$
 The Case $v \geq 0$ or $d \leq 2$
6.5.3 Elementary Time-Dependent Solution for and $d = 3$
6.5.4 Quasi-Static Approach
 Dimensions $d < 2$
 Two Dimensions
 Dimensions $d > 2$
6.5.5 Closest Particle to an Absorbing Sphere

7. Wedge Domains

7.1 Why Study the Wedge?
7.2 Two-Dimensional Wedge
 7.2.1 Solution to the Diffusion Equation
 7.2.2 Physical Implications
7.3 Three-Dimensional Cone
7.4 Conformal Transformations and Electrostatic Methods
 7.4.1 Point Source and Line Sink
 7.4.2 General Wedge Angles
7.5 First-Passage Times
 7.5.1 Infinite Two-Dimensional Wedge
 7.5.2 Pie Wedge in Two Dimensions
 7.5.3 Infinite Three-Dimensional Cone
 7.5.4 Conditional Exit Time for the Infinite Wedge
7.6 Extension to Time-Dependent First-Passage Properties

8. Applications to Simple Reactions

8.1 Reactions as First-Passage Processes
8.2 Kinetics of the Trapping Reaction
 8.2.1 Exact Solution in One Dimension
 Long-Time Behavior
 Short-Time Behavior
 8.2.2 Lifshitz Argument for General Spatial Dimension
 Isotropic Diffusion
 Biased Diffusion
8.3 Reunions and Reactions of Three Diffusing Particles
 8.3.1 Prey Survival Probability
 "Surrounded" Prey
 "Chased" Prey
 8.3.2 Pair Meeting Probabilities
 8.3.3 Lead and Order Probabilities
 8.3.4 Extension to Arbitrary Number of Particles
8.4 Diffusion-Controlled Reactions
 8.4.1 Basic Properties
 8.4.2 The Capture Reaction
 8.4.3 Coalescence
 8.4.4 Annihilation
 8.4.5 Aggregation
 Introduction
 Solution for the Cluster Concentrations
8.5 Ballistic Annihilation
 8.5.1 Two-Velocity Model
 8.5.2 Three-Velocity Model
 Basic Phenomenology
 "Slow" Impurity Limit
 "Fast" Impurity Limit