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Preface

You arrange a 7pm date at a local bistro. Your punctual date arrives at 6:55, waits until 7:05, concludes

that you will not show up, and leaves. At 7:06, you saunter in – “just a few minutes” after 7 (see Cover).

You assume that you arrived first and wait for your date. The wait drags on and on. “What’s going on?”

you think to yourself. By 9pm, you conclude that you were stood up, return home, and call to make amends.

You explain, “I arrived around 7 and waited 2 hours! My probability of being at the bistro between 7 and

9pm, P (bistro, t), was nearly one! How did we miss each other?” Your date replies, “I don’t care about

your occupation probability. What mattered was your first-passage probability, F (bistro, t), which was zero

at 7pm. GOOD BYE!” Click!

The moral of this juvenile parable is that first passage underlies many stochastic processes, in which the

event, such as a dinner date, a chemical reaction, the firing of a neuron, or the triggering of a stock option,

relies on a variable reaching a specified value for the first time. In spite of the wide applicability of first-

passage phenomena (or perhaps because of it), there does not seem to be a pedagogical source on this topic.

For those with a serious interest, essential information is scattered and presented at diverse technical levels.

In my attempts to learn the subject, I also encountered the proverbial conundrum that a fundamental result

is “well-known to (the vanishingly small subset of) those who know it well”.

In response to this frustration, I attempt to give a unified presentation of first-passage processes and illus-

trate some of its beautiful and fundamental consequences. My goal is to help those with modest backgrounds

learn essential results quickly. The intended audience is physicists, chemists, mathematicians, engineers, and

other quantitative scientists. The technical level should be accessible to the motivated graduate student.

My literary inspirations for this book include Random Walks and Electric Networks, by P. G. Doyle and

J. L. Snell (Carus Mathematical Monographs #22, Mathematical Association of America, Washington, D.

C.,1984), which cogently describes the relation between random walks and electrical networks, and A Primer

on Diffusion Problems, by R. Ghez (Wiley, 1988) which gives a nice exposition of solutions to physically-

motivated diffusion problems. This book is meant to complement classic monographs, such as An Introduction

to Probability Theory and its Applications, by W. Feller (Wiley, New York, 1968), Aspects and Application of

the Random Walks, by G. H. Weiss, (North-Holland, Amsterdam, 1996), and Stochastic Processes in Physics

and Chemistry, by N. G. van Kampen (North-Holland, Amsterdam, 1997). Each of these very worthwhile

books discusses first-passage phenomena, but secondarily rather than as a comprehensive overview.

I begin with fundamental background in Chap. 1 and outline the relation between occupation and first-

passage probabilities, as well as the connection between first passage and electrostatics. Many familiar results

from electrostatics can be easily adapted to give first-passage properties in the same geometry. In Chap. 2,

I discuss first passage in a one-dimensional interval. This provides a simple laboratory for answering basic

questions, such as: What is the probability that a diffusing particle eventually exits at either end? How long

does it take to exit? These problems are solved both by direct approaches and by developing the electrostatic

equivalence. Chapter 3 treats first passage in a semi-infinite interval both by standard approaches and by

the familiar image method. I also discuss surprising consequences of the basic dichotomy between certain

return to the starting point and infinite mean return time.

Chapter 4 is devoted to illustrations of the basic theory. I discuss neuron dynamics, realizations of self-
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6 Preface

organized criticality, and the dynamics of spin systems. These all have the feature that they can be viewed

as first-passage processes in one dimension. I also treat stochastic resonant escape from fluctuating and

inhomogeneous media, for which the time-independent electrostatic formalism provides a relatively easy way

to solve for mean first-passage times. Finally, I discuss the survival of a diffusing particle in a growing

“cage” and near a moving “cliff”, where particularly rich behavior arises when diffusion and the motion of

the boundary have the same time dependence.

In Chap. 5, I turn to first passage on branched, self-similar structures. I emphasize self-similar systems

because this feature allows us to solve for the first-passage probability by renormalization. Another essential

feature of branched systems is the competition between transport along the “backbone” from source to sink

and detours along sidebranches. I give examples that illustrate this basic competition and the transition

from scaling, in which a single time scale accounts for all moments of the first-passage time, to multiscaling,

in which each moment is governed by a different time scale.

I then treat spherically-symmetric geometries in Chap. 6 and discuss basic applications, such as efficient

simulations of diffusion-limited aggregation and the Smoluchowski chemical reaction rate. First passage in

wedge and conical domains are presented in Chap. 7. I discuss how the wedge geometry can be solved

elegantly by the mapping to electrostatics and conformal transformations. These systems provide the kernel

for understanding the main topic of Chap. 8, namely, the kinetics of one-dimensional diffusion-controlled

reactions. This includes trapping, the reactions among three diffusing particles on the line, as well as basic

bimolecular reactions, including capture p + P → P , annihilation A + A → 0, coalescence A + A → A, and

aggregation Ai + Aj → Ai+j . The chapter ends with a brief treatment of ballistic annihilation.

A large fraction of this book discusses either classical first-passage properties or results about first passage

from contemporary literature, but with some snippets of new results sprinkled throughout. However, several

topics are either significant extensions of published results or are original. This includes the time-integrated

formalism to compute the first-passage time in fluctuating systems (Section 4.5), aspects of survival in

an expanding interval (Section 4.7), return probabilities on the hierarchical tree and homogeneous comb

(Sections 5.3 & Subsection 5.4.2), the first-passage probability on the hierarchical blob (Section 5.5), and

reactions of three diffusing particles on the line (Section 8.3).

This book has been influenced by discussions or collaborations with Dani ben-Avraham, Eli Ben-Naim,

Charlie Doering, Laurent Frachebourg, Slava Ispolatov, Joel Koplik, Paul Krapivsky, Satya Majumdar,

Francois Leyvraz, Michael Stephen, George Weiss, David Wilkinson, and Bob Ziff to whom I am grateful

for their friendship and insights. I thank Bruce Taggart of the U.S. National Science Foundation for pro-

viding financial support at a crucial juncture in the writing, as well as Murad Taqqu and Mal Teich for

initial encouragement. Elizabeth Sheld helped me get this project started with her invaluable organizational

assistance. I also thank Satya Majumdar for advice on a preliminary manuscript and Erkki Hellén for a

critical reading of a nearly final version. I am especially indebted to Paul Krapivsky, my next-door neighbor

for most of the past 6 years, for many pleasant collaborations and for much helpful advice. While it is a

pleasure to acknowledge the contributions of my colleagues, errors in presentation are mine alone.

Even in the final stages of writing, I am acutely aware of many shortcomings in my presentation. If I were

to repair them all, I might never finish. This book is still work “in progress” and I look forward to receiving

your corrections, criticisms, and suggestions for improvements (redner@bu.edu).

Finally and most importantly, I thank my family for their love and constant support and for affectionately

tolerating me while I was writing this book.


