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Abstract

We investigate a model of cell division in which the length of telomeres within a cell regulates its proliferative potential. At each

division, telomeres undergo a systematic length decrease as well as a superimposed fluctuation due to exchange of telomere DNA

between the two daughter cells. A cell becomes senescent when one or more of its telomeres become shorter than a critical length. We

map this telomere dynamics onto a biased branching-diffusion process with an absorbing boundary condition whenever any telomere

reaches the critical length. Using first-passage ideas, we find a phase transition between finite lifetime and immortality (infinite

proliferation) of the cell population as a function of the influence of telomere shortening, fluctuations, and cell division.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Aging is a complex and incompletely understood process
characterized by deteriorating cellular, organ, and system
function. Replicative senescence, the phenomenon whereby
normal somatic cells show a finite proliferative capacity, is
thought to be a major contributor to this decline (Hayflick,
1965; Harley, 1991; Campisi, 1996, 1997, 2001). Telomeres
are repetitive DNA sequences (ðTTAGGGÞn in human
cells) at both ends of each linear chromosome and their
role is to protect the coding part of the DNA. Normal
human somatic cells become senescent after a finite number
of doublings.

As a general rule, cells for which telomerase activity is
absent lose of the order of 100 base pairs of telomeric DNA
from chromosome ends in every cell division. This basal
loss has been attributed to the end replication problem
(Watson, 1972; Olovnikov, 1971) in which the DNA-
polymerase cannot replicate all the way to the end of the
chromosome during DNA lagging strand synthesis. Addi-
e front matter r 2007 Elsevier Ltd. All rights reserved.
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tional post-replicative processing of the telomeric DNA is
necessary to protect the end of the chromosome from being
recognized as a double strand break in need of repair. This
processing also contributes to the end replication problem.
What remains unexplained, however, is why senescent

cells occur in cell cultures long before the expected number
of cell divisions estimated from the gradual basal loss. It
has been shown recently that in addition to the basal loss of
�100 base pairs per division, a complex set of events that
leads to telomere exchange between sister chromatids can
occur. This telomere sister chromatid exchange (T-SCE),
together with basal telomere loss and a number of observed
or suggested telomere recombination events, collectively
define telomere dynamics, and this dynamics leads to a
wide distribution of telomere lengths in cell cultures
(Reddel, 2003). Telomere exchange can also occur between
the telomeres of different chromosomes. Currently avail-
able data cannot distinguish between this process and
T-SCE. It is also believed that sister chromosome exchange
is induced by DNA damage. Because the sister chromatids
are in closer proximity compared to the distance between
different chromatids, it can be hypothesized that the
probability for telomere interchromatid exchange (T-ICE)
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is smaller than the probability for sister chromatid
exchange between sister chromatids.

Recently, one of the present authors proposed a theory
(Goodwin and Blagoev, 2004; Blagoev and Goodwin,
2005), based on telomere dynamics including T-SCE and
T-ICE, that is capable of explaining Werner’s syndrome,
an inherited disease characterized by premature aging and
death, and a subset of cancers that seem to use a
recombination mechanism to maintain telomere length.
This latter mechanism, known as alternative lengthening of
telomeres (ALT), as well as additional telomerase activity
in some cases, is thought to contribute to the large
proliferative potential of these cells (Bryan et al., 1997;
Henson et al., 2002). Here, proliferative potential denotes
the time over which cells can continue to divide. In
Goodwin and Blagoev (2004) and Blagoev and Goodwin
(2005), we showed that both Werner’s syndrome and ALT
can be described within the general framework of telomere
dynamics in which there is an elevated rate of exchange of
telomere DNA between two daughter cells, as observed in
many experiments (Bailey et al., 2004). One of the main
numerical results from Goodwin and Blagoev (2004) and
Blagoev and Goodwin (2005) is a transition from finite to
infinite proliferative potential in a cell culture as the
parameters controlling the telomere recombination rates
are varied.

In this work, we analytically investigate an idealized
model of cell proliferation in which the number of cell
divisions before senescence occurs is controlled by the
dynamics of telomeres during cell division. Each cell
contains a certain number of telomeres. When a cell
divides, the telomeres in each daughter cell ostensibly
shorten by a fixed amount Dx. In addition to this
systematic telomere shortening, the effect of T-SCE
processes during cell division leads to a superimposed
stochastic component to the telomere length dynamics by
an amount dx (Fig. 1). Thus in each cell division event, the
length of an individual telomere evolves by the combined
effects of these systematic and stochastic mechanisms.

When the length x of any of the telomeres within a cell
reaches zero, the cell stops dividing and becomes senescent.
On the other hand, the stochastic component of the
x

x-Δx-δx

x-Δx+δx

Fig. 1. Schematic illustration of telomere evolution. The telomeres in the

initial cell contain x ¼ 15 units. Upon division, each telomere ostensibly

shortens by Dx ¼ 5 units, but additional exchange of dx ¼ �2 units

between daughter telomeres (dashed) leads to final lengths of 8 and 12.
telomere dynamics provides the possibility for a telomere
to occasionally grow when a cell divides. This subpopula-
tion of cells with long telomeres and thus higher
proliferative potential can become even more so at the
next cell division, a mechanism that allows a long-lived
subpopulation to thrive.
We are interested in basic statistical properties of the cell

proliferative potential. Some fundamental questions that
we will study include:
1.
 Can a cell population divide indefinitely?

2.
 How long does it take for a cell population to become

senescent?

3.
 How many dividing cells exist after a given number of

divisions?

Within an idealized model of telomere kinetics described by
Eq. (1) for a single telomere per cell, it is possible to answer
these questions analytically by mapping the telomere
dynamics to a first-passage process. Using this approach,
we find a phase transition between a finite-lifetime cell
population and immortality as a function of three basic
control parameters—the magnitude of the systematic part
of the telomere evolution, determined by Dx, the effective
diffusion coefficient associated with the stochastic part of
the telomere evolution, determined by hdxðtÞ2i, and the cell
division rate.

2. Telomere replication model

In our telomere replication model, we assume that the
initial length of each telomere in a cell is x0. In any cell
division event, the length of a telomere changes by two
distinct processes:
(i)
 a systematic shortening of each telomere by Dx;

(ii)
 an additional stochastic component of the length

change of magnitude dx.
Thus, the length of a telomere changes according to

x! x� Dxþ dx. (1)

Here, the stochastic variable dx accounts for the T-SCE
processes that we assume to have mean value equal to zero,
hdxi ¼ 0, and no correlations at different times,
hdxðtÞdxðt0Þi / dðt� t0Þ. The justification for the absence
of correlation is that T-SCE events have been linked to
DNA damage (Bailey et al., 2001), which occurs randomly
in the cell.
Because of the systematic and stochastic contributions to

the change in telomere length in each division event, the
length of a telomere undergoes a biased random walk, with
a bias toward shrinking. It is instructive to estimate the
relative importance of the systematic and stochastic
components of this length evolution. For this purpose,
we define the time unit as the physical time between cell
divisions dt. Thus, in the absence of stochasticity a
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telomere shrinks to zero length in x0=Dx cell division
events.

It is now helpful to recall some basic numbers about
human telomeres to connect our mechanistic telomere
model and real cell division:
Parameter
 Definition
 Numerical value
dt
 Time between cell
divisions
20min to several
hours
x0
 Initial telomere
length
� 104 base pairs
Dx
 Systematic length
decrease per division
� 102 base pairs
dx
 Stochastic length
decrease per division
� 102 base pairs
The quantity dx is known only very roughly. It is possible,
with low probability, that even whole telomeres can be lost
in TCE processes (Hasenmaile et al., 2003).

With the above numbers, a telomere shrinks to zero in
x0=Dx � 102 � N cell division events with purely determi-
nistic shrinking. Now consider the role of stochasticity: in
N cell divisions, the root-mean-square length change due to

stochastic events is ‘rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðdxÞ2

q
� 103. Thus, in the

time for a telomere to systematically shrink from 104 to

zero, stochasticity gives a length uncertainty of 103—a 10%
correction to the bias.

Finally, we need to include the role of cell division on
this biased random walk description to arrive at a theory
for telomere dynamics. That is, we need to allow a random
walk to replicate as it undergoes biased hopping. While
there are many ways to parameterize the effects of bias,
stochasticity, and replication in the continuum limit, all
such models lead to the following convection-diffusion
equation with multiplicative growth:

@nðx; tÞ

@t
¼ knðx; tÞ þ v

@nðx; tÞ

@x
þD

@2nðx; tÞ

@x2
, (2)

in which v represents the bias for telomere shrinking, D

accounts for the stochastic part of the telomere length
evolution, and k accounts for cell division. While there is
only an indirect connection between the model parameters
v;D; k, and the parameters Dx; dx that account for what
happens to a telomere in a single cell division, this
continuum description has the advantage of capturing the
physical essence of telomere dynamics while being analy-
tically tractable.

The basic question that we seek to understand is how
long it takes for a cell to become senescent, an event that
occurs when the length of one of its telomeres reaches zero.
This condition translates to an absorbing boundary
condition at x ¼ 0 for the biased diffusion process that
described the telomere length distribution. We now exploit
some classic results about the first-passage probability of
biased diffusion (see the Appendix and Redner, 2001) to
determine the evolution of the telomere length distribution.
Let the initial number of cells be N0. The solution of (2) is
simply

nðx; tÞ ¼ N0e
ktcðx; tÞ, (3)

where cðx; tÞ, given in (A.2), is the solution to the
convection–diffusion equation with an absorbing bound-
ary condition at x ¼ 0 and the initial condition that all cells
have initial telomere length x0.
We may also treat the situation in which each cell

contains M independent telomeres as a zeroth-order
description for cells that contain many telomeres whose
dynamics is coupled by the T-SCE exchange process
(schematically illustrated in Fig. 1). This assumption of
independence of different telomeres allows us to apply the
single telomere per cell first-passage description with only
minor modifications. For cells containing M independent
telomeres of lengths x ¼ ðx1; . . . ;xM Þ, the density of cells
nðx; tÞ satisfies the M-dimensional convection–diffusion–
growth equation

@nðx; tÞ

@t
¼ knðx; tÞ þ vrnðx; tÞ þDr2nðx; tÞ, (4)

with absorbing boundaries when any telomere length xi

reaches zero. The solution simply factorizes as a product of
one-dimensional solutions:

nðx; tÞ ¼ N0e
kt
YM
i¼1

cðxi; tÞ. (5)

If each telomere has initial length x0, all the cðxi; tÞ are the
same and are given by (A.2). We can also straightforwardly
study the case where each telomere has a different initial
length by merely using the unique initial length of each
telomere in Eq. (5). It is worth mentioning that in addition
to its application to cell division statistics, Eq. (4) is also
related to the Fleming–Viot (FV) process (Fleming and
Viot, 1979; Ferrari and Marić, 2006), in which a population
of diffusing particles can get absorbed at boundary point
and then be re-injected into the system at a rate that is
proportional to local particle density.
From our description of telomere dynamics as a biased

branching-diffusion process, we now determine basic
features about the time dependence of the cell population
and the statistics of telomere lengths.
2.1. Number of dividing and senescent cells

Cells in which each telomere has positive length can
divide. The number of such active cells is given by the
integral of the number density of cells over the positive 2M-
tant (x1; x2; . . . ; xN40) of length space:

NactiveðtÞ ¼

Z
x40

nðx; tÞdx ¼ N0e
ktSMðtÞ, (6)

where SðtÞ is the survival probability of a biased random
walk (given by (A.4)). From (A.6), the long-time behavior
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Fig. 2. Plot of the number of active cells versus time from the second line

of Eq. (7) for the case of M ¼ 1 telomere per cell, with �1 ¼ 0:8 (solid), 0.9

(dashed), and 0.99 (dotted).
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of NactiveðtÞ is given by

NactiveðtÞ�

ffiffiffiffi
D

p

r
2x0

v2

 !M

eMvx0=2Dt�3M=2eðk�Mv2=4DÞt,

/ t�3M=2ektð�M�1Þ=�M ð7Þ

with �M � 4Dk=Mv2 (Fig. 2). Thus, the fundamental
parameters of the system are the Péclet number Pe �

vx0=2D (Probstein, 1994), a dimensionless measure of the
relative importance of the bias and the stochasticity, and,
more importantly, the dimensionless growth rate, �M . Note
that both the diffusion coefficient D and the bias velocity v

are proportional to k, since the telomere length changes
occur only when a cell divides. As a result, the growth rate
�M is actually independent of k. For �Mo1, cell division is
insufficient to overcome the effect of inexorable death due
to the systematic component of the telomere shortening
and the population of dividing cells decays exponentially in
time.

To get a feeling for the interplay between telomere
shortening and cell division, let us employ the numerical
parameters given at the beginning of this section in Eq. (7)
to obtain the total number of dividing cells. Since cells
double at each time step, k ¼ ln 2 when we express t in
units of cell division times. Furthermore, we define the
coefficients a and b by v ¼ a� 102 and D ¼ b� 104. Then
the time-dependent exponential factor in (7) for the case
M ¼ 1 becomes

eðk�v2=4DÞt�eðln 2�a
2=4bÞt.

The exponent can be either positive or negative exponent
depending on a and b, which, in turn, depend on details of
the telomere evolution of a single cell division event. Thus,
using the numbers appropriate for humans, senescence or
immortality is controlled by details of telomere evolution
as encoded by the coefficients a and b.
We also obtain the total number of cells that become

senescent at any given time during the evolution as the
diffusive flux to xi ¼ 0 for any i. For the symmetric initial
condition, the number of cells reaching any boundary
xi ¼ 0, i ¼ 1; 2; . . . ;M, are the same. Hence we may
consider a single boundary, say i ¼ 1. The number of
dying cells at this boundary can be written as the integral
over the x1 ¼ 0 surface

J1ðtÞ ¼

Z
x40
x1¼0

D
@nðx; tÞ

@x1
dx?, (8)

where the integral is over all the M � 1 coordinates
perpendicular to x1. Note again the absence of a convective
term in this expression because there is no convective flux
when the concentration is zero. Using the product form (5)
of nðx; tÞ for the total number of dying cells we obtain

JðtÞ ¼MJ1ðtÞ ¼ N0MektF ðtÞSM�1ðtÞ, (9)

where SðtÞ and F ðtÞ are given by (A.4) and (A.3),
respectively. The total number of senescent cells that are
produced during the course of the evolution is

Nsen ¼

Z 1
0

JðtÞdt ¼ �N0

Z 1
0

dt ekt @SM ðtÞ

@t

¼ N0 1� k

Z 1
0

dt ektSM ðtÞ

� �
, ð10Þ

where we again use the fact that F ðtÞ ¼ �dSðtÞ=dt to
perform the integration by parts.
For the special case of one telomere per cell (M ¼ 1), we

have

JðtÞ ¼
N0x0ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3
p ekte�ðx0�vtÞ2=4Dt. (11)

In this case the total number of senescent cells is

Nsen ¼
N0x0ffiffiffiffiffiffiffiffiffi
4pD
p

Z 1
0

1

t3=2
ekte�ðx0�vtÞ2=4Dt dt. (12)

We now make the substitution z ¼ t�1=2 to recast the above
integral into the form

Nsen ¼
N0x0ffiffiffiffiffiffiffi
pD
p evx0=2D

Z 1
0

dz e�x2
0
z2=4D�ðv2=4D�kÞ=z2 . (13)

Using
R1
0 e�az2�b=z2 dz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=4aÞ

p
e�

ffiffiffiffiffiffi
4ab
p

from 3.325 of
(Gradshteyn and Ryzhik, 1965), we thus obtain

Nsen ¼ N0e
vx0=2D exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x2

0

4D
1�

4Dk

v2

� �s" #

¼ N0e
Pe exp½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2ð1� �1Þ

p
�, ð14Þ

which is plotted in Fig. 3 for the case N0 ¼ 1 and Pe ¼ 10.
This result for Nsen holds only for �1o1; this is the

regime where the cell population eventually becomes
senescent so that the total number of senescent cells
produced during the evolution is finite. When �151, the
leading behaviors of the two exponential factors in Eq. (14)
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cancel and Nsen ! ð1þ �1=2PeÞ. Thus, as �1! 0 (no
division), the initial cell immediately becomes senescent
so that the total number of senescent cells that are
produced equals one. This unrealistic result arises because
in the continuum description telomeres can shrink to zero
length before any cell division can occur. On the other
hand, for �141, the population is immortal and an infinite
number of senescent cells are produced during the
evolution.

2.2. Telomere length distribution

A curious aspect of the population of dividing cells is the
dependence of the cell density on telomere length as
t!1. For any number of telomeres per cell M, the
telomere length distribution is independent of this number,
since the distribution is simply proportional to cðx; tÞ in
Eq. (A.2). In the t!1 limit, we then obtain

cðx; t!1Þ /
xx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðDtÞ3

q e�ðv
2=4DÞt�vðx�x0Þ=2D

/ xe�vx=2D. ð15Þ

Thus, apart from an overall time-dependent factor, the
density of dividing cells in which the constituent telomere
has length x is linear in x for small lengths and has an
exponential cutoff for large lengths. From the distribution
given in Eq. (15), the mean telomere length goes to a
constant for large times:

hxi ¼

R1
0 xcðx; tÞdxR1
0

cðx; tÞdx
!

4D

v
, (16)

independent of whether the total cell population is growing
or decaying. The variance of the telomere length also
approaches a constant

hx2i � hxi2!
8D2

v2
. (17)

A more pedantic way to arrive at this same result is to
compute the exact time-dependent mean telomere length
hxðtÞi using Eq. (A.2) for cðx; tÞ and then taking the t!1

limit. In summary, the mean telomere length is time
independent, as predicted by the asymptotic form of the
telomere length distribution in Eq. (15). We emphasize that
this result pertains to the fraction of cells that are active. If
all cells—senescent and active—are included in the average,
then hxi would asymptotically decay with time.

2.3. Mean proliferative potential and immortality

As discussed above, for �Mo1, all cells eventually
become senescent. However, for �M41, a subpopulation
of infinitely dividing cells arise so that the average cell
population becomes immortal. We make this statement
more precise by computing the average lifetime of the
population for �Mo1. This lifetime is defined as the
average age of each cell when it becomes senescent and is
thus given by

hti ¼

R1
0 tJðtÞdtR1
0 JðtÞdt

¼

R1
0 tektF ðtÞSM�1ðtÞdtR1
0 ektF ðtÞSM�1ðtÞdt

, (18)

where we use (9) for JðtÞ, the number of cells that become
senescent at time t. More simply, the mean proliferative
potential (lifetime) can also be obtained from the total
number of senescent cells via hti ¼ ð@=@kÞ lnNsen.
Using the general definition of Eq. (18), it is straightfor-

ward to compute higher moments of the lifetime for the
case M ¼ 1. Here, the integrals in (18) can be written in
terms of the modified Bessel functions of the second kind
(see Gradshteyn and Ryzhik, 1965 #12 in 3.471) to give

htgi ¼
x2
0

v2ð1� �1Þ

� �g=2
Kg�1=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1
p

Pe=2Þ

K�1=2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1
p

Pe=2Þ
, (19)

where g does not necessarily have to be an integer. Using
this general formula the variance of the lifetime is

ht2i � hti2 ¼
2Dx0

v3ð1� �1Þ
3=2

. (20)

In fact, the nth cumulant can be obtained simply from the
general formula (vanKampen, 1997)

Cn ¼
@n lnNsen

@kn .

Therefore, for the higher moments of the lifetime, the
diffusion coefficient does play an essential role.
For M ¼ 1, we immediately obtain from Eq. (14)

hti ¼
x0

v

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1
p . (21)

Thus, the mean cell proliferative potential diverges to
infinity as �1! 1 from below. This result for the number of
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cell divisions before senescence is one of our primary
results. Notice that in the case of no cell division (k ¼ 0,
�1 ¼ 0) the average lifetime hti ¼ x0=v. That is, hti coincides
with the time for a biased diffusing particle to be convected
to the origin. It is surprising at first sight that diffusion
plays no role in determining the average number of cell
divisions. Exactly the same type of result arises for the
discrete random walk with a bias v (Gikhman and
Skorokhod, 1969; Karlin and Taylor, 1975; Nisbet and
Gurney, 1982).

2.4. Senescence plateau

A useful characterization of the number of cell divisions
distribution function of a population is the senescence rate

mðtÞ. The senescence (or mortality) rate is the ratio of the
number of cells that become senescent at time t to the total
number of cells that are still dividing at this time.
Equivalently, the senescence rate is the probability that a
randomly chosen dividing cell becomes senescent at the
next moment. The senescence rate is thus given by

mðtÞ ¼
JðtÞ

NðtÞ
, (22)

where the number of dying cells JðtÞ and dividing cells NðtÞ

are given by Eqs. (9) and (6), respectively. Substituting
these expressions into (22), we find that the senescence rate
is independent of the number of telomeres per cell M, i.e.

mðtÞ ¼
F ðtÞ

SðtÞ
¼ �

@ lnSðtÞ

@t
. (23)

Using the asymptotic form of SðtÞ given in (A.6), the
senescence rate approaches a time-independent value in the
long-time limit and is given by

mðtÞ ’
v2

4D
þ

3

2t
þ O

1

t2

� �
. (24)

Amazingly, as the cell population ages, the senescence
rate of the cells that remain dividing ultimately tends
to a constant value for large times. This phenomenon is
known as the mortality plateau. Namely, the probability
that the somatic cells of an organism become senescent
becomes independent of its age in the long-time limit. This
surprising fact was observed experimentally in human
populations (Vaupel, 1997) and for fruit flies (Carey
et al., 1992). It was also observed numerically in a model
of aging that is similar to ours (Weitz and Fraser, 2001).
The existence of such a senescence plateau is actually
typical of a wide range of Markov processes (Steinsaltz and
Evans, 2007).

3. Summary

We studied an idealized model for the dynamics of
telomere lengths during cell division that is based on a
systematic basal loss and a stochastic component to the
evolution that arises from T-SEE. This model captures
essential features of telomere dynamics in cell cultures.
Because of the competing influences of cell division, which
obviously increases the number of proliferative cells, and
the general trend of telomere shortening, we showed that
there is a phase transition between a normal state where a
cell culture becomes senescent to a new state where a cell
culture can become immortal.
From our theory, we were able to answer the basic

questions posed in the Introduction. Specifically:
(i)
 We determined the condition for whether a cell
population ultimately becomes senescent or whether
it continues to divide ad infinitum. The transition
between these two regimes is given by the condition
�M ¼ 1, where �M ¼ 4Dk=Mv2 is a dimensionless
measure of the relative effect of cell division, random
fluctuations, and basal loss in the length evolution of a
telomere.
(ii)
 We also found that for the case of M ¼ 1 telomere per
cell, the mean time for a cell population to become
senescent is

hti ¼
x0

v

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1
p

for �1o1. Here, x0 is the initial length of the telomere,
v is the amount by which the telomere shrinks by basal
loss in each division, and �M � 4Dk=Mv2 is a
dimensionless measure of the relative importance of
cell division to basal loss.
(iii)
 Finally, we found that the total number of cells
produced before the entire cell culture becomes
senescent becomes extremely large as � approaches its
critical value from below, as presented in Eq. (14).
Our results may be helpful for understanding how
ALT cells maintain their telomeres. In these cells, increased
T-SCE rate, wide telomere size distribution, and increased
cell lifetimes have been observed (Reddel, 2003). These
observations are all natural outcomes from our model.
How these results depend on the number of short telomeres
and on the details of the T-SCE process are very important
questions that are under investigation.
Acknowledgements

Much of this work was performed when S.R. was on
leave at the CNLS at Los Alamos National Laboratory.
He thanks the CNLS for its hospitality and P. Ferrari for
encouragement. K.B.B. thanks E.H. Goodwin for the
useful discussions. We also gratefully acknowledge finan-
cial support from NIH Grant R01GM078986 (T.A.) and
Jeffrey Epstein for support of the Program for Evolu-
tionary Dynamics at Harvard University, DOE Grant DE-
AC52-06NA25396 (K.B.B. and S.A.T.), and NSF Grant
DMR0535503 and DOE Grant W-7405-ENG-36 (S.R.).



ARTICLE IN PRESS
T. Antal et al. / Journal of Theoretical Biology 248 (2007) 411–417 417
Appendix A. First-passage for biased diffusion

We recall some basic results about first-passage for
biased diffusion on the positive half line x40 (Redner,
2001) that will be used to describe cell proliferation
statistics. According to Eq. (1), the length of each telomere
undergoes biased diffusion, in the continuum limit, with
positive bias (v40) defined to be directed towards smaller
telomere length x. An absorbing boundary condition at the
origin imposes the constraint that when x reaches zero the
cell effectively becomes senescent and is thus removed from
the population of dividing cells.

Let cðx; tÞ be the concentration of diffusing particles at x

at time t. The concentration evolves by the convection–
diffusion equation

@cðx; tÞ

@t
¼ v

@cðx; tÞ

@x
þD

@2cðx; tÞ

@x2
. (A.1)

For the initial condition cðx; t ¼ 0Þ ¼ dðx� x0Þ, corre-
sponding to a single particle starting at x0, the concentra-
tion at any later time is (Redner, 2001)

cðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p ½e�ðx�x0þvtÞ2=4Dt

� eþvx0=De�ðxþx0þvtÞ2=4Dt�. ðA:2Þ

The second term represents the ‘‘image’’ contribution;
notice that the bias velocity of the image is in the same
direction as that of the initial particle. The exponential
prefactor in the image term ensures that the absorbing
boundary condition cðx ¼ 0; tÞ ¼ 0 is always fulfilled.

From this concentration profile, the first-passage prob-
ability, namely, the probability for a diffusing particle to
hit the origin for the first time at time t, is

F ðtÞ ¼ D
@c

@x
� vc

����
x¼0

¼
x0ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDt3
p e�ðx0�vtÞ2=4Dt. (A.3)

The convective contribution to the flux, �vc, gives no
contribution because c ¼ 0 at x ¼ 0. Until the particle hits
the boundary it stays in the system; hence, its survival
probability is simply

SðtÞ ¼

Z 1
0

cðx; tÞdx ¼
1

2
erfc

vt� x0ffiffiffiffiffiffiffiffi
4Dt
p

� ��

�evx0=Derfc
vtþ x0ffiffiffiffiffiffiffiffi

4Dt
p

� ��
, ðA:4Þ

where erfcðzÞ is the complementary error function. Since
there is only one absorbing point in the system, the survival
probability and the first-passage probability are related by

F ðtÞ ¼ �
dSðtÞ

dt
. (A.5)

From the asymptotics of the error function (Abramowitz
and Stegun, 1970), erfcðzÞ�e�z2=

ffiffiffi
p
p

z, the long-time
behavior of SðtÞ is given by

SðtÞ�

ffiffiffiffiffiffi
Dt

p

r
2x0

ðvtÞ2 � x2
0

ekte�ðvt�x0Þ
2=4Dt

�

ffiffiffiffi
D

p

r
2x0

v2
evx0=2Dt�3=2e�ðv

2=4DÞt. ðA:6Þ

As expected intuitively, the survival probability asympto-
tically decays exponentially with time because the bias
drives the particle towards the absorbing point. This result
is used in Eqs. (6) and (7) to determine the number of active
cells as a function of time.
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