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We study the starvation of a lattice random walker in which each site initially contains one food
unit and the walker can travel S steps without food before starving. When the walker encounters
food, the food is completely eaten, and the walker can again travel S steps without food before
starving. When the walker hits an empty site, the time until the walker starves decreases by 1. In
spatial dimension d = 1, the average lifetime of the walker 〈τ〉 ∝ S, while for d > 2, 〈τ〉 ≃ exp(Sω),
with ω → 1 as d → ∞. In the marginal case of d = 2, 〈τ〉 ∝ Sz, with z ≈ 2. Long-lived walks
explore a highly ramified region so they always remains close to sources of food and the distribution
of distinct sites visited does not obey single-parameter scaling.
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Searching for a randomly located resource is an essen-
tial task of all living organisms [1–9]. Examples include
searching for nourishment, an abode, or a particular in-
dividual. Stochastically driven search processes also un-
derlie diffusion-controlled reactions [10] and a variety of
physiological processes [11]. In all these examples, the
time for a successful search is the typical metric that
the organism is trying to optimize. A related aspect of
stochastic search is the tradeoff between continued ex-
ploitation of a familiar resource or the exploration of new
domains for potentially more fruitful resources [12].

Motivated by the rich phenomenology of stochastic
search, we introduce a minimal search model that is
based on the as yet unexplored feature of depletion. In
our model, a random walker gradually depletes the re-
source contained in a medium—here a d-dimensional lat-
tice with a unit of food initially at each site—as it moves.
The walker has an intrinsic starvation time S, defined as
the number of steps it can take without encountering
food before starving to death. If the walker encounters
a food-containing site, the walker instantaneously and
completely consumes the food and can again travel S ad-
ditional steps without eating before starving. Each time
the walker encounters an empty site, it comes one time
unit closer to starvation.

We focus on two key observables of starving random
walks: the average lifetime 〈τ〉 and the average number
〈N〉 of distinct sites visited when starvation occurs. In
dimension d = 1, 〈τ〉 ∝ S and we determine the distribu-
tion of N at starvation, P (N ). For d > 2, the transience
of the random walk leads to τ scaling as exp(Sω), with
ω → 1 as d → ∞. When successive visits to new sites are
uncorrelated, corresponding to d = ∞, we find τ ∼ ekS ,
with k exactly calculable. In d = 2, numerical simula-
tions suggest that τ ≃ Sz, with z ≈ 2. We develop a
mean-field approximation for d = 2 that gives a rigorous
lower bound for τ and suggests that P (N ) does not obey
single-parameter scaling, as seen in our simulations.

Our mortality mechanism differs from previous models
in which a random walker can die or be absorbed at a
fixed rate, independent of its location [13–16]. Here, the
lifetime distribution of a random walker is not given a

priori but is generated by the random-walk trajectory,
which renders the problem highly non-trivial. It is worth
mentioning the related problem of the “excited” ran-
dom walk, in which the hopping of the walker depends
on whether it has just encountered food or an empty
site [17–22]. While the excited random walk has surpris-
ing behavior, we will show that even when the motion of
the walker is not explicitly affected by the environment
unusual properties arise.
One dimension. As the walker moves, an interval de-

void of food—a desert—is gradually carved out, and the
survival of the walker is controlled by the interplay be-
tween wandering within the desert and reaching food at
the edge of this desert (Fig. 1). For a starving random
walker to survive for times beyond its intrinsic lifetime
S, excursions of more than S steps without food cannot
occur in its past history. Thus a long-lived walk must
spend less time wandering in the interior of a desert than
unrestricted walks, and the mean number of distinct sites
visited should be larger than that for unrestricted ran-
dom walks for the same number of steps N ; the latter
asymptotically scales as

√

8N/π [23, 24].
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FIG. 1: A d = 1 starving random walker clears out an interval
where food (shaded) has been eaten. The walker starves (×)
when it travels S steps without encountering food.

We first determine P (N ), the probability that a ran-
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dom walker has visited N distinct sites when it starves.
This probability can be expressed as

P (N ) = Q2 Q3 Q4 . . . QN (1−QN+1) , (1)

where Qj =
∫ S
0
dt Fj(t), and Fj(t) is the probability that

the walker reaches either end of an interval of length ja
(with a the lattice spacing) within S steps when starting
a distance a from one end. Each Qj accounts for the
interval growing from length j−1 → j because the walker
reaches either endpoint within S steps, while the factor
QN+1 accounts for the last excursion in which the walker
starves.
In the long-time limit, we use the continuum expression

for Fj(t) [25]:

Fj(t) =
4πD

(ja)2

∑

n≥0

(2n+ 1) en(j/
√
t) sinλj,n , (2)

where D ≡ a2/2 is the diffusivity of the corresponding
continuous process, λj,n ≡ (2n+1)π/j, and en(j/

√
t) ≡

exp
[

−(2n+ 1)2π2Dt/(ja)2
]

. Consequently,

Qj =

∫ S

0

dt Fj(t) = 1− 4

π

∑

n≥0

en(j/
√
S) sinλj,n

2n+ 1
. (3)

This expression for Qj , together with Eq. (1), provides
a formal solution for the distribution of the number of
distinct sites visited at the starvation time.
To obtain the explicit result, we start by taking the

logarithm of UN ≡ ∏

2≤j≤N Qj :

lnUN =
∑

2≤j≤N
ln
[

1− 4

π

∑

n≥0

en(j/
√
S) sinλj,n

2n+ 1

]

. (4)

We now convert the outer sum to an integral, intro-
duce the variable z ≡ j/

√
S, and, for S ≫ 1, replace

sinλj,n/(2n+ 1) by π/j. These steps give

lnUN ≃
√
S
∫ N/

√
S

0

dz ln
[

1− 4

z
√
S

∑

n≥0

en(z)
]

. (5)

Expanding the logarithm, which applies for large S, gives

lnUN ≃ −4

∫ N/
√
S

0

dz

z

∑

n≥0

en(z),

= −2
∑

n≥0

E1

[

(2n+ 1)2/θ2
]

, (6)

where θ = aN/(π
√
DS) is the scaled number of distinct

sites visited and E1 is the exponential integral, which is
defined as E1(x) ≡

∫∞
1

dt e−xt/t.
Similarly, the factor 1 − QN+1 in (1) has the limiting

behavior for S ≫ 1

1−QN+1 ≃
∑

n≥0

4a

πθ
√
DS

e−(2n+1)2/θ2

, (7)

so that the distribution of θ is

P (θ) =
4

θ

∑

n≥0

exp
{

− (2n+ 1)2

θ2
−2

∑

n≥0

E1

[ (2n+ 1)2

θ2

]}

.

(8)
From this result, the average number of visited sites at
the starvation time is

〈N〉 ≃ π
√
DS
a

∫ ∞

0

θ P (θ) dθ ≈ A
√
S , (9)

with A ≈ 2.90222. As mentioned above, this exceeds the
number of distinct visited for the unrestricted random
walk after N = S steps, where the amplitude is

√

8/π ≈
1.5957 . . ..
The average lifetime 〈τ〉 of starving random walks is

formally given by

〈τ〉 =
∑

j≥1

(

〈τ1〉+ 〈τ2〉+ · · ·+ 〈τj〉+ S
)

P (j) , (10)

where 〈τj〉 is the average time for the random walk to hit
either end of the interval in the jth excursion, conditioned
on the walker hitting either end before it starves, while
the factor S accounts for the final excursion that causes
the walker to starve. By definition

〈τj〉 =
∫ S
0
dt t Fj(t)

∫ S
0
dt Fj(t)

, (11)

The numerator, defined as Nj , reduces to

Nj =
4πD

(ja)2

∑

n≥0

(2n+1) sinλj(n)

∫ S

0

dt t e−βt , (12)

with β ≡ λ2
j,n/(ja)

2.
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FIG. 2: Average number of distinct sites visited 〈N〉 (◦) and
average lifetime 〈τ〉 (△) for 106 realizations of starving ran-
dom walks in one dimension at the starvation time versus S.
The dashed lines are the respective asymptotic predictions of
〈N〉 ∼ 2.90222

√
S and 〈τ〉 ∼ 3.26786 S.

For large j, we again approximate the sine function by
its argument and perform the temporal integral to give

Nj ≃
4a2

π2D

∑

n≥0

1

(2n+ 1)2
[

1− e−βS(1 + βS)
]

. (13)
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FIG. 3: The scaled distribution of number of distinct sites
visited for three representative values of S. The curve is the
theoretical prediction from Eq. (8) and the data are based on
106 walks for each value of S.

Using this in Eq. (11) leads to 〈τ〉 ≃ 3.26786 S. These
results for the number of distinct sites visited and the
lifetime agree with numerical simulations shown in Fig. 2.

Large Dimensions. When d > 2, a random walk is
transient, so that new sites are visited at a non-zero
rate [23–25]. Thus a walker is unlikely to first create
a local desert and then wander strictly within this desert
until it starves, so that its survival time should be much
longer than in d = 1 at the same value of S.
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FIG. 4: Evolution of a high-dimensional random walk in star-
vation space. A particle at position n in this space can survive
n additional steps without encountering food.

For d = ∞, the probability of hitting a previously vis-
ited or a previously unvisited site at each step follows a
Poisson process with respective rates that we define as
λ and 1 − λ. Schematically, the time until the walker
starves undergoes one-dimensional hopping in “starva-
tion space”—an interval of length S—and starvation oc-
curs when 0 is reached (Fig. 4). A particle at site n in
starvation space can wander in physical space another n
steps without encountering food before it starves. When
the walker hits a previously visited site in physical space,
the time to starvation decreases by one time unit, corre-
sponding to a hop to the left with rate λ in starvation
space. Conversely, when the random walker encounters
a new food-containing site, it can wander an additional
S steps until starvation occurs, corresponding to a long-
range rightward hop to site S in starvation space with
rate 1− λ.

Using this equivalence to hopping in starvation space,
we now compute tn, the average time until the walker

starves when starting from site n. These starvation times
satisfy the recursions [25]

tn = 1 + λtn−1 + (1− λ)tS 2 ≤ n ≤ S ,

t1 = 1 + (1− λ)tS , (14)

from which

tS = 〈τ〉 = 1

λS

(1− λS

1− λ

)

. (15)

The high-dimensional limit corresponds to λ → 0, for
which the average starvation time grows exponentially
with S, in contrast to the linear dependence found in
d = 1.
We may also obtain the distribution of the number of

distinct sites visited by the walker in physical space at
the starvation time. For this quantity, we need the prob-
ability Rn that the walk reaches S without first hitting
0, when starting from site n in starvation space. Each
such return corresponds to the random walker visiting a
new site in physical space without starving. These return
probabilities satisfy the recursions

Rn = (1− λ) + λRn−1 2 ≤ N ≤ S ,

R1 = (1− λ) , (16)

with solution Rn = (1− λ)n.
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FIG. 5: Logarithm of the average starvation time 〈τ〉 versus
S for starving random walks in d = 3, 4, and 5. Data are
based on 106 for each value of S.

For a walker that starts at site S in starvation space,
the probability that N distinct sites are visited before
the walker starves is given by

P (N ) = (RS)
N (1−RS) , (17)

from which the average number of distinct sites visited
before the walker starves is

〈N〉 = RS
1−RS

= λ−S(1− λ−S) , (18)

which is the same as 〈τ〉 from Eq. (15), except for the
factor of 1− λ.
Numerical simulations for d > 2 give ln〈τ〉 ∼ Sω with

ω = 0.54, 0.73, and 0.81 in d = 3, 4, 5 (Fig. 5). Even
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though a random walk is transient for d > 2, so that
there is a finite rate of visiting new sites, temporal corre-

lations between successive visits to new sites lead to 〈τ〉
not conforming to the mean-field result given in Eq. (15).
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FIG. 6: Example two-dimensional trajectories for S = 500. The lifetime τ of each walk is indicated.

Two Dimensions. The two-dimensional system is enig-
matic because it is at the critical dimension between re-
currence and transience, and it is more relevant to model
the movement of an animal that wanders in an ecosystem
to find food. Sample random-walk trajectories are shown
in Fig. 6 for intrinsic lifetime S = 500. The trajectories of
short-lived walks are compact, while those of long-lived
walks are quite stringy so that the walker remains close
to food-containing sites.
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FIG. 7: The scaled distribution of number of distinct sites
visited for 4 representative value of S. The data have been
averaged over a 15-point range and only every fifth data point
is displayed. All data are based on 106 for each value of S.

An unexpected feature in two dimensions is that the
underlying distribution of N does not satisfy single-
parameter scaling (Fig. 7). We have developed a mean-
field description for the evolution of starving random
walks in two dimensions that relies on the assumption
that the desert remains circular at all times [26]. While
this assumption is unrealistic, this approach provides rig-
orous lower bounds for both the average number of dis-
tinct sites visited at starvation, 〈N〉 ∝ S/ lnS, and for

the average lifetime, 〈τ〉 ∝ S3/2/(lnS)3. This theory
also predicts that P (N ) does not satisfy single-parameter
scaling, as observed in our simulations.

To summarize, starving random walks represents a
minimalist description of the consumption of a deplet-
ing resource by a stochastic searcher. The motion of the
walker is limited by the number of steps S that it can
take without encountering food before starving. The spa-
tial dimensionality plays a crucial role in the dynamics,
as the lifetime of a starving random walker grows faster
than algebraically in S for d > 2 and algebraically with
S for d ≤ 2. We also obtained comprehensive results for
the starvation dynamics in d = 1. The two-dimensional
case is quite challenging, as the distribution of the dis-
tinct sites visited does not seem to obey scaling, and the
region visited by the random walker is spatially complex.
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