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Abstract. We study the splitting probabilities for a one-dimensional Brownian
motion in a cage whose two boundaries move at constant speeds c1 and c2. This
configuration corresponds to the capture of a diffusing, but skittish lamb, with an
approaching shepherd on the left and a precipice on the right. We derive compact
expressions for these splitting probabilities when the cage is expanding. We also
obtain the time-dependent first-passage probability to the left boundary, as well as the
splitting probability to this boundary, when the cage is either expanding or contracting.
The boundary motions have a non-trivial impact on the splitting probabilities, leading
to multiple regimes of behavior that depend on the expansion or contraction speed of
the cage. In particular, the probability to capture the lamb is maximized when the
shepherd moves at a non-zero optimal speed if the initial lamb position and the ratio
between the two boundary speeds satisfy certain conditions.

PACS numbers: 02.50.Ey, 05.40.Jc
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1. Introduction

A lamb escapes from a farm and has the bad idea to roam near a precipice. The shepherd
wonders what is the best strategy to catch her lamb alive. Indeed, the lamb wanders
randomly when the shepherd stays still. However the lamb is skittish and moves away
from the shepherd and toward the precipice whenever the shepherd approaches. Should
the shepherd stay still and hope the lamb will come to her, or should she walk toward
the lamb and hope that she reaches the lamb before it goes over the precipice?
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Figure 1. Equivalent formulations of the lamb capture process. (a) Shepherd’s
reference frame: the lamb and the precipice drift toward the shepherd at speeds αc and
c. (b) Reference frame where the lamb only diffuses: the shepherd and the precipice
approach the lamb at speeds c1 = αc and c2 = (1− α)c.

If the shepherd walks toward the lamb with speed c, we assume that the lamb
moves away at a slower speed (1 − α)c, with 0 6 α 6 1, that is superimposed on its
diffusive motion. In the reference frame of the shepherd (Fig. 1(a)), the lamb diffuses
and approaches the shepherd with speed αc. However, the precipice also approaches the
lamb with speed (1 − α)c. Initially, the lamb is at x0, the precipice is at L0, while the
shepherd is fixed at the origin. The probability that the lamb and shepherd meet before
the lamb goes over the precipice coincides with the splitting probability for the lamb to
eventually reach the origin. In turn, this latter problem is equivalent to the splitting
probability for unbiased diffusion that starts at x′0 = x0−L0/2 to reach the left edge of
an asymmetrically contracting cage, whose left and right edges are at −L0/2+c1t and
L0/2−c2t, respectively, with c1 = αc and c2 = (1−α)c (Fig. 1(b)). While the contracting
cage is the relevant situation for the lamb capture problem, we also investigate the case
of the expanding cage. Although the value of α does not need to be restricted, we study
the range α ∈ [0, 1], where the splitting probability has the richest behavior.

Conditional exit from a fixed interval is a classic problem of random-walk theory
[1–4]. The role of a moving boundary has been considered recently, e.g., a diffusing or
an oscillating trap at the edge of the interval [5–7]. For ballistically moving boundaries,
which is our focus, the infinite-time survival probability in an asymmetrically expanding
cage and the time-dependent survival probability in a symmetrically expanding cage
were investigated by Bray and Smith [8, 9]. Here we derive exact expressions for the
first-passage probability at any time and the splitting probabilities to one of the edges
of the cage when each wall moves ballistically at an arbitrary speed. Contracting and
expanding cages are considered. The surprising consequence of our results is that the
splitting probabilities depend non-monotonically on the speed c for a range of initial
conditions and α values.
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In Sec. 2, we derive the splitting probability in an expanding cage. In Sec. 3, we
determine the first-passage probability at any time and the splitting probability to one
of the boundaries for both an expanding and contracting cage. Finally, in Sec. 4, we
demonstrate that the splitting probability can have a non-monotonic dependence on
the speed c. Using these results, we answer the shepherd’s question of what is the best
strategy to capture the lamb.

2. Expanding Cage

It is convenient to treat the problem in the reference frame of the left boundary
(Fig. 1(a)), where the Brownian particle drifts to the right with speed αc and the
right boundary also drifts to the right with speed c. Thus the right boundary is located
at L(t) = L0+ct > L0. We focus on the splitting probability to reach the left edge of an
expanding cage Le(x0, L0) as a function of the initial particle position x0 and the initial
interval length L0 (with Re the splitting probability to the right edge). Following the
approach of Ref. [8], the backward Fokker-Planck equation for the splitting probability
is

D
∂2Le

∂x20
+ αc

∂Le

∂x0
+ c

∂Le

∂L0

= 0 , (1a)

or, by introducing the rescaled variables y = cx0/D and λ = cL0/D,

∂2Le

∂y2
+ α

∂Le

∂y
+
∂Le

∂λ
= 0 , (1b)

with 0 6 y 6 λ and the boundary conditions Le(0, λ) = 1 and Le(λ, λ) = 0.
In the spirit of [8], we seek a solution of the form

Le(y, λ) =
∑
n∈Z

[
ane

ny+bne
−(n+α)y]e−(n+α)nλ. (2)

The left boundary condition Le(0, λ) = 1 leads to

Le(0, λ) =
∑
n∈Z

(an + bn)e
−n(n+α)λ = 1 , (3a)

while the right boundary condition Le(λ, λ) = 0 gives

Le(λ, λ) =
∑
n∈Z

[
ane

nλ + bne
−(n+α)λ]e−(n+α)nλ = 0 .

By shifting the index of the second sum, n→ n− 1, and after some simple algebra, the
condition above can be written as

Le(λ, λ) =
∑
n∈Z

(an + bn−1)e
n(1−n−α)λ = 0 . (3b)
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Since Eqs. (3) hold for all λ, we obtain the following relations for the coefficients in (2):
a0 + b0 = 1 ,

an + bn = 0 ∀n 6= 0 ,

an + bn−1 = 0 ∀n .
(4)

If the initial cage length L0 →∞ and the initial position of the particle is far from
either boundary, then the splitting probability Le → 0. Using these facts in (2) imposes
a0 = 0. Together with the relations (4), we finally obtain the splitting probability to
the left edge:

Le(y, λ) = e−αy +
∞∑
n=1

[
e−(n+α)y − eny

]
e−n(n+α)λ . (5)

Note that the splitting probability to the right edge can be obtained from (5) by
Re(y, λ)

∣∣
α
= Le(λ− y, λ)

∣∣
1−α.

To obtain the solution in the second formulation where an unbiased Brownian
particle starts at x′0 = x0−L0/2 in a cage whose boundaries are located at −L0/2−c1t
and L0/2+c2t at time t (Fig. 1(b)), we replace α, c and x0 with their corresponding
expressions in terms of c1, c2 and x′0 to give

Le(x′0, L0) = e−c1(2x
′
0+L0)/2D +

∞∑
n=1

e−n[n(c1+c2)+c1]L0/D

×
{
e[−n(c1+c2)+c1](2x

′
0+L0)/2D − e[n(c1+c2)](2x′0+L0)/2D

}
. (6)

When the initial interval length L0 � 1, the splitting probability is well approximated
by its first term

Le(x′0, L0) ∼ e−c1(2x
′
0+L0)/2D, (7)

which is exponentially larger than all higher-order terms in the series in (6).
As a useful counterpoint, we can recover this last result by applying the “free

approximation” [4, 10], in which the concentration within the interval is assumed to
retain the same Gaussian form as a diffusing particle on the infinite line with no imposed
boundary conditions. This approximation relies on the boundaries being outside the
range where the probability distribution is appreciable. Thus we assume that the
concentration profile is

c(x, t) =
A(t)√
4πDt

e−(x−x
′
0)

2/4Dt ,

where the unknown amplitude A(t) accounts for the loss of probability within the domain
and should be determined self consistently. In this free approximation, the flux at any
point in space is

j = −D∂c

∂x
=
A(t)(x− x′0)√

16πDt3
e−(x−x

′
0)

2/4Dt.

Thus the total flux leaving the cage is the sum of the flux at the two boundaries:

φ(t) = |j1|+ j2 = D
∂c

∂x

∣∣∣∣
x=−L0

2
−c1t
−D ∂c

∂x

∣∣∣∣
x=

L0
2
+c2t

.
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From the exiting flux, the rate equation for the overall amplitude A(t) is

dA

dt
= −A

[
L0

2
− x′0 + c2t√
16πDt3

e−(
L0
2
−x′0+c2t)2/4Dt +

L0

2
+ x′0 + c1t√
16πDt3

e−(
L0
2
+x′0+c1t)

2/4Dt

]
. (8)

Integrating this equation to finite time, the amplitude is

lnA(t) = −e
−c2(L0−2x′0)/2D

2
erfc

(
L0

2
−x′0−c2t√
4Dt

)
− e−c1(L0+2x′0)/2D

2
erfc

(
L0

2
+x′0−c1t√
4Dt

)
.

(9)

For t→∞, this expression reduces to

A(t=∞) = exp
[
−e−c2(L0−2x′0)/2D − e−c1(L0+2x′0)/2D

]
∼ 1− e−c2(L0−2x′0)/2D − e−c1(L0+2x′0)/2D L0 →∞ . (10)

Here A(t=∞) represents the large-time limit of the survival probability, namely, the
probability that the particle has not touched either of the boundaries. It can thus be
written as A(t=∞) = 1− Le(x′0, L0)−Re(x′0, L0), which finally leads to

Le(x′0, L0) ∼ e−c1(L0+2x′0)/2D Re(x′0, L0) ∼ e−c2(L0−2x′0)/2D , (11)

in agreement with Eq. (7).
Unfortunately, this backward Fokker-Planck approach does not seem to be

adaptable to a contracting cage. In this case, the general solution involves a complex
exponential dependence in y. Therefore, the device used to simplify the right boundary
condition to the form given in (3) no longer holds. To obtain the splitting probability
in this case, we apply a more general framework following the methods of [9, 10].

3. Contracting and Expanding Cage

We now turn to the general case of a cage that can be either contracting or expanding.
Again, we study the problem in the reference frame of the left boundary that is fixed
at x = 0. For the expanding cage, the right boundary moves to the right at speed c

and the particle drifts to the right with speed αc in addition to its diffusion. For the
contracting cage, the right boundary and the particle both drift to the left. Let x denote
the position of the particle at time t. We first compute the propagator p(x, t) for the
particle in this cage, viz., the probability for the particle to be at x at time t, by solving
the forward Fokker-Planck equation (see, e.g., [4])

∂p

∂t
± αc∂p

∂x
= D

∂2p

∂x2
, (12)

with the initial and boundary conditions p(x, 0) = δ(x−x0) and p(0, t) = p
(
L(t), t

)
= 0,

and with L(t) = L0 ± ct. Here the upper sign corresponds to the expanding cage and
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the lower sign to the contracting cage throughout this section. For the contracting cage
the process stops when the two boundaries meet at t = L0/c.

When the boundaries are immobile, so that the cage length L(t) = L0 is constant,
the elemental solutions of the Fokker-Planck equation with these boundary conditions
are well known [4]

fn(x, t) = sin

(
nπx

L0

)
exp

(
±αcx

2D
− α2c2t

4D
− n2π2Dt

L2
0

)
with n ∈ N.

To account for the interval length changing linearly with time, we follow the method
employed in [10] and adapted by Bray and Smith [9] and postulate a solution to Eq. (12)
with absorbing boundary conditions at x = 0 and x = L(t) of the form

pn(x, t) = g(x, t) sin

(
nπx

L(t)

)
exp

(
± αcx

2D
− α2c2t

4D

)
exp

(
− n2π2D

∫ t

0

dt′

L2(t′)

)
. (13)

Substituting this trial function into Eq. (12), we obtain(
D
∂2g

∂x2
− ∂g

∂t

)
tan

(
nπx

L(t)

)
= − nπ

L(t)

(
2D

∂g

∂x
± cx

L(t)
g

)
. (14)

We notice, as done in [9], that we can seek a form for g(x, t) that cancels both the
left- and right-hand sides of (14). Thus g(x, t) must simultaneously solve

D
∂2g

∂x2
=
∂g

∂t
,

2D
∂g

∂x
= ∓ cx

L(t)
g .

These equations imply that the function g(x, t) has the form

g(x, t) =
K√
L(t)

e∓x
2c/4DL(t) , (15)

with K a constant. The general solution can now be written as a superposition of the
basis functions pn(x, t):

p(x, t) =
∑
n∈N

an√
L(t)

sin

(
nπx

L(t)

)
exp

(
∓ x2c

4DL(t)
± αcx

2D

)
exp

(
− α2c2t

4D
− n2π2Dt

L0L(t)

)
.

(16)
For the initial condition p(x, 0) = δ(x− x0), we use the identity∑

n∈N

sin

(
nπx

L0

)
sin

(
nπx0
L0

)
=
L0

2
δ(x− x0),

for 0 6 x, x0 6 L0 to finally obtain the solution for the given initial condition as

p(x, t) =
∑
n∈N

2√
L0L(t)

sin

(
nπx

L(t)

)
sin

(
nπx0
L0

)
× exp

(
∓ c(x2 − x20)

4DL(t)
± αc(x−x0)

2D
− α2c2t

4D
− n2π2Dt

L0L(t)

)
. (17)
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The first-passage probability F to the left edge of the cage is therefore

F (0, t) = D
∂p

∂x

∣∣∣
x=0

,

=
∑
n∈N

2nπD√
L0L3(t)

sin

(
nπx0
L0

)
exp

(
± cx20

4DL0

∓ αcx0
2D
− α2c2t

4D
− n2π2Dt

L0L(t)

)
. (18)

The splitting probability to the left edge is the time integral of this first-passage
probability. As noted previously, the temporal integration range depends on the sign of
the speed. Finally, the splitting probabilities for the contracting and expanding cage,
Lc and Le, respectively, are

Lc(x0, L0) =

∫ L0/c

0

dt F (0, t) =
∑
n∈N

2nπD

c
√
L0

sin
(nπx0
L0

)
e−c(x0−αL0)2/4DL0

× en2π2D/cL0

∫ L0

0

dL

L3/2
exp

(α2cL

4D
− n2π2D

cL

)
, (19a)

Le(x0, L0) =

∫ ∞
0

dt F (0, t) =
∑
n∈N

2nπD

c
√
L0

sin
(nπx0
L0

)
ec(x0−αL0)2/4DL0

× e−n2π2D/cL0

∫ ∞
L0

dL

L3/2
exp

(
− α2cL

4D
+
n2π2D

cL

)
. (19b)

Expression (19b) for the splitting probability in an expanding cage can be shown
numerically to perfectly match the simpler form (5) derived by the backward Fokker-
Planck equation.

However, these splitting probabilities are not convenient for numerical evaluation.
Instead, it is expedient to use the Poisson summation formula [11]∑

n∈Z

h(n) =
∑
m∈Z

ĥ(2πm),

with ĥ(x) =
∫ +∞
−∞ dt e−ixtf(t), to give the alternative expression

Lc(x0, L0) =
∑
m∈Z

√
c

4πD
e−c(x0−αL0)2/4DL0

∫ L0

0

dL

(L0−L)3/2
eα

2cL/4D

×exp
[
− cL(4L2

0m
2+x20)

4DL0(L0−L)

]{
x0 cosh

[
cLx0m

D(L0−L)

]
− 2mL0 sinh

[
cLx0m

D(L0−L)

]}
, (20)

which is more suitable for numerical evaluation (and similarly for Le(x0, L0)).

4. Optimal Capture Criterion

We now turn to our original question: what is the optimal strategy for the shepherd to
catch her skittish lamb without driving it over the precipice? In the shepherd’s reference
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frame, the lamb approaches at speed αc while the precipice approaches at a higher speed
c. The probability to catch the lamb in this contracting cage is the splitting probability
Lc(x0, L0) (19a). What speed c maximizes this splitting probability?

Partial conclusions can be drawn by studying the limits of c → 0 and c → ∞. If
c = 0, the splitting probability Lc(x0, L0) is a linear function of its initial position (see,
e.g., [4])

Lc(x0, L0) =
L0 − x0
L0

.

The qualitative behavior of Lc(x0, L0) when c → ∞ can also be easily understood. In
this limit, if the time x0/(αc) for the lamb to reach the shepherd is smaller than the time
(L0−x0)/[(1−α)c] for the precipice to catch up to the lamb, then Lc(x0, L0)→ 1, while
Lc(x0, L0)→ 0 otherwise. These two times match when α = x0/L. Thus in the limit of
large speed, the splitting probability reduces to a step function, with Lc(x0, L0) ≈ 1 for
x0/L < α and Lc(x0, L0) ≈ 0 for x0/L > α .

Let us now focus on the first order of the splitting probability for small speeds. In
this case, the integral over L in Eq. (19a)

I ≡
∫ L0

0

dL

L3/2
exp

(
α2cL

4D
− n2π2D

cL

)
can be developed with respect to c by expanding exp (α2cL/4D) and integrating by
parts. This yields

I ∼ exp

(
−n

2π2D

cL0

)[
c
√
L0

n2π2D
− c2L

3/2
0

2n4π4D2

(
1− n2π2α2

2

)]
. (21)

Then using

∞∑
n=1

(−1)n

n
sin(nz) = −z

2
,

∞∑
n=1

(−1)n

n3
sin(nz) =

z3

12
− π2z

12
,

we obtain the small-speed behavior of the splitting probability:

Le,c(x0, L0) =
L0 − x0
L0

∓ cx0
6D

(L0 − x0)
[
(3α− 1)L0 − x0

]
L2
0

+ o(c). (22)

Here we also quote the limiting form splitting probability for the expanding cage, which
is found from (19b) by the same steps as outlined above.

As a result of the α and x0 dependence of the first-order term in c given above,
Lc(x0, L0) is an increasing function of speed at c = 0 when α > 1

3
(x0/L0+1) and

decreasing otherwise. Combining this fact with the limiting behavior for c → ∞, we
deduce that the splitting probability can be a non-monotonic function of the speed, for
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Figure 2. Splitting probability phase diagram for the (a) contracting and (b)
expanding cage in the speed ratio (α) and initial position (x0) plane. In (a), Lc ≈ 1

for c→∞ above the solid line, while Lc ≈ 0 for c→∞ below. Above the dashed line
Lc is an increasing function of c at c = 0 and a decreasing function below. These lines
delineate four zones of behavior as discussed in the text. In (b), there are two zones.

specific values of x0 and α. This leads to rich behaviors for the splitting probability, as
illustrated in Fig. 2(a).

We can now give advice to the shepherd. There are four distinct strategies,
corresponding to the four zones of Fig. 2(a):

(i) “Dangerous zone” (lower right). Here, either the lamb is very fearful, α � 1, or
sufficiently close to the precipice, α < 1

3
(x0/L0+1) and α < x0/L0, so that Lc

monotonically decreases with c. Thus the optimum strategy for the shepherd is to
not move.

(ii) “Safe zone” (upper left). Here, either the lamb is not very fearful or is sufficiently
close to the shepherd, α > 1

3
(x0/L0+1) and α > x0/L0, so that Lc monotonically

increases with c. The shepherd should run as fast as possible to maximize the
probability to catch the lamb.

(iii) “Optimizable zone” (upper right). Here, the lamb is close to the precipice but not
too fearful, α > 1

3
(x0/L0+1) and α < x0/L0 so that Lc has a maximum as a

function of c. Thus there is an optimal speed that maximizes the probability for
the shepherd to catch the lamb.

(iv) “Dilemma zone” (lower left). Here the lamb is close to the shepherd but also very
fearful, α < 1

3
(x0/L0+1) and α > x0/L0. Thus Lc initially decreases with c before

eventually increasing. Thus if the shepherd is unfit, she should stay still. However,
if she is sufficiently fit, she should run as fast as possible.

For the expanding cage, the splitting probability given in Eq. (22) is now an
increasing function of speed at c = 0 for α < 1

3
(x0/L0+1). Using this small-speed

dependence, together with the limiting behavior Le(x0, L0)→ 0 for large speed, gives the
phase diagram shown Fig. 2(b). There again exists a zone in the phase diagram where the
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splitting probability can be maximized with respect to the speed. Here, the maximum
of the splitting probability arises from the interplay between two competing effects from
the cage expansion. Indeed, consider the complementary probability that the lamb
never reaches the left boundary. The larger the speed, the lower the probability for the
lamb to reach the left boundary. At the same time, the larger the speed, the higher the
probability for the lamb to also not reach the right boundary, which implicitly increases
the probability to reach the left boundary. As a result of these competing effects, there
exists an optimal speed of expansion that maximizes the splitting probability.

Figure 3. Splitting probability to catch the lamb in the (a) “optimizable zone” and
(b) “dilemma zone”. In (a), the splitting probability is increased substantially (by more
than a factor 3 for α = 0.92, x0 = 19, and L0 = 20) when the shepherd moves at the
optimal speed copt instead of staying still. In (b), the probability to catch the lamb is
diminished if the shepherd runs slower than speed c∗. Here the parameter values are
α = 0.08, x0 = 1 and L0 = 20).

5. Conclusion

We analytically determined the splitting probabilities for a one-dimensional Brownian
motion in a cage whose boundaries move at constant speeds c1 and c2. We analyzed
both the cases of contracting and expanding cages. In addition, we calculated the time-
dependent first-passage probabilities at each of the boundaries. Intriguing behaviors
of the splitting probabilities arise as a consequence of the ballistic boundary motion.
Indeed, we found that the splitting probabilities can vary non-monotonically with the
relative speeds of the boundaries, depending on the initial position of the Brownian
particle and the ratio between the two boundary speeds. In the context of a fearful lamb
near a precipice (Fig. 1), this non-monotonicity defines a non-trivial optimal strategy
for the shepherd to catch the lamb.

This approach could be extended to determine the splitting probability to a subset
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of a growing d-dimensional sphere for a particle that starts somewhere within the
interior. It would also be interesting to extend the conditional exit problem to the
case of non-linear displacements of the boundaries where the lamb capture probability
should also have a non-trivial optimization.
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