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We present a quantitative model for the biological evolution of species body masses within large groups

of related species, e.g., terrestrial mammals, in which body mass M evolves according to branching

(speciation), multiplicative diffusion, and an extinction probability that increases logarithmically with

mass. We describe this evolution in terms of a convection-diffusion-reaction equation for lnM. The steady-

state behavior is in good agreement with empirical data on recent terrestrial mammals, and the time-

dependent behavior also agrees with data on extinct mammal species between 95–50 Myr ago.
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Animals—both extant and extinct—exhibit an enor-
mously wide range of body sizes. Among extant terrestrial
mammals, the largest is the African savannah elephant
(Loxodonta africana africana) with a mass of 107 g, while
the smallest is Remy’s pygmy shrew (Suncus remyi) at a
diminutive 1.8 g. Yet the most probable mass is 40 g,
roughly the size of the common Pacific rat (Rattus exul-
ans), which is only a little larger than the smallest
mass. More generally, empirical surveys suggest that
such a broad but asymmetric distribution in the number
of species with adult body mass M typifies many animal
classes [1–5], including mammals, birds, fish, insects,
lizards, and possibly dinosaurs.

What mechanisms cause species mass distributions to
assume such a shape? A satisfactory answer would have
wide implications for the evolution and distribution of the
many other species characteristics that correlate with body
mass, including life span, metabolic rate, and extinction
risk [6,7]. Previous explanations for the species mass dis-
tribution focused on detailed ecological, environmental,
and species-interaction assumptions [3]. However, empiri-
cal data present confusing and often inconsistent support
for these theories, and none explicitly address how species
body mass distributions diversify in time.

In this Letter, we construct a physics-based convection-
diffusion-reaction model to account for the evolution of the
species mass distribution. The steady-state behavior of this
model was recently solved to explain the species mass
distribution for recent terrestrial mammals and birds
[8,9], where recent is conventionally defined as within
the past 50 000 years [10]. Here we substantially extend
this approach to give predictions on mammalian body mass
evolution that are in good agreement with fossil data. This
model can further be used to estimate the historical rates of
body mass diversification from fossil data, which are oth-
erwise estimated using ad hoc techniques. To illustrate this
application, we estimate body mass diversification rates
from our fossil data, which are in good agreement with
estimates of genetic diversification from molecular clock

methods [11]. Although our focus is on terrestrial mammal
evolution, this model can, in principle, be applied to any
group of related species.
Let cðx; tÞ denote the number (density) of species having

logarithmic mass x ¼ lnM at a time t; we use x as the basic
variable in keeping with widespread usage in the field [8].
Our model incorporates three fundamental and empirically
supported features of biological evolution. (i) Branching
multiplicative diffusion [1,8]: Each species of mass M
produces descendant species (cladogenesis) with masses
�M, where � is a random variable and the sign of the
average hln�i denotes bias toward larger or smaller de-
scendants. Empirical evidence [8] suggests that hln�i> 0
(known as Cope’s rule [1]) for terrestrial mammals.
(ii) Species become extinct independently, and with a
probability that increases weakly with mass [12]. And
(iii) no species can be smaller than a mass Mmin, due, for
example, to metabolic constraints [13].
The production of descendant species corresponds to

growth in the number of species at a rate k that is propor-
tional to the density c itself. Similarly, the probability pðxÞ
that a species of logarithmic mass x becomes extinct may
also be represented by a loss term that is proportional to c,
but with a weak mass dependence [8]. We make the simple
choice of linear dependence pðxÞ ¼ Aþ Bx (but see be-
low). With these ingredients, cðx; tÞ obeys the convection-
diffusion-reaction equation in the continuum limit

@c

@t
þ v

@c

@x
¼ D

@2c

@x2
þ ðk� A� BxÞc; (1)

with bias velocity v ¼ hln�i and diffusion coefficient
D ¼ hðln�Þ2i, and where k� A sets the absolute scale of
species body mass frequencies.
To solve Eq. (1), we substitute the eigenfunction expan-

sion cðx; tÞ ¼ P
nAnCnðxÞe��nt, which yields

� �n

D
Cn þ�C0n ¼ C00n þ ð�� �xÞCn; (2)

where the prime denotes differentiation with respect to x,
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� ¼ v=D, � ¼ ðk� AÞ=D, and � ¼ B=D. We eliminate

the first derivative term by introducing c n ¼ e��x=2Cn,
and then we use the scaled variable z ¼ �1=3x�
��2=3ð�� �2

4 þ �n

D Þ to transform Eq. (2) into Airy’s differ-

ential equation c 00 � zc ¼ 0 [14] for each eigenfunction
c n. The general solution is c ðzÞ ¼ a1AiðzÞ þ a2BiðzÞ,
where AiðzÞ and BiðzÞ are the Airy functions; here the
prime now denotes differentiation with respect to z.
Since there can be no species with infinite mass and
BiðzÞ diverges as z ! 1, we set a2 ¼ 0, while a1 is
determined by the initial condition. (We could also incor-
porate a fixed maximum species body mass Mmax, but the
analysis is more complicated without revealing additional
insights.)

Since the species density vanishes at the minimum mass
Mmin, the argument of c n must equal

zn ¼ �1=3xmin � ��2=3

�
���2

4
þ �n

D

�
¼ z0 � �n

D�2=3
:

(3)

The functions c n ¼ AiðznÞ form the complete set of states
for the eigenfunction expansion [15]. The first few zeros
zn are at (roughly) �2:3381, �4:0879, �5:5205, and
�6:7867 for n ¼ 0, 1, 2, and 3, respectively [14]. (For
computing the distribution, we tabulated the first million
zeros numerically using standard mathematical software.)
The corresponding decay rates �n are then given by

�n ¼ D�2=3ðz0 � znÞ, with �0 ¼ 0 to give the steady-state
solution [9]. These rates form an increasing sequence so
that the higher terms in the eigenfunction expansion decay
more quickly in time. Finally, solving Eq. (3) for � and
plugging the result into the definition of z, we can eliminate

the scale parameter � and write z ¼ zn þ �1=3ðx� xminÞ.

Thus each eigenfunction has the form

C nðxÞ / e�x=2Ai½zn þ �1=3ðx� xminÞ�; (4)

in which AiðzÞ � e�2z3=2=3 for large z. The competition

between this decay and the prefactor e�x=2 in CnðxÞ con-
tributes to the broadness of the species mass distribution
and the location of the most probable mass (Fig. 1).
Parenthetically, the asymptotic decay of the eigenfunctions
depends only weakly on the form of the extinction proba-
bility pðxÞ. For instance, if we choose pðxÞ ¼ Aþ Bx�,

then as z ! 1 the eigenfunctions decay as e�z1þ�=2
.

Suppose that a given group of animals began its evolu-
tionary history with a single species of mass M0 [initial
condition cðx; t ¼ 0Þ ¼ �ðx� x0Þ, with x0 ¼ lnM0], after
which speciation occurs according to the dynamics of
Eq. (1). We use the fact that the Airy differential equation
is a Sturm-Liouville problem [15] so that the fCng form a
complete and orthonormal set. Following the standard
prescription to determine the coefficients of the eigenfunc-
tion expansion, the full time-dependent solution is

cðx; tÞ ¼ X
n

Cnðx0ÞCnðxÞe��nt; (5)

where each CnðxÞ is given by Eq. (4). In the long-time
limit, all of the decaying eigenmodes with n > 0 become
negligible, and the species mass distribution reduces to
cðx; t ! 1Þ / C0ðxÞ.
We test our predictions for the species body mass dis-

tribution by comparing with available empirical data. In
the steady state, our model is characterized by three pa-
rameters: Mmin, the mass of the smallest animal; �, which
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FIG. 1 (color online). Steady-state solution of the model for
the species body mass distribution and suitably binned empirical
data for 4002 recent terrestrial mammals (shown as a normalized
histogram with 50 logarithmically spaced bins).
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FIG. 2 (color online). Data on species body mass for
569 North American terrestrial mammals [16] from
95–50 Myr ago. Each horizontal segment represents a species,
and end points denote its first and last appearance in the fossil
record. The superimposed curve shows the average of lnM for
these species (smoothed with an exponential kernel).
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controls the tendency of descendant species to be larger or
smaller than their ancestors; and �, which controls the
dependence of the extinction rate on mass. The former
two can be estimated directly from fossil data, while the
latter is typically estimated by matching the steady-state
solution to the recent data. For terrestrial mammals, we
previously found � � 0:2, � � 0:08, while Mmin � 2g
[9]. Using these parameter values in the long-time limit,
we obtain a good agreement between the predictions of the
model and the species mass distribution of recent terrestrial
mammals [10] (Fig. 1).

Our model also makes predictions about the way the
body mass distribution changes over time, which can be
tested with fossil data. Drawing on data from the best
available source on the evolution of mammalian body
masses [16], we plot in Fig. 2 the durations and body
masses of 569 extinct mammal species from 95–50 Myr
ago. This period includes the Cretaceous-Paleogene (KP)
boundary of 65.5 Myr ago that marks a mass extinction
event during which more than 50% of then-extant species
became extinct, including nonavian dinosaurs—the domi-
nant fauna for the preceding 160 Myr—and is the subject
of many studies regarding the diversification of mammals.
(The Cretaceous period is conventionally abbreviated ‘‘K,’’
after the German translation Kreide.)

Using the same model parameters as above, and setting
M0 ¼ 2 g, the estimated size of the first mammal [17] in
Fig. 3 shows good agreement between model predictions
from Eq. (5) and empirical data from Fig. 2. To simplify the
comparison, we divided the period from 95–50 Myr ago
into nine bins of equal durations and tabulated the distri-
bution of species extant during each of these bins. In each

of the nine panels of Fig. 3, we give both the historical time
period and the corresponding model time that yields a good
qualitative match to the data. (The fitting can be made more
objective using standard techniques, but the results are
largely the same.)
The relation between historical time and model time

is itself interesting (Fig. 4). During the first 20 Myr
(95–75 Myr ago), the species mass distribution is almost
stationary, with model time advancing by only �t ¼ 2:30;
curiously, between 90–80 Myr ago, model time does not
advance at all. This period of near stasis may indicate a lull
in the evolutionary dynamics, perhaps due to implicit
competition from larger species, e.g., dinosaurs. Over the
next 20 Myr (75–55 Myr ago), however, the distribu-
tion broadens considerably (model time advancing by
�t ¼ 10:74) and comes to closely resemble the recent
distribution (Fig. 1). This correspondence suggests that
the diversification of mammalian body masses into their
recent state began at least 75 Myr ago, roughly 10 Myr
before the KP boundary and the extinction of the nonavian
dinosaurs. This estimate of the timing of body mass diver-
sification for mammals agrees closely with some estimates
of the timing of mammalian genetic diversification from
studies of molecular clocks [11] and supports the notion
that mammals were diversifying prior to and independently
of the KP boundary itself [18]. Whether these two forms of
diversification are causally linked, however, is unknown.
Here we have held all model parameters constant while

adjusting model time to fit the data. In principle, however,
model time could advance steadily while varying some
model parameters, perhaps to reflect large-scale changes
or trends in the selection pressures on species body size.
Empirical evidence supports a stable value ofMmin (Fig. 2),
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FIG. 3 (color online). A comparison of our model predictions
(dashed line) from Eq. (5) and the mass distributions of extinct
North American mammal species (solid line) in nine consecutive
time ranges. (To get reasonable results with sparse empirical
data, we smooth the distributions with a Gaussian kernel.)

100 90 80 70 60 50
0

2

4

6

8

10

12

14

16

18

20

22

m
od

el
 ti

m
e

Millions of years ago

KP boundary

FIG. 4 (color online). Estimated relation between model time
to historical time, indicating that the broadening of the mamma-
lian species mass distribution began approximately 10 Myr
before the KP boundary when nonavian dinosaurs became ex-
tinct.
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but little is currently known about how or why � and �
may have varied.

As is typically the case with historical inference using
the fossil record, a few caveats are in order. Our fossil data
are derived from the well-studied North American region
using modern dental techniques, which are less prone to
biases than older techniques. Still, some biases and sam-
pling gaps likely persist, and these may explain the slight
overabundance of large species, and underabundance of
small species, in more recent times (Fig. 3). More sig-
nificantly, recent fossil discoveries suggest that, since
mammals originated 195 Myr ago [17], mammalian diver-
sification has proceeded in several waves, and the vast
majority of species groups from the earlier waves are
now extinct. Our data cover only the most recent diversi-
fication, in which therian (placental and marsupial) mam-
mals largely replaced the then-dominant nontherian
mammal groups [19]. Unfortunately, suitable data on these
waves of diversification are not currently available, and the
data we do have are sparse in their coverage of nontherians.
Thus, the application of our model to infer diversification
rates should be considered as a proof of concept, illustrat-
ing that a physics-style model can shed considerable light
on evolutionary dynamics by placing the fossil record
within a theoretical framework.

In summary, the broad distribution of body masses for
mammals appears to be well described by a simple
convection-diffusion-reaction model that incorporates a
small number of evolutionary features and constraints.
Indeed, our model does not account for many canonical
ecological and microevolutionary factors, such as interspe-
cific competition, geography, predation, and population
dynamics [3]. The fact that our model agrees with species
mass data suggests that the contributions of the above-
mentioned processes to the global character of body mass
distributions can be compactly summarized by the parame-
ters � and � in our model. Despite the crudeness of the
model, the agreement between its predictions and the
available empirical data is satisfying.

Our model opens up intriguing directions for theoretical
descriptions of evolutionary dynamics. For instance, our
model ignores the populations of individuals within each
species; estimating the sizes of these populations from
body mass vs population density scaling relationships
[20] and body mass vs home-range size relationships
[21] may allow us to calculate both the total biomass
contained in a group of related species and its temporal
dynamics during diversification. Similarly, when paired
with scaling relations between body mass and metabolism
[13], we may be able to calculate the total metabolic flux of
a taxonomic group.
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