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Spatial Organization in Two-Species Annihilation 

S. Redner I and F. Leyvraz 2 

The spatial structure of reactants in the two-species annihilation reaction 
A + B ~ 0 is described. In one dimension, we investigate the distribution of 
domain sizes and the distributions of nearest-neighbor distances between par- 
ticles of the same and of opposite species. The latter two quantities are charac- 
terized by a new length scale which is intermediate to the domain size t 1./2 and 
the typical interparticle spacing t ~/4. A scaling argument suggests that the typical 
distaffce between particles of opposite species, or equivalently the gaps between 
domains, grows as t ~, with ~ = 3/8 and 1/3, respectively, in spatial dimension 
d=  1 and 2. The average density profile of a single domain is spatially non- 
uniform, with the density decaying to zero linearly as the domain edge is 
approached. This behavior permits a determination of the distribution of 
nearest-neighbor distances of same-species reactants. The corresponding 
moments of this distribution exhibit multiscaling which involves geometric 
averages of different powers of the domain size and the interparticle spacing. 
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1. I N T R O D U C T I O N  

In  the  i r revers ib le  d i f fus ion- l imi ted  two-spec ies  a n n i h i l a t i o n  r eac t i on  

A + B ~ 0, it is wide ly  a p p r e c i a t e d  tha t  the ra te  e q u a t i o n  does  n o t  a c c o u n t  

for  the  k ine t ics  of  the  r eac t i on  process .  F o r  an  in i t ia l ly  r a n d o m  d i s t r i b u t i o n  

of  A ' s  a n d  B's at  e q u a l  c o n c e n t r a t i o n s ,  the  dens i ty  decays  as t a/4 w h e n  the  

spa t ia l  d i m e n s i o n  d is less t h a n  four ,  (~ 5) c o m p a r e d  to  the  mean- f i e ld  decay  

of  t -1 .  Th i s  s lower  decay  can  be v iewed  as s t e m m i n g  f r o m  an  effective 

" r e p u l s i o n "  b e t w e e n  the  A a n d  B species. W h e n e v e r  an  A a n d  a B are  

wi th in  the  r e a c t i o n  range ,  the  pa i r  is ann ih i l a t ed .  T h u s  the  r eac t i on  p rocess  
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itself provides a mechanism which attempts to keep A's and B's separated, 
with a corresponding reduction in the reaction rate. For a Poissonian 
initial distribution of reactants, this separation mechanism causes the initial 
density fluctuations to become more pronounced, and the system organizes 
into continuously growing single-species domains. 

These features of the reaction kinetics and the spatial distribution of 
reactants can be understood by a simple qualitative approach which is 
based on following the temporal evolution of the initial density fluctua- 
tions. Consider a spatial region of linear dimension l and corresponding 
volume l d. In an initial state with equal densities of the two species, the 
numbers of A's and B's are, respectively 

N A(O) = c(O) ld +_ [c(O) ld] 1/2 

NB(O) = c(O) ld +_ [c(O) ld] 1/2 
(1) 

Here c(0) denotes the initial concentration of each species, and the + 
terms represent typical fluctuations in particle number in a volume l d. After 
a time t ~ 12/D, there will be essentially complete diffusive mixing of par- 
ticles within the volume. Consequently the "extensive" parts of the particle 
numbers cancel in pairs, leaving behind only the residual fluctuations. Thus 
the remaining number of particles (of the local majority species) is of order 
N > , , ~ [ c ( O ) l d ]  1/2 and the local concentration is c > , . ~ N > / l  a. In this 
argument, the contributions due to inflow and outflow of particles from the 
volume are ignored. Since this fluctuation-induced behavior occurs in every 
domain the average concentration equals this local concentration. 
Therefore 

[c(0) U] 1/2 
c ( t )  = c> oc ld  oc t -d/4 (2) 

Accordingly, an initially homogeneous system coarsens into alter- 
nating A-rich and B-rich domains ~1 9) of linear dimension proportional 
to t 1/2. Since the density decays as t all4, the typical interparticle spacing 
grows as c(t)  1 / 4  tl/4. Thus, at least two length scales are necessary to 
account for spatial distributions of particles. One of our main results is that 
yet another length scale, which is intermediate to the interparticle spacing 
and the domain size, is needed to account for the spatial distribution of 
reactants, ~1~ when 1 ~<d-G<2. We also find interesting spatial structure for 
the "reaction zone, ''~11 13) i.e., the interfacial region between A and B 
domains where the reaction actually takes place. Correspondingly, the den- 
sity profile within a single domain is spatially nonuniform, with the particle 
density decaying to zero as the domain boundary is approached. Conse- 
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quently, the distribution of distances 3 between nearest-neighbor same- 
species particles is determined by a competition between the relatively 
closely-spaced particles in the domain core and the more widely-separated 
particles in the domain periphery. This feature has interesting ramifications 
for the moments of the distances between same-species particles. 

2. SPATIAL D ISTRIBUTION OF REACTANTS 
IN ONE D I M E N S I O N  

To describe the distribution of particles in one dimension, it is useful 
to consider the following three distribution functions (Fig. 1). (a)The 
probability that a domain has a length equal to x at time t, Pdom(X,  t) ,  and 
the probabilities that the nearest-neighbor distance between particles of 
(b) the same and (c) the opposite species equals x, PAA(X, t) and PAB(X, t), 
respectively. The latter distance is the same as the length of the gaps 
between domains. We have performed numerical simulations to measure 
these quantities which are based on averaging 80 configurations of up to 
11,222 time steps on a chain of 500,000 sites at an initial density of 0.4 for 
each species. 

The average domain size increases as t ~/2, and the distribution of 
domain sizes is fairly sharply peaked about this average value (Fig. 2). 
Visually, the distribution of domain sizes is well fit by the form 
Pdom(X, t ) ~ A x e  -x/xd~ with Xdom(/)  increasing as t 1/2. This functional 
form also accords reasonably well with the temporal behavior of the 
positive integer moments of the distribution. The domain boundaries 
evolve essentially as annihilating one-dimensional random walks, a system 
for which much is already known about the time dependence of the density 
(e.g., refs. 15). The distribution of domain lengths is equivalent to the 
distance distribution of nearest neighbors in the annihilation process. 
Apparently, there are no rigorous results for the behavior of this latter dis- 
tribution. (16) Figure 3 shows the time evolution of the domain size distribu- 
tion. The number of domains of a fixed length 2L, n2L(t), initially grows 

3 Various related aspects of interparticle distribution functions in two-species annihilation 
were obtained in ref. 14. 

.... 9. .  
ai-~i~--s . . . .  ' "  BBB-AAA& BB... 

h- 2,--I 
Fig. 1. Definition of the typical distance between neighboring particles of the same species 

typical [AA , the gap length (or nearest neighbor distance between unlike species) lAB, and the 
domain diameter 2L. 



1046 Redner and Leyvraz 

/ 0 0 0 :  , , �9 ~ - - ~  . . . . . .  

c a /  

ioo 

x- 

10 

.: % 

10 ~ 101 10 a 10 3 10 4 

1000 

100 

Cz~ 
1 

01 

ib) 

0 500 1000 15002000 2500 

X 

Fig. 2. The distribution of domain sizes Pdom(X, t) at t = 11,222 on (a) a double-logarithmic 
scale to exhibit the linear behavior at small distances, and (b ) a  semilogarithmic scale to 
exhibit the large-distance exponential tail. In the latter case, the data have been smoothed by 
performing an average of the distribution over 21 consecutive points. 

with time until the typical domain size reaches 2L. At longer times, n2L(t) 
appears to decay as t -3/2. 

More interesting behavior occurs in the distribution of interdomain 
gap lengths. For the average size of the gaps, one naively expects that the 
effective repulsion between unlike species would lead to a gap size which is 
larger than the average distance between same-species pairs. From our  
simulations, the gap size appears to increase as t ;, with ( ~  3/8 (Fig. 4). 
A rough derivation of this putative new exponent will be given in the next 
section�9 Furthermore, the distribution of gap sizes also appears to be well 
fit by the form PAB(X,  t )~  A x e  -x/xAB with XAB OQ t 3/8 (Fig. 5). 

There is a qualitatively different form for the distribution of distances 
between particles of the same species. As a function of x, PAA(X, t) decays 
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Fig. 3. Time evolution of the distribution of domain lengths. 
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Fig. 4. Time dependence of the average spacing between particles of the same species, the 
average gap size, and the average domain size. The dashed lines of respective slopes 1/4, 3/8, 
and 1/2 are guides to the eye. 

monotonically, with an apparently simple exponential tail at large 
distances, characteristic of a random distribution of particles (Fig. 6). 
We shall argue below that this form for PAA(X, t) can be derived by first 
assuming that there is a local Poisson distance distribution for particles of 
the same species, in which the average spacing depends on the relative 
position of the neighboring particles within the domain. Particles are 
more closely spaced in the domain core, and are progressively more widely 
separated as the domain boundary is approached. By averaging the local 
Poisson distributions over this domain density profile, a form for PAA(X, t) 
is obtained which is in reasonable agreement with the simulation data. 
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Fig. 5. The distribution of gap lengths between domains Pdom(X, t) at t = 11,222 on (a) a 
double-logarithmic scale to exhibit the linear behavior at small distances, and (b )a  semi- 
logarithmic scale to exhibit the large-distance exponential tail. The data are smoothed by 
averaging the distribution over 11 consecutive points. 
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Fig. 6. The distribution of the distance between nearest neighbors of the same species 
PAA(X, t) at t = 11,222 on a semilogarithmic scale to exhibit the large-distance exponential tail. 
The data are smoothed by averaging the distribution over 5 consecutive points. The slope of 
the best-fit straight line that fits the asymptotic decay (dashed and offset) vanishes as t -3/8. 

3. THE A V E R A G E  PROFILE OF A SINGLE D O M A I N  

The striking new result from our simulations is that the average dis- 
tance between domains is an apparent new length scale, independent of the 
interparticle spacing or the domain size. The time dependence of this new 
length can be appreciated from the following qualitative argument. (1~ Let 
us postulate that the gaps between domains are of (unknown) length 
IAB ~ t ~. We now give an alternative derivation for the known one-dimen- 
sional decay of the density in terms of lAB, from which the time dependence 

2 of the gap length can be inferred. In a time interval At oc lAB, there will 
typically be one reaction in each gap. Since two particles per domain are 
annihilated by these reactions, the concentration change Ac is proportional  
to the inverse domain size t 1/2. Hence 

dc dc 
j-S ~2~ ~ t -'/2-2~ (3) 

Thus, in order for c(t) to be proportional  to t 1/4, it is necessary that 
~=3/8 .  This result is in excellent agreement with the numerical results 
quoted above. 

To gain a deeper appreciation for the role of this new length scale, it 
is useful to examine the average density profile of a single domain (Fig. 7). 
For  this purpose, we first define a local spatial coordinate with respect to 
the center of each domain. The boundaries of the domain are defined to be 
the first particle of the opposite species on either side of the domain. These 
two bounding particles impose absorbing boundary conditions for the par- 
ticles within the domain. In order that the average profile over all domains 
has a well-defined boundary condition, we rescale each domain so that they 
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Fig. 7. (a) The scaled domain profile for t = 194 (O), t = 1477 ([]), and t = 11,222 (V). The 
local coordinate is defined as the distance from the center of the domain. The scaled profile 
suggests the trapezoidal profile (b). 

all have the same length before superposing the individual density profiles. 
This procedure is validated, to some degree, by the relative sharpness of the 
domain size distribution. In this rescaling, particles are placed at the closest 
integer point to the rescaled position. This prescription introduces some 
truncation errors at early times, but is a negligible effect at large times. 

The resulting density profiles can now be scaled by multiplying each 
profile at time t by t 1/4 to compensate for the overall t-1/4 decay of the den- 
sity. As a function of the scaled abscissa, the scaled profile resembles one- 
half of a cosine wave, but with a somewhat flattened central peak (Fig. 7). 
The quality of the scaling is good, except that there is a very small but 
systematic decrease in the scaled profiles at different times. The best scaling 
is actually achieved by multiplying the profiles at different times by t ~ with 
z ~ 0.265. Furthermore, domains containing just a single particle give rise 
to an anomalous peak at x = 0 whose value is more than a factor of two 
larger than the scaling profile. Except for these caveats, the density profiles 
scale nicely. 

The cosinusoidal shape of the density profile can be understood in 
terms of a crude model in which the particles inside an A domain (for 
example) are diffusing independently within the region defined by the two 
enclosing B domains whose edges are systematically receding at a rate 
proportional to t 1/2. This is meant to mimic the stochastic diffusive motion 
of the domain boundary. In a continuum approach, the concentration of 
A's thus obeys the diffusion equation 

~ C  (~2C 

#t ax 2 (4) 

subject to the boundary conditions c ( + L ( t ) ,  t ) =  O, with the domain radius 
L( t )  increasing a s  t 1/2. A growth of the radius which is of order t 1/2 or less 
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is sufficiently slow that one can apply the adiabatic approximation (e.g., 
ref. 17). In this approach, the spatial variation of the density profile is the 
same as a system with static absorbing boundaries, and only the overall 
temporal decay of the probability within the domain is affected by the 
domain boundary motion. The adiabatic approximation gives, for the local 
density in a domain, 

c(x, t)=cos[Trx/2L(t)] exp [--const x f~ dt'/L(t') 2] 

= cos[Trx/2L(t)] t . . . .  t (5) 

This approximation cannot be refined to the degree necessary to find the 
exponent that characterizes the decay of the density, however, owing to the 
crudeness of the single-domain model. 

There are several noteworthy aspects of the density profile. First, the 
density decays linearly to zero as the domain boundary is approached 
(Fig. 7). Second, the density profile can be roughly divided into a core 
region, where the local density is slowly varying, and an interfacial layer, 
with each region comprising a finite fraction of the domain length. In the 
domain core, the local density decays as t-1/4, corresponding to the typical 
interparticle spacing growing as t v4. As the domain boundary is 
approached, the density decreases monotonically and the typical interpar- 
ticle distance increases accordingly. Very roughly, these essential features of 
the scaled domain profile can be accounted for by the following trapezoidal 
form (Fig. 7b): 

p(z) - c(x, t) t 1/4 = ~ '00' Izl ~< Z* (6) 
(pO(1 -- [Zl),  z * < l z l < l - e  

Here Po and z* are constants, with z* less than, but of order unity, and z 
is the scaled spatial coordinate, defined by z = x/L(t). The upper limit for 
Iz] on the second line of Eq. (6) reflects the fact that there are no particles 
within a scaled distance of e -= IAB/L(t ) ~ t--1/8 from the domain edge. While 
the trapezoidal form is not correct in detail, it provides a useful idealization 
from which many of the interesting features of the spatial distribution of 
reactants can be obtained with minimal calculational effort. 

It is also worth mentioning that the time dependence of the typical gap 
size lAB can be obtained directly from the trapezoidal density profile. (18'19) 
Consider a shifted local coordinate y = L + x whose origin is at the left 
edge of the domain. Then the position of the leftmost particle in the 
domain is defined by the condition 

fo A" c(y, t) dy = 1 (7) 
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This merely states that of the order of one particle is within the inter- 
domain gap. According to the trapezoidal profile, c(y, t)oc yf(t)  for 
y <  ?/2 and c(y, t) approaches a constant limiting value proportional to 
t -1/4 when y ~ t  1/2. Matching these two limiting behaviors leads to 
f ( t )  oct -3/4. Using this result for c(y, t) in Eq. (7) immediately gives 
lAB ~ t3/8. 

In addition to finding the typical value of lAB, this extreme value 
approach can be easily extended to find the probability distribution for lAB, 
namely PAB(X, t). Following the approach of ref. 19 step by step, it is easy 
to determine that PAB(X,t) o c x e  -(x/xAB)2, in contrast to the simple 
exponential decay observed in the simulations. The discrepancy apparently 
stems from the fact that the analytical approach assumes a static absorbing 
point at the domain boundary, while in fact, the boundary point is actually 
undergoing diffusive motion. 

4. I M P L I C A T I O N S  OF THE I N H O M O G E N E O U S  
D O M A I N  PROFILE 

The properties of the domain profile can be exploited to determine 
both the functional form of the distribution PAA(X, t) and the time 
dependence of the corresponding reduced moments M n -  ( lnAa)l /n,  defined 
by 

S (I"AA) = x 'pA~(x ,  t) dx (8) 

According to the trapezoidal form, the reduced moments are 

Mn~tl/4(2f~.dz 2fzl. e dz ~l/n 
p-~+ p~)(1 - z ) " J  (9) 

In this expression, the n th moment of the nearest-neighbor distance 
between same-species particles is obtained by averaging the local nearest- 
neighbor distance over the extent of the domain. This local nearest- 
neighbor distance is simply p(z) 1, with p(z)=po in the domain core 
(]z]~<z*), and with p ( z ) = p o ( 1 - l z l )  near the domain boundary. The 
interesting aspect of the above expression is that the dominant contribution 
to Mn originates from different terms in Eq. (9) as n is varied. For n < 1, 
the integral is dominated by the first (constant) term in the parentheses. 
For n = 1, however, the second term gives rise to a logarithmic singularity 
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at the upper limit, while for n > 1, the second term dominates the entire 
expression. The result of this straightforward calculation is 

f t I/4, n < l 

M ,  ~ ~ t  1/4 In t, n = 1 (10) 
{.  t (3n -- 1 )/8n, n > 1 

Thus, there is a logarithmic factor in the ratio between the average and 
typical distances between nearest-neighbor particles of the same species, 
and a power-law diverging factor for the higher moments. For  n > 1, Mn 
can be expressed in terms of the basic length scales in the system as 

As n --+ oo, the reduced moment is dominated by the contribution from the 
sparsely populated region near the periphery of the domain where nearest- 
neighbor particles are separated by a distance that grows as t 3/8. 

These findings are corroborated by simulations (Fig. 8). For  various 
n >  1, double-logarithmic plots of Mn versus t yield straight lines of 
different slopes, with exponent values that are in good agreement with 
Eq. (11). For  n <  1, the M,  appear to approach a common limit, 
asymptotically, as expected (Fig. 9). The slopes of the straight lines that 
pass through successive pairs of data points roughly extrapolate to expo- 
nent values of 0.26q).27. Finally, for n =  1, the successive slopes are 
systematically increasing with time and extrapolate to an exponent value of 
about 0.29. The gradual increase of the exponent does not accord with a 
logarithmic correction, although the value of the apparent exponent is in 
the range that is expected when a quantity which varies a s  t 1/4 In t is fit to 
a simple power law. We do not fully understand the source of these various 
small discrepancies with Eq. (11 ). 
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Fig. 9. The long-time behavior of the slopes between successive pairs of data points for M,, 
to provide an estimate for the exponents that characterize their time dependence. 

A second consequence of the spatially varying domain profile is that 
it provides a calculational framework with which we can give a rough 
derivation for the form of PAA(X, t). Let us assume that particles are dis- 
tributed approximately at random according to the local density c(~, t), 
where ~ is the local coordinate inside a single domain. Then the probability 
of finding a nearest neighbor distance between particles of the same species 
equal to x at spatial location ~ is 

PAA(~; X, t) = C(~, t) e-XC(~") (12) 

The average probability of  finding a spacing equal to x is now obtained by 
averaging the local probability over a domain. In terms of the scaled local 
coordinate z oc ~/l  1/2 and the scaled density p ( z )  oc c(r t) t 1/4, this average 
becomes 

f O  ] - ~  
PAA(X, t) OC t -1/4 dz  p ( z )  e x ,  1/,p(z) (13) 
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This value of the integral is asymptotically dominated by the endpoint 
contribution associated with the upper limit on the integral. Thus for 
the asymptotic behavior of the integral, only the portion of the domain 
profile where there is a linear variation of density with position enters 
into the result. Consequently, we can use the trapezoidal domain profile 
in performing the integration in Eq. (13). In terms of the scaled spacing 
(7 ~ si t  1/4, the result of performing the integral is 

PAA(O') OC F(a) exp(--const  • at 1/8) (14) 

with F(a) oc (9(a -2) as a ~ ~ .  From this form, it is also possible to obtain 
the moments Mn already derived in Eq. (10). We expect to observe the 
power-law form for F(a) at a length scale intermediate to the typical and 
the largest interparticle spacing, a range which unfortunately grows only as 
t 1/8. Thus the largest time in our one-dimensional simulation, t =  11,222, 
does not appear to be long enough to yield good numerical evidence for 
this power law, however, the data clearly exhibit the asymptotic exponen- 
tial decay, with the correct time dependence of the characteristic decay 
length (Fig. 6). 

5. D O M A I N  PROFILE IN T W O  D I M E N S I O N S  

The earlier discussion about the interfacial region between domains 
can be readily extended to arbitrary spatial dimensions less than 2. In 
analogy with the one-dimensional case, we hypothesize that a domain in 
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Schematic illustration of a typical domain in two dimensions, showing the larger 
interparticle spacing in the interfacial region. 
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spatial dimension d < 2 has a core region of approximately constant density 
and a surrounding ( d -  1 )-dimensional "skin" where the density vanishes as 
the domain edge is approached (Fig. 10). 

To estimate the gap distance lAB, we assume that the particles at the 
outer edge of the depletion zone are also separated by a distance which 
scales as lAB. This behavior is precisely what is observed in the one-dimen- 
sional case. Consequently, the number of boundary particles varies as 
(tl/2/IAB) el-1. Then in a time interval which is proportional to l~B, each 
of these boundary particles reacts, for d~< 2, leading to a density change 
Ac  ~ (tt/2/IaB) a -  l/ta/2. In close analogy with Eq. (3), we now find 

dc -'~ ,'~ t - -1/2lA(d+ 1) (15) 

Matching the resulting solution with the known decay of c ( t ) ~  t -a/4 for 
d ~< 4 yields ~ = (d + 2)/4(d + 1 ). We expect that this dimension dependence 
for ~ holds only in the range 1 ~<d~<2. For  d > 2 ,  only a small fraction of 
the particles on the domain boundary react within the time interval 
A t  ~ 12B. Consequently, we expect that there is a much less pronounced 
depletion layer in this case. Simulations in two dimensions give a value for 

which is close to the predicted value of 1/3. These simulations also reveal 
an average density profile for a single domain which is qualitatively similar 
to the one-dimensional case, except that, the depletion layer is confined to 
a much smaller fraction of the total extent of the domain. 
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