
Rate Equation Approa
h for Growing NetworksP. L. Krapivsky1 and S. Redner1Center for BioDynami
s, Center for Polymer Studies and Department of Physi
s,Boston University, Boston MA 02215, USAAbstra
t. The rate equations are applied to investigate the stru
ture of growing net-works. Within this framework, the degree distribution of a network in whi
h nodes areintrodu
ed sequentially and atta
h to an earlier node of degree k with rate Ak � k
is 
omputed. Very di�erent behaviors arise for 
 < 1, 
 = 1, and 
 > 1. The rateequation approa
h is extended to determine the joint order-degree distribution, the de-gree 
orrelations of neighboring nodes, as well as basi
 global properties. The 
ompletesolution for the degree distribution of a �nite-size network is outlined. Some unusualproperties asso
iated with the most popular node are dis
ussed; these follow simplyfrom the order-degree distribution. Finally, a toy protein intera
tion network model isinvestigated, where the network grows by the pro
esses of node dupli
ation and par-ti
ular form of random mutations. This system exhibits an in�nite-order per
olationtransition, giant sample-spe
i�
 
u
tuations, and a non-universal degree distribution.1 Introdu
tionIn this 
ontribution, we apply tools from statisti
al physi
s, in parti
ular, the rateequations, to quantify geometri
al properties of evolving networks [1℄. The utilityof the rate equations have been amply demonstrated for diverse non-equilibriumphenomena, su
h as aggregation [2℄, 
oarsening [3℄, and epitaxial surfa
e growth[4℄. We will argue that the rate equations are a similarly powerful yet simpletool to analyze growing network systems. In addition to providing 
omprehensiveinformation about the node degree distribution, the rate equations 
an be readilyadapted to treat the joint order-degree distribution, 
orrelations between nodedegrees, global properties, and a variety of intriguing 
u
tuation e�e
ts.We will fo
us on two 
lasses of models. In the �rst, whi
h we simply term thegrowing network, nodes are added sequentially and a single link is establishedbetween the new node and a pre-existing node a

ording to an atta
hment rateAk that depends only on the degree of the \target" node (Fig. 1). Here nodedegree is the number of links that impinge on the node. This appealing model,�rst introdu
ed by Simon [5℄ and redis
overed by Barab�asi and Albert [6℄, hasbe
ome extremely fashionable be
ause of its ri
h phenomenology and timelyappli
ations. Examples in
lude the distribution of biologi
al genera, word fre-quen
ies, publi
ations, urban populations, in
ome [5,7℄, and the link distributionof the world-wide web [8{10℄.The se
ond 
lass of models are inspired by protein intera
tion networks,where the nodes are individual proteins and the links represent a fun
tional
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Fig. 1. (a) Growing network. Nodes are added sequentially and a single link joins anew node to an earlier node. Node 1 has degree 5, node 2 has degree 3, nodes 4 and 6have degree 2, and the remaining nodes have degree 1. (b) Protein intera
tion network.The new node dupli
ates 2 out of the 3 links between the target (shaded green) and itsneighbors. Ea
h su

essful dupli
ation o

urs with probability 1� Æ (blue solid lines).The new node also atta
hes to any other node with probability �=N (red dotted lines).Thus three previously dis
onne
ted 
lusters are joined by the 
omplete eventrelationship between two proteins in an organism. Mu
h e�ort has been devotedto infer the stru
ture of su
h networks [11{13℄ and to formulate models thata

ount for their evolution [14{19℄. In the model dis
ussed here [17,18℄, nodesare added sequentially and the new node may \dupli
ate" a randomly 
hosentarget, and the new node 
an link to any other node with with a small probability(Fig. 1). In the dupli
ation step, the new node links to ea
h of the neighborsof the target with probability 1 � Æ. Thus the dupli
ate protein is fun
tionallysimilar to the original [14℄. The se
ond pro
ess 
an be viewed as mutation inwhi
h a protein 
an be
omes fun
tionally linked to a random subset of otherproteins. By this latter pro
ess, an arbitrary number of 
lusters 
an merge whena single node is introdu
ed. As we shall dis
uss, this many-body merging leadsto an in�nite-order per
olation transition as a fun
tion of the mutation rate.While the appli
ability of this model to des
ribe real protein networks is stillnot settled [14℄, it is a useful starting point for theoreti
al analysis.Our basi
 goal is to quantify the stru
ture of these two basi
 networks by therate equation approa
h.2 Stru
ture of the Growing Network2.1 The Degree DistributionA fundamental 
hara
teristi
 of any random network is the node degree distri-bution Nk(N), de�ned as the number of nodes with k links in a network that
ontains N total nodes. To determine this distribution, we write the rate equa-tions that a

ount for its evolution after ea
h node is introdu
ed. For the growth



Rate Equations for Networks 3pro
ess in Fig. 1(a), these rate equations are [20{22℄dNkdN = Ak�1Nk�1 �AkNkA + Æk1: (1)The �rst term on the right, Ak�1Nk�1=A, a

ounts for pro
esses in whi
h a nodewith k � 1 links is 
onne
ted to the new node, thus in
reasing Nk by one. Sin
ethere are Nk�1 nodes of degree k�1, su
h pro
esses o

ur at a rate proportionalto Ak�1Nk�1, while the fa
tor A(N) = Pj�1 AjNj(N) 
onverts this rate intoa normalized probability. A 
orresponding role is played by the se
ond (loss)term on the right-hand side. Here AkNk=A is the probability that a node with klinks is 
onne
ted to the new node, thus leading to a loss in Nk. The last terma

ounts for the introdu
tion of a new node with degree one.Let us �rst determine the moments of the degree distribution, Mn(N) =Pj�1 jnNj(N). Summing Eqs. (1) over all k, gives _M0(N) = 1. This a

ordswith the de�nition that M0(N) = PkNk is just the total number of nodes Nin the network. Similarly, the �rst moment obeys _M1(N) = 2, or M1(N) =M1(0) + 2N . Clearly this quantity must grow as 2N , sin
e introdu
ing a singlenode 
reates two link endpoints. Thus the �rst two moments are independent ofthe atta
hment kernel Ak and grow linearly in N . On the other hand, highermoments and the degree distribution itself depend in an essential way on Ak.For general atta
hment kernels that do not grow faster than linearly withk, it 
an be easily veri�ed that the asymptoti
 degree distribution and A(N)both grow linearly with N . Thus substituting Nk(N) = N nk and A(N) = �Ninto Eqs. (1) we obtain the re
ursion relation nk = nk�1Ak�1=(� + Ak) andn1 = �=(�+A1). Solving for nk, we obtain the formal solutionnk = �Ak kYj=1�1 + �Aj ��1 : (2)To 
omplete this solution, we need the amplitude �. Using the de�nition � =Pj�1Ajnj in (2), we obtain the impli
it relation1Xk=1 kYj=1�1 + �Aj��1 = 1 (3)whi
h shows that the amplitude � depends on the entire atta
hment kernel.For the generi
 
ase Ak � k
 , we rewrite the produ
t in (2) as the exponentialof a sum of logarithms. In the 
ontinuum limit, we 
onvert this sum to an integral,expand the logarithm to lowest order, and evaluate the integral to yield:nk � 8><>: k�
 exp h���k1�
�21�
1�
 �i ; 0 � 
 < 1;k�� ; � = 1 + � > 2; 
 = 1;singular 
 > 1. (4)That is, for all 0 < 
 < 1, the degree distribution is a robust stret
hed expo-nential (and pure exponential for 
 = 0). Conversely, for 
 > 1 a phenomenon



4 Krapivsky & Redneranalogous to gelation o

urs in whi
h a single node has almost all of the networklinks [20,22℄. The regime 
 > 1 a
tually has an in�nite sequen
e of transitions.For 
 > 2 all but a �nite number of nodes (in an in�nite network) are linked tothe \gel" node whi
h has the rest of the links of the network. For 3=2 < 
 < 2,the number of nodes with two links grows as N2�
 , while the number of nodeswith more than two links is again �nite. For 4=3 < 
 < 3=2, the number ofnodes with three links grows as N3�2
 and the number with more than threeis �nite. Generally for (m+ 1)=m < 
 < m=(m� 1), the number of nodes withmore than m links is �nite, while Nk � Nk�(k�1)
 for k � m.The linear kernel (
 = 1) is on the boundary between these two generi
behaviors and leads to a degree distribution that depends on details of the at-ta
hment rate. In fa
t, the exponent � = 1+� 
an be tuned to any value largerthan 2 [22℄. In the spe
ial 
ase of the stri
tly linear kernel, Ak = k, the degreedistribution has the simple formnk = 4k(k + 1)(k + 2) / k�3: (5)To illustrate the vagaries of asymptoti
ally linear kernels, 
onsider the shiftedlinear kernel Ak = k + �. For this 
ase, note that A(N) = Pj AjNj(N) givesA(N) =M1(N) + �M0(N). Using A = �N , M0 = N and M1 = 2N , we get� = 2 + �. Hen
e � = 1 + � = 3 + �. Thus an additive shift in the atta
h-ment kernel profoundly a�e
ts the asymptoti
 degree distribution. From (2), thedegree distribution isnk = (2 + �) � (3 + 2�)� (1 + �) � (k + �)� (k + 3+ 2�) / k�(3+�): (6)Finally, we dis
uss a simple extension in whi
h a newly-introdu
ed nodelinks to exa
tly p earlier nodes [6℄. For the linear atta
hment kernel, the degreedistribution Nk(N) (now de�ned only for k � p) obeys the rate equationdNkdN = pM1 [(k � 1)Nk�1 � kNk℄ + Æk;p: (7)Following the basi
 approa
h outlined after (3), we �nd that the asymptoti
degree distribution, nk = Nk=N , is [22℄nk = 2p(p+ 1)k(k + 1)(k + 2) for k � p: (8)Thus for the stri
tly linear atta
hment kernel, the number p of links introdu
edat ea
h node 
reation event does not a�e
t the exponent of the degree distri-bution. Generally, however, this multiple link 
onstru
tion a�e
ts the degreedistribution. For example, for the shifted linear kernel, we �ndnk = 
onst:� � (k + �)� (k + 3 + �+ �=p) for k � p;np = �1 + p p+ �2p+ ���1 ; (9)



Rate Equations for Networks 5whose asymptoti
 behavior is nk � k�(3+�=p). Thus the degree distribution ex-ponent depends strongly on p. This result again shows that �ne details of thegrowth pro
ess 
an be vitally important when the atta
hment rate is asymptot-i
ally linear.2.2 Order DistributionIn addition to node degree, we further 
hara
terize a node a

ording to its or-der of introdu
tion by asso
iating an order index J to the J th node that wasintrodu
ed into the network [22,23℄. Let Nk(N; J) be the probability that theJ th node has degree k when the network has N total nodes. The original degreedistribution may be re
overed from this joint order-degree distribution throughNk(N) = PNJ=1Nk(N; J). The joint distribution evolves a

ording to the rateequation � ��N � ��J�Nk = Ak�1Nk�1 �AkNkA + Æk1Æ(N � J): (10)The se
ond term on the left a

ount for the order index evolution. We assumethat the probability of linking to a given node depends only on its degree andnot on its order.The homogeneous form of this equation suggests that the solution shoulddepend on the single variable x � J=N . Writing Nk(N; J) = fk(x), 
onverts(10) into an ordinary, and readily soluble, di�erential equation [22℄. For the twogeneri
 
ases of Ak = k and Ak = 1, the order-degree distributions are:Nk(N; J) =8>>><>>>:q JN �1�q JN �k�1 Ak = k;JN [ln(N=J)℄k�1(k � 1)! Ak = 1: (11)For the average order index hJki =Pk J Nk(N; J)=Nk(N) of a node of degreek, we �nd hJkiN = 8>><>>: 12(k + 3)(k + 4) Ak = k;(2=3)k Ak = 1: (12)Similarly, the average degree hkJ i =Pk k Nk(N; J) of a node of order index Jis hkJ i = 8<: (J=N)�1=2 Ak = k;ln(N=J) + 1 Ak = 1: (13)The main messages from these results are that for Ak = k, high degree nodesmust have been introdu
ed early in the network development. Conversely, forthe 
ase of random atta
hment, Ak = 1, high degree nodes 
ould also have



6 Krapivsky & Rednerbeen introdu
ed relatively late in the network history. This di�eren
e plays a
ru
ial role in determining the properties of the node with the highest degree(Se
tion 3.2).2.3 Degree CorrelationsThe rate equation approa
h also allows us to obtain degree 
orrelations between
onne
ted nodes [22℄. These develop be
ause a node with large degree is likelyto be old [22,24{26℄. Thus its an
estor is also old and hen
e has a large degree.To quantify these degree 
orrelations, de�ne Ckl(N) as the number of nodes ofdegree k that atta
h to an an
estor node of degree l (Fig. 2(a)). For example,in the network of Fig. 1, there are N1 = 6 nodes of degree 1, with C12 = C13 =C15 = 2. There are also N2 = 2 nodes of degree 2, with C25 = 2, and N3 = 1nodes of degree 3, with C35 = 1.
k lFig. 2. De�nition of the node degree 
orrelation Ckl for k = 3 and l = 4For simpli
ity, we 
onsider the linear atta
hment kernel for whi
h the degree
orrelation Ckl(N) evolves a

ording toM1 dCkldN = (k�1)Ck�1;l � kCkl + (l�1)Ck;l�1 � lCkl + (l�1)Cl�1 Æk1: (14)The pro
esses that gives rise to ea
h term in this equation are illustrated inFig. 3. The �rst two terms on the right a

ount for the 
hange in Ckl due to theaddition of a link onto a node of degree k�1 (gain) or k (loss) respe
tively, whilethe se
ond set of terms gives the 
hange in Ckl due to the addition of a link ontothe an
estor node. Finally, the last term a

ounts for the gain in C1l due to theaddition of a new node. A 
ru
ial feature of this equation is that it is 
losed; the2-parti
le 
orrelation fun
tion does not depend on 3-parti
le quantities.

(i) (ii) (iii) (iv) (v)Fig. 3. Pro
esses that 
ontribute ((i){(v) in order) to the terms in the rate equation(14) for the 
ase k = 3 and l = 4 ((i){(iv)). The newly-introdu
ed node and link areshown dashed. The last 
ase (v) arises only for k = 1



Rate Equations for Networks 7As in the 
ase of the node degree, the N dependen
e is simply Ckl = N
kl.This redu
es (14) to an N -independent re
ursion relation. While the details ofthe solution are unwieldy [22℄, the asymptoti
 solution is relatively simple in thes
aling regime, k !1 and l!1 with y = l=k �nite:
kl = k�4 4y(y + 4)(1 + y)4 : (15)For �xed large k, the distribution 
kl has a maximum at y� = (p33 � 5)=2 �=0:372. Thus a node of degree k is typi
ally atta
hed to an an
estor node whosedegree is 37% that of the daughter node. In general, when k and l are both largeand their ratio is di�erent from one, the limiting behaviors of 
kl are
kl ! � 16 (l=k5) l � k,4=(k2 l2) l � k. (16)Here we expli
itly see the absen
e of fa
torization in the degree 
orrelation:
kl 6= nknl / (k l)�3.2.4 Global PropertiesThe rate equations 
an be adapted to determine the in-
omponent and out-
omponent of the network with respe
t to a given node x [22℄. The former isjust the set of nodes that point to the node, plus all nodes that refer thesedaughter nodes, et
. The latter are the set of nodes that 
an be rea
hed byfollowing dire
ted links that emanate from x (Fig. 4). We study the distributionof these 
omponent sizes for the 
onstant atta
hment kernel, Ak = 1, be
ausemany results about 
omponents are independent of the form of the kernel andthus it suÆ
es to 
onsider the simplest situation.
in-component

x
out-componentFig. 4. In-
omponent and out-
omponents of node x

The In-Component The number of in-
omponents with s nodes, Is(N), sat-is�es the rate equation dIsdN = (s� 1)Is�1 � sIsA + Æs1: (17)



8 Krapivsky & RednerHere the loss term a

ounts for pro
esses in whi
h the atta
hment of a new nodeto an in-
omponent of size s in
reases its size by one. This gives a loss rateproportional to s. If there is more than one in-
omponent of size s they must bedisjoint, so that the total loss rate for Is(N) is simply sIs(N). A similar argumentapplies for the gain term. Dividing by A(N) =Pj AjNj(N) 
onverts these ratesto probabilities, where A(N) =M0(N) � N for the 
onstant atta
hment kernel.It is again easy to verify that ea
h Is grows linearly in N . Thus we substituteIs(N) = N is into Eqs. (17) to obtain is = is�1(s � 1)=(s + 1) and i1 = 1=2.This immediately gives is = 1s(s+ 1) : (18)The s�2 tail for the in-
omponent distribution is independent of the form of theatta
hment kernel [22℄. The exponent value also agrees with re
ent measurementsof the web [10℄.The Out-Component The 
omplementary out-
omponent (Fig. 4) from ea
hnode 
an be determined by mapping the out-
omponent to an underlying net-work \genealogy".We build a genealogi
al tree for the growing network by takinggeneration g = 0 to be the initial node. Nodes that atta
h to those in generationg are de�ned to form generation g + 1; the node index does not matter in this
hara
terization. For example, in the network of Fig. 1(a), node 1 is the an
estorof 6, while 10 is the des
endant of 6; there are 5 nodes in generation g = 1 and4 in g = 2 (Fig. 5).
1

62 8 94

3 7 5 10

g=0

2

1Fig. 5. Genealogy of the network in Fig. 1(a). The nodes indi
es indi
ate when ea
his introdu
ed. The nodes are also arranged a

ording to generation numberThe genealogi
al tree is 
onvenient be
ause the number Os of out-
omponentswith s nodes equals Ls�1, the number of nodes in generation s � 1 in the tree(Fig. 5). We therefore 
ompute Lg(N), the size of generation g when the networkhas N total nodes. We again treat the 
onstant atta
hment kernel; more general
ases are treated in [22℄. We determine Lg(N) by noting that Lg(N) in
reaseswhen a new node atta
hes to a node in generation g � 1. This o

urs withrate Lg�1=M0, where M0(N) = 1 +N is the number of nodes. Thus _Lg(N) =Lg�1=(1 +N), with solution Lg(�) = �g=g!, where � = ln(1 +N). ThusOs(�) = �s�1=(s� 1)!: (19)



Rate Equations for Networks 9The generation size Lg(N) rapidly grows with g for g < � , and then de
reasesand be
omes of order 1 when g = e � . To a

ommodate a network of N nodes,the genealogi
al tree uses approximately e� generations. Therefore the networkdiameter is 2e� � 2e lnN , sin
e the maximum distan
e between any pair ofnodes is twi
e the distan
e from the root to the last generation.3 Finiteness, Flu
tuations, and Extremes3.1 Role of FinitenessThus far, we have fo
used on asymptoti
 properties when the number of nodes issuÆ
iently large that the ansatz Nk = N nk is valid. We now 
onsider the role of�niteness on growing networks with atta
hment rate Ak = k+� (� > �1) [27,28℄.This interpolates between linear atta
hment (for � = 0) to random atta
hment,Ak = 1 (for �!1).
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(b)Fig. 6. (a) Normalized degree distribution for networks of 102; 103; : : : ; 106 nodes (up-per left to lower right), with 105 realizations for ea
h N , for Ak = k for a \triangle"initial 
ondition. The dashed line is the asymptoti
 result nk = 4=[k(k + 1)(k + 2)℄;the last three data sets were averaged over 3, 9, and 27 points, respe
tively. (b) The
orresponding s
aling fun
tion as de�ned in F (�) in (20) from simulation data of 106realizations of a network with N = 104 nodes for the \dimer" initial 
ondition (
ir
les).The solid 
urve (red) is the analyti
al result of (25)As quoted in (6), the degree distribution of a network with N � 1 nodesis Nk(N) / Nk�(3+w) for atta
hment rate Ak = k + �. However, for �niteN the degree distribution must eventually deviate from this predi
tion be
ausethe maximal degree 
annot ex
eed N . To establish the range of appli
ability ofEqs. (6), we estimate the largest degree in the network, kmax by the extremestatisti
s 
riterion Pk�kmax Nk(N) � 1 [29℄. This yields kmax / N1=(2+�). Thedegree distribution should therefore deviate from (6) when k be
omes of the order



10 Krapivsky & Rednerof kmax. The existen
e of a maximal degree suggests that the degree distributionshould have the �nite-size s
aling form (see also [27,28,30{32℄)Nk(N) ' NnkF (�); � = k=kmax: (20)To determine the �nite-N behavior of the network, we start by writing theexa
t re
ursion relation for the degree distribution after a single node is added:Nk(N + 1) = Nk(N) + (k � 1)Nk�1(N)� kNk(N)2N : (21)To solve this re
ursion we introdu
e the two-variable generating fun
tion [28℄N (w; z) = 1XN=1 1Xk=1Nk(N)wN�1 zk ; (22)to transform (21) into�2(1� w) ��w + z(1� z) ��z � 2�N = 2z(1� w)2 : (23)The exa
t solution to this equation 
an be obtained by standard methods andhas the unwieldy form [28℄,N (w; z) = (3� 2z�1)(1� w)2 � 11� w + 2(z�1 � 1)(1� w)3=2 + 2(1� w)�1=2(z�1 � 1) + (1� w)1=2�2(z�1 � 1)2(1� w)2 ln h1� z + z(1� w)1=2i : (24)By expanding N (w; z), we 
an determine all the Nk(N). By this approa
h, we�nd that the s
aling fun
tion de�ned in (20) isF (�) = erf
��2�+ 2� + �3p4� e��2=4 ; (25)where erf
(x) is the 
omplementary error fun
tion. A related result was foundpreviously in [27℄. This s
aling fun
tion quantitatively a

ounts for the large-degree tail of the degree distribution (Fig. 6(b)).3.2 Extremes and Lead ChangesWe now investigate properties asso
iated with the statisti
s of the node withthe largest degree { the most popular node [33℄; see also [34℄. The degree ofthis node 
an be determined by a simple extreme statisti
s argument [29,33,34℄.Here we dis
uss related, so
ially-motivated questions of the identity of the mostpopular node (the leader). These in
lude the dependen
e of the leader identityon network size, the rate at whi
h lead 
hanges o

ur, and the probability thata leader retains the lead as a fun
tion of network size.



Rate Equations for Networks 11Leader Identity We �rst determine the order index of the leader node. Tostart with an unambiguous leader, we initialize the system with 3 nodes, withthe initial leader having degree 2 (and index 1) and the other two nodes havingdegree 1. A new leader arises when its degree ex
eeds that of the 
urrent leader.For the linear atta
hment rate, Ak = k, the average order index of the leaderJlead(N) saturates to a �nite value of approximately 3.4 as N !1 (Fig. 7(a)).With probability � 0:9, the leader is one of the 10 earliest nodes, while theprobability that the leader is not among the 30 earliest nodes is less than 0:01.Thus only the earliest nodes have appre
iable probabilities to be the leader; theri
h really do get ri
her. In the 
ase of Ak = k + �, the average index of theleader also saturates to a �nite value that is an in
reasing fun
tion of �.For random atta
hment (Ak = 1), the leader index grows as Jlead(N) � N with  � 0:41 (Fig. 7). The leader is still an early node (sin
e  < 1), butnot ne
essarily one of the earliest. From our simulations, a node with indexgreater than 100 has a probability of approximately 10�2 of being the leader fora network of 105 nodes. Thus, in random atta
hment, the order of node 
reationplays a signi�
ant, but not deterministi
, role in the identity of the leader node.
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(b)Fig. 7. (a) Average index of the leader Jlead(N) as a fun
tion of the total number ofnodes N for 105 realizations of a growing network. Shown are the 
ases of atta
hmentrates Ak = 1 and Ak = k. (b) Average number of lead 
hanges L(N) as a fun
tion ofnetwork size N for 105 realizations of the network for Ak = 1 and Ak = kFor 
onstant atta
hment rate, the identity of the leader 
an be simply reado� from (13); thus the index of the leader node, Jlead(N) = N(2=3)kmax [33℄. Weestimate the maximum degree from the extremal 
riterionPk�kmax Nk(N) � 1.Using Nk(N) = N=2k, we �nd 2kmax � N , or kmax � lnN= ln 2. ThereforeJlead(N) / N ; with  = 2� ln 3ln 2 � 0:415 037;in ex
ellent agreement with our numeri
al results.For the linear atta
hment rate, (13) now gives Jk(N) � 12N=k2. Sin
eNk(N) � 4N=k3, the extremal 
riterion Pk�kmax Nk(N) � 1 now gives kmax �



12 Krapivsky & RednerpN . Therefore Jlead(N) � 12N=k2max = O(1) indeed saturates to a �nite value.A similar result holds in the general 
ase Ak = k + �. Thus the leader is one ofthe �rst few nodes in the network.Lead Changes The average number of lead 
hanges L(N) grows logarithmi-
ally in N for both Ak = 1 and Ak = k (Fig. 7), although the details of theunderlying distributions of the number of lead 
hanges, P (L), are quite di�erent.For Ak = 1, P (L) has a sharp peak, while for Ak = k, P (L) has a signi�
ant tailthat stems from repeated lead 
hanges among the two leading nodes. We alsoobserve numeri
ally that the number of distin
t nodes that enjoy the lead growslogarithmi
ally in N .This logarithmi
 behavior 
an be easily understood. For Ak = 1, the numberof lead 
hanges 
annot ex
eed the maximal degree kmax � lnN= ln 2. For thegeneral 
ase Ak = k + �, when a new node is added, the lead 
hanges if theleadership is 
urrently shared between two (or more) nodes and the new nodeatta
hes to a 
o-leader. The number of 
o-leader nodes (with degree k = kmax)is N=k3+�max , while the probability of atta
hing to a 
o-leader is kmax=N . Thus theaverage number of lead 
hanges satis�esddN L(N) / kmaxN Nk3+�max : (26)Sin
e kmax grows as N1=(2+�), (26) redu
es to dL(N)=dN / N�1 or L(N) /lnN . This argument 
an be adapted to arbitrary atta
hment rates that do notgrow faster than linearly with k.Fate of the First Leader Finally, we study the survival probability S(N) thata node that was initially in the lead (has the maximum degree) remains in thelead as the network evolves. For Ak = k + � with � < 1, S(N) is non-zero asN !1 (Fig. 8). Thus the ri
h get ri
her holds in a strong form { the lead never
hanges with a positive probability.For 
onstant atta
hment rate the situation is more interesting, as being ri
hat birth is not as deterministi
 an in
uen
e as in the 
ase of linear atta
hment.Numeri
ally, S(N) de
ays very slowly to zero as N ! 1 (Fig. 8); a power lawS(N) / N�� is a reasonable �t, but the lo
al exponent is still slowly de
reasingat N � 108 where it has rea
hed �(N) � 0:18. To understand this behavior,
onsider the degree distribution of the �rst node. This quantity satis�es there
ursion relationP (k;N) = 1N P (k � 1; N � 1) + N � 1N P (k;N � 1) (27)whi
h redu
es to the 
onve
tion-di�usion equation� �� lnN + ��k�P = 12 �2P�k2 (28)
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Fig. 8. Probability that the �rst node leads throughout the evolution for 105 realiza-tions for N � 107 for Ak = k (upper), and N � 108 for Ak = 1 (lower)in the 
ontinuum limit. The solution is a GaussianP (k;N) = 1p2� lnN exp�� (k � lnN)22 lnN � : (29)Thus the degree of the �rst node grows as lnN , with 
u
tuations of the orderof plnN . On the other hand, from the degree distribution Nk(N) = N=2kthe maximal degree grows as kmax = v lnN with v = 1= ln 2 � 1:44, and its
u
tuations are negligible.We now estimate S(N) as the probability that the degree of the �rst node ex-
eeds the maximal degree. For large N , this 
riterion, S(N) �Pk�kmax P (k;N),be
omes S(N) / Z 1v lnN dkplnN exp�� (k � lnN)22 lnN �/ N�� (lnN)�1=2 ; (30)with � = (v � 1)2=2 � 0:0979 : : :. The re
ursion (27) 
an, in fa
t, be solvedexa
tly and gives P (k;N) = �Nk �=N !, for the dimer initial 
ondition, where �Nk �is the Stirling number of the �rst kind [35℄. Using this instead of the Gaussianapproximation leads to the exa
t exponent � = 1 � v + v ln v � 0:08607. Ineither 
ase, the logarithmi
 fa
tor leads to the very slow approa
h to asymptoti
behavior seen in Fig. 8.4 Protein NetworksFinally, we study a toy protein intera
tion network model that evolves by thebiologi
ally-inspired pro
esses of protein dupli
ation and subsequent mutation,as illustrated in Fig. 1(b) [14,16{18℄. By adapting the rate equation to a

ount



14 Krapivsky & Rednerfor these growth steps, we show that: (i) the system undergoes an in�nite-orderper
olation transition as a fun
tion of mutation rate, with a rate-dependentpower-law 
luster-size distribution everywhere below the threshold, (ii) there aregiant 
u
tuations in network stru
ture and no self-averaging for large dupli
ationrate, and (iii) the degree distribution has a power-law tail with a pe
uliar rate-dependent exponent.4.1 In�nite-Order Per
olation TransitionThe protein network has ri
h per
olation properties be
ause the mutation pro-
ess in Fig. 1(b) 
an lead to an arbitrary number of 
lusters being joined in asingle step of the evolution. To study these per
olation properties, we 
onsiderthe simpler limit where mutations 
an o

ur, but no dupli
ation (� > 0; Æ = 1).Let Cs(N) be the number of 
lusters of size s � 1. This distribution obeys therate equation dCsdN = �� sCsN + 1Xn=0 �nn! e�� Xs1���sn nYj=1 sjCsjN ; (31)where the sum is over all s1 � 1; : : : ; sn � 1 su
h that s1+ � � �+ sn+1 = s. The�rst term on the right a

ounts for the loss of Cs due to the linking of a 
lusterof size s with the newly-introdu
ed node. The gain term a

ounts for all possiblemerging pro
esses of n initially separated 
lusters whose total size is s� 1.Employing the now familiar ansatz that Cs(N) = N
s, and introdu
ing thegenerating fun
tion g(z) =Ps�1 s
s esz, (31) be
omesg = ��g0 + (1 + �g0) ez+�(g�1); (32)where g0 = dg=dz. To dete
t the per
olation transition, we use the fa
t thatg(0) = P s
s is the fra
tion of nodes within �nite 
lusters. Thus in the non-per
olating phase g(0) = 1 and the average 
luster size hsi = P s2
s = g0(0),while in the per
olating phase the size of the in�nite 
luster (the giant 
ompo-nent) is NG = N(1 � g(0)). To determine g0(0), we substitute the expansiong(z) = 1+zg0(0)+ : : : into (32) and take the z ! 0 limit. This yields a quadrati
equation for g0(0), with solutiong0(0) = hsi = 1� 2� �p1� 4�2�2 : (33)This real only for � � 1=4, thus identifying the per
olation threshold as �
 = 1=4.For � > �
, we express g0(0) in terms of the size of the giant 
omponent by settingz = 0 in (32) to give g0(0) = e��G +G� 1� (1� e��G) : (34)As � ! �
, we use G ! 0 to simplify (34) and �nd hsi ! (1 � �
)��2
 = 12.On the other hand, (33) shows that hsi ! 4 when � ! �
 from below. Thus
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lusters jumps dis
ontinuously from 4 to 12 as � passesthrough �
 = 1=4.The 
luster size distribution 
s exhibits distin
t behaviors below, at, andabove the per
olation transition. For � < �
, the asymptoti
 behavior of 
s
an be read o� from the generating fun
tion as z ! 0. If 
s has the power-lawbehavior 
s � B s�� as s!1, then the 
orresponding generating fun
tion g(z)has the small-z expansion g(z) = 1 + g0(0) z + B� (2 � �) (�z)��2 + : : :. Theregular terms are needed to reprodu
e the known zeroth and �rst derivativesof the generating fun
tion, while the asymptoti
 behavior is 
ontrolled by thedominant singular term (�z)��2. Substituting this expansion into (32) we �ndthat the dominant terms are of the order of (�z)��3. Balan
ing all 
ontributionsof this order gives � = 1 + 21�p1� 4� : (35)Thus a power-law 
luster size distribution with a non-universal exponent arisesfor all � < �
; that is, the entire range � < �
 is 
riti
al.At the transition, (35) gives � = 3. However, 
s / s�3 
annot be 
orre
t asit implies that g0(0) diverges. The above expansion of the generating fun
tion isalso not valid for � = 3. As in other su
h situations, we anti
ipate a logarithmi

orre
tion. A detailed analysis of the generating fun
tion under this assumptiongives [18℄ 
s � 8s3 (ln s)2 as s!1: (36)The size of the giant 
omponent G(�) is obtained by solving (32) near z = 0.A detailed analysis shows that near �
G(�) / exp�� �p4� � 1� ; (37)so that all derivatives of G(�) vanish as � ! �
. Thus the transition is of in�niteorder. Similar behaviors were observed [23,36{38℄ for growing network modelswhere single nodes and links were introdu
ed independently. This generi
 growthme
hanism seems to give rise to fundamentally new per
olation phenomena.Giant Flu
tuations In the 
omplementary limit of no mutations (� = 0), in-dividual realizations of the network evolution 
u
tuate strongly. We 
an under-stand the underlying me
hanism for these 
u
tuations most dire
tly by studyingthe limit of deterministi
 dupli
ation (Æ = 0), where all the links of the dupli
atedprotein are 
ompleted [18℄. There is still a sto
hasti
 element in this growth, asthe node to be dupli
ated is 
hosen randomly. Consider the generi
 initial stateof two nodes that are joined by a single link. We denote this graph as K1;1,following the graph theoreti
 terminology [39℄ that Kn;m is the 
omplete bipar-tite graph in whi
h every node in the subgraph of size n is linked to every nodein the subgraph of size m. Dupli
ating one of the nodes in K1;1 gives K2;1 orK1;2, equiprobably. By 
ontinuing to dupli
ate nodes, it is easy to verify that at
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Fig. 9. Evolution of the 
omplete bipartite graph Km;n after one deterministi
 dupli-
ation. Only the links emanating from the top nodes of ea
h 
omponent are shownevery stage the network always remains a 
omplete bipartite graph, say Kk;N�k,and that every value of k = 1; : : : ; N � 1 o

urs with equal probability (Fig. 9).Thus the degree distribution remains singular { it is always the sum of two deltafun
tions! For �xed N , an average over all realizations of the evolution gives theaverage degree distribution hNki = 2�1� k � 1N � 1� : (38)This loss of self averaging is generi
; di�erent realizations of the growth leadto statisti
ally distinguishable networks for any initial 
ondition. Similar giant
u
tuations also arise in the general 
ase of imperfe
t dupli
ation where Æ > 0[18℄.4.2 Non-Universal Degree DistributionFinally, 
onsider the evolution when both in
omplete dupli
ation and mutationo

ur (Æ < 1, � > 0). In ea
h growth step, the average number of links L in
reasesby � + (1� Æ)D (Fig. 1(b)), where D is the average node degree of the network.Therefore, L = [� + (1� Æ)D℄N . Combining this with D = 2L=N gives [16,17℄D = 2�2Æ � 1 ; (39)a result that applies only when Æ > Æ
 = 1=2. Below this threshold, the numberof links grows as dLdN = � + 2(1� Æ) LN ; (40)and 
ombining with D(N) = 2L(N)=N , we �ndD(N) = 8<: �nite Æ > 1=2,� lnN Æ = 1=2,
onst:�N1�2Æ Æ < 1=2. (41)



Rate Equations for Networks 17Without mutation (� = 0) the average node degree always s
ales as N1�2Æ, sothat a realisti
 �nite average degree is re
overed only when Æ = 1=2. Thus muta-tions play a 
onstru
tive role, as a �nite average degree arises for any dupli
ationrate Æ > 1=2.We now apply the rate equations to study the degree distribution Nk(N) forthis 
ase of Æ > 1=2 and � > 0. The degree k of a node in
reases by one at arate Ak = (1 � Æ)k + �. The �rst term arises be
ause of the 
ontribution fromdupli
ation, while mutation leads to the k-independent 
ontribution. The rateequations for the degree distribution are thereforedNkdN = Ak�1Nk�1 �AkNkN +Gk: (42)The �rst two terms a

ount for pro
esses in whi
h the node degree in
reases byone. The sour
e term Gk des
ribes the introdu
tion of a new node of k links,with a of these links 
reated by dupli
ation and b = k � a 
reated by mutation.The probability of the former is Ps�a ns�sa�(1 � Æ)aÆs�a, where ns = Ns=Nis the probability that a node of degree s is 
hosen for dupli
ation, while theprobability of the latter is �b e��=b!. Sin
e dupli
ation and random atta
hmentare independent pro
esses, the sour
e term isGk = Xa+b=k 1Xs=a ns�sa�(1� Æ)aÆs�a �bb! e�� : (43)
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Fig. 10. The degree distribution exponent 
 as a fun
tion of Æ from the numeri
alsolution of (46)Substituting Nk(N) = N nk into the rate equations yields�k + � + 11� Æ �nk = �k � 1 + �1� Æ�nk�1 + Gk1� Æ : (44)Sin
e Gk depends on ns for all s � k, the above equation is not a re
ursion.However, for large k, we redu
e it to a re
ursion by noting that as k ! 1, the
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ontribution to the sum in (43) arises when b is small. Thus a is 
lose to k,and the summand is sharply peaked around s � k=(1� Æ). We may then repla
ethe lower limit by s = k, and ns by its value at s = k=(1 � Æ). Further, if nkde
ays as k�
 , we write ns = (1� Æ)
nk and simplify Gk toGk � (1� Æ)
 nk 1Xs=k�sk�(1� Æ)kÆs�k 1Xb=0 �bb! e��= (1� Æ)
�1nk; (45)sin
e the former binomial sum equals (1� Æ)�1.These steps redu
e (44) to a re
ursion, from whi
h we dedu
e that nk hasthe power-law behavior nk � k�
 , with 
 determined from [18,40℄
(Æ) = 1 + 11� Æ � (1� Æ)
�2: (46)The exponent 
 has a strong dependen
e on Æ (Fig. 10). Further, sin
e the re-pla
ement of ns by (1�Æ)
nk is valid only asymptoti
ally, the degree distributionshould 
onverge slowly to the predi
ted power law form. This slow approa
h toasymptoti
 behavior is observed in large-s
ale simulations [18℄. The 
orrespond-ing exponent 
(Æ) is independent of the mutation rate � but depends sensitivelyon the dupli
ation rate. Nevertheless, the presen
e of mutations (� > 0) is vitalto suppress the non-self-averaging as the network evolves and thus make possiblea smooth degree distribution.5 OutlookWe hope that the reader is persuaded that the rate equations are a powerful,yet readily appli
able tool, to investigate the stru
ture of growing networks. Forin
rementally growing networks, we have obtained rather 
omplete results for thedegree distribution and some of the most important ensuing 
onsequen
es. Wealso studied a toy protein intera
tion network model that evolves by dupli
ationand mutation. In the absen
e of dupli
ation, the network undergoes an in�nite-order per
olation transition as a fun
tion of the mutation rate. In the absen
e ofmutation, the network exhibits giant sample-spe
i�
 
u
tuations. It is only withthe in
lusion of mutations that robust and statisti
ally similar networks 
an begenerated.In summary, the rate equation approa
h is well-suited to treat a wide rangephenomenology asso
iated with evolving networks. Its full potential in this �eldis just starting to be fully exploited.The work on protein networks was in 
ollaboration with Byungnam Kahngand Jeenu Kim. This resear
h was supported in part by NSF grant DMR9978902.
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