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Abstract. The rate equations are applied to investigate the structure of growing net-
works. Within this framework, the degree distribution of a network in which nodes are
introduced sequentially and attach to an earlier node of degree k with rate A, ~ k7
is computed. Very different behaviors arise for v < 1, v = 1, and v > 1. The rate
equation approach is extended to determine the joint order-degree distribution, the de-
gree correlations of neighboring nodes, as well as basic global properties. The complete
solution for the degree distribution of a finite-size network is outlined. Some unusual
properties associated with the most popular node are discussed; these follow simply
from the order-degree distribution. Finally, a toy protein interaction network model is
investigated, where the network grows by the processes of node duplication and par-
ticular form of random mutations. This system exhibits an infinite-order percolation
transition, giant sample-specific fluctuations, and a non-universal degree distribution.

1 Introduction

In this contribution, we apply tools from statistical physics, in particular, the rate
equations, to quantify geometrical properties of evolving networks [1]. The utility
of the rate equations have been amply demonstrated for diverse non-equilibrium
phenomena, such as aggregation [2], coarsening [3], and epitaxial surface growth
[4]. We will argue that the rate equations are a similarly powerful yet simple
tool to analyze growing network systems. In addition to providing comprehensive
information about the node degree distribution, the rate equations can be readily
adapted to treat the joint order-degree distribution, correlations between node
degrees, global properties, and a variety of intriguing fluctuation effects.

We will focus on two classes of models. In the first, which we simply term the
growing network, nodes are added sequentially and a single link is established
between the new node and a pre-existing node according to an attachment rate
Ay that depends only on the degree of the “target” node (Fig. 1). Here node
degree is the number of links that impinge on the node. This appealing model,
first introduced by Simon [5] and rediscovered by Barabasi and Albert [6], has
become extremely fashionable because of its rich phenomenology and timely
applications. Examples include the distribution of biological genera, word fre-
quencies, publications, urban populations, income [5,7], and the link distribution
of the world-wide web [8-10].

The second class of models are inspired by protein interaction networks,
where the nodes are individual proteins and the links represent a functional
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Fig.1. (a) Growing network. Nodes are added sequentially and a single link joins a
new node to an earlier node. Node 1 has degree 5, node 2 has degree 3, nodes 4 and 6
have degree 2, and the remaining nodes have degree 1. (b) Protein interaction network.
The new node duplicates 2 out of the 3 links between the target (shaded green) and its
neighbors. Each successful duplication occurs with probability 1 — § (blue solid lines).
The new node also attaches to any other node with probability 3/N (red dotted lines).
Thus three previously disconnected clusters are joined by the complete event

duplication1-3
~
_target node

relationship between two proteins in an organism. Much effort has been devoted
to infer the structure of such networks [11-13] and to formulate models that
account for their evolution [14-19]. In the model discussed here [17,18], nodes
are added sequentially and the new node may “duplicate” a randomly chosen
target, and the new node can link to any other node with with a small probability
(Fig. 1). In the duplication step, the new node links to each of the neighbors
of the target with probability 1 — 4. Thus the duplicate protein is functionally
similar to the original [14]. The second process can be viewed as mutation in
which a protein can becomes functionally linked to a random subset of other
proteins. By this latter process, an arbitrary number of clusters can merge when
a single node is introduced. As we shall discuss, this many-body merging leads
to an infinite-order percolation transition as a function of the mutation rate.
While the applicability of this model to describe real protein networks is still
not settled [14], it is a useful starting point for theoretical analysis.

Our basic goal is to quantify the structure of these two basic networks by the
rate equation approach.

2 Structure of the Growing Network

2.1 The Degree Distribution

A fundamental characteristic of any random network is the node degree distri-
bution Ni(N), defined as the number of nodes with k links in a network that
contains N total nodes. To determine this distribution, we write the rate equa-
tions that account for its evolution after each node is introduced. For the growth
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process in Fig. 1(a), these rate equations are [20-22]

dNy A 1Np1 — ApNg
dN A

The first term on the right, Ay_1 Nj_1 /A, accounts for processes in which a node
with k£ — 1 links is connected to the new node, thus increasing Ny by one. Since
there are N1 nodes of degree k — 1, such processes occur at a rate proportional
to Ag—1Ng—1, while the factor A(N) = > .5, A;N;(N) converts this rate into
a normalized probability. A corresponding role is played by the second (loss)
term on the right-hand side. Here ANy /A is the probability that a node with k
links is connected to the new node, thus leading to a loss in Ni. The last term
accounts for the introduction of a new node with degree one.

Let us first determine the moments of the degree distribution, M, (N) =
> j>1J"N;j(N). Summing Eqgs. (1) over all k, gives My(N) = 1. This accords
with the definition that My(N) = 3, Ny is just the total number of nodes N
in the network. Similarly, the first moment obeys M;(N) = 2, or M;(N) =
M;(0) + 2N. Clearly this quantity must grow as 2N, since introducing a single
node creates two link endpoints. Thus the first two moments are independent of
the attachment kernel Ay and grow linearly in N. On the other hand, higher
moments and the degree distribution itself depend in an essential way on Ay.

For general attachment kernels that do not grow faster than linearly with
k, it can be easily verified that the asymptotic degree distribution and A(N)
both grow linearly with N. Thus substituting Ny (N) = N ny and A(N) = uN
into Eqgs. (1) we obtain the recursion relation ny = ng_1Ag_1/(1 + Ax) and
n1 = pu/(p+ Ar). Solving for ny, we obtain the formal solution

k —1
Iz ft
nEg = — 1+ — . 2
’ Aij:l< Aj) (2)

To complete this solution, we need the amplitude p. Using the definition p =
> j>1 4jnj in (2), we obtain the implicit relation

g:ﬁ<”,4%—>1:1 (3)

1j=1

+ Ok (1)

which shows that the amplitude p depends on the entire attachment kernel.
For the generic case Ay ~ k7, we rewrite the product in (2) as the exponential

of a sum of logarithms. In the continuum limit, we convert this sum to an integral,

expand the logarithm to lowest order, and evaluate the integral to yield:

k=7 exp [—,u (%)} , 0<y <1,
e~ k™Y, v=1+pu>2, v=1; (4)
singular v> 1

That is, for all 0 < v < 1, the degree distribution is a robust stretched expo-
nential (and pure exponential for v = 0). Conversely, for v > 1 a phenomenon
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analogous to gelation occurs in which a single node has almost all of the network
links [20,22]. The regime v > 1 actually has an infinite sequence of transitions.
For v > 2 all but a finite number of nodes (in an infinite network) are linked to
the “gel” node which has the rest of the links of the network. For 3/2 < v < 2,
the number of nodes with two links grows as N2~7, while the number of nodes
with more than two links is again finite. For 4/3 < v < 3/2, the number of
nodes with three links grows as N3~27 and the number with more than three
is finite. Generally for (m + 1)/m < v < m/(m — 1), the number of nodes with
more than m links is finite, while Nj, ~ N¥=(=17 for k < m.

The linear kernel (y = 1) is on the boundary between these two generic
behaviors and leads to a degree distribution that depends on details of the at-
tachment rate. In fact, the exponent v = 1+ p can be tuned to any value larger
than 2 [22]. In the special case of the strictly linear kernel, A, = k, the degree
distribution has the simple form

4
k(k+1)(k + 2)

To illustrate the vagaries of asymptotically linear kernels, consider the shifted
linear kernel Ay = k + A. For this case, note that A(N) = >, A;N;(IV) gives
A(N) = My(N) + AMy(N). Using A = uN, My = N and M; = 2N, we get
@t =2+ A Hence v =1+ p = 3+ A Thus an additive shift in the attach-
ment kernel profoundly affects the asymptotic degree distribution. From (2), the
degree distribution is

ng = X k_s- (5)

LB+2N) Tk+XN o

=N FE T3+ 2y

(6)

Finally, we discuss a simple extension in which a newly-introduced node
links to exactly p earlier nodes [6]. For the linear attachment kernel, the degree
distribution Ny (V) (now defined only for k£ > p) obeys the rate equation

dNy, p

— =—|[(k—1)Ny_1 — kN, Ok.p-

aN — 1L [(k = )Ny k] + Okp (7)
Following the basic approach outlined after (3), we find that the asymptotic
degree distribution, ny = Ny /N, is [22]

2p(p+1)
k(k+ 1)(k + 2)

Thus for the strictly linear attachment kernel, the number p of links introduced
at each node creation event does not affect the exponent of the degree distri-
bution. Generally, however, this multiple link construction affects the degree
distribution. For example, for the shifted linear kernel, we find

ng = for k>p. (8)

I'(k+\)
= t. for k >
ny = cons xF(k+3+/\+/\/p) or k> p,
-1
P+ A
=1
w= (14 255) )
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whose asymptotic behavior is ny ~ k~+*/P) Thus the degree distribution ex-
ponent depends strongly on p. This result again shows that fine details of the
growth process can be vitally important when the attachment rate is asymptot-
ically linear.

2.2 Order Distribution

In addition to node degree, we further characterize a node according to its or-
der of introduction by associating an order index J to the J* node that was
introduced into the network [22,23]. Let Ny (IV,J) be the probability that the
J*™ node has degree k when the network has N total nodes. The original degree
distribution may be recovered from this joint order-degree distribution through
Ni(N) = ZJJ\;l Nk (N, J). The joint distribution evolves according to the rate
equation

( 0 0 >Nk _ Ap 1 N1 — AN,

8_N_W ) +(5k1(5(N—J). (10)

The second term on the left account for the order index evolution. We assume
that the probability of linking to a given node depends only on its degree and
not on its order.

The homogeneous form of this equation suggests that the solution should
depend on the single variable = J/N. Writing Ni(N,J) = fi(z), converts
(10) into an ordinary, and readily soluble, differential equation [22]. For the two
generic cases of Ay = k and Ay = 1, the order-degree distributions are:

k—1
SEO-VR)T e
Ni(N,J) = (11)
J [In(v/ )] A =1
N (k-1)! P

For the average order index (Ji) = >, J Ni(V, J) /N (V) of a node of degree
k, we find
12
(ﬁ) _ ) (k+3)(k+4) (12)

(2/3)* Ap = 1.

Similarly, the average degree (k;) = >, k N (N, J) of a node of order index J
is
(J/N) /2 Ay =k,
(ky) = (13)
In(N/J) +1 A =1.

The main messages from these results are that for Ay = k, high degree nodes
must have been introduced early in the network development. Conversely, for
the case of random attachment, A; = 1, high degree nodes could also have
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been introduced relatively late in the network history. This difference plays a
crucial role in determining the properties of the node with the highest degree
(Section 3.2).

2.3 Degree Correlations

The rate equation approach also allows us to obtain degree correlations between
connected nodes [22]. These develop because a node with large degree is likely
to be old [22,24-26]. Thus its ancestor is also old and hence has a large degree.
To quantify these degree correlations, define Cy;(N) as the number of nodes of
degree k that attach to an ancestor node of degree I (Fig. 2(a)). For example,
in the network of Fig. 1, there are N; = 6 nodes of degree 1, with Ci5 = C13 =
C15 = 2. There are also Ny = 2 nodes of degree 2, with Cy5 = 2, and N3 =1
nodes of degree 3, with C55 = 1.

\
k I
Fig. 2. Definition of the node degree correlation Cj; for k =3 and [ =4

For simplicity, we consider the linear attachment kernel for which the degree
correlation Cy; (V) evolves according to

dChy
dN

M, = (k—l)C,HJ — kCp + (l—l)CkJ,l —1Cy + (l—l)Ckl Ok1. (14)
The processes that gives rise to each term in this equation are illustrated in
Fig. 3. The first two terms on the right account for the change in Cy; due to the
addition of a link onto a node of degree k—1 (gain) or k (loss) respectively, while
the second set of terms gives the change in C}; due to the addition of a link onto
the ancestor node. Finally, the last term accounts for the gain in Cy; due to the
addition of a new node. A crucial feature of this equation is that it is closed; the
2-particle correlation function does not depend on 3-particle quantities.

Y N N T N Ty
O-C O-Cg OCL O O
0] (i) (iii) (iv) v)
Fig. 3. Processes that contribute ((i)—(v) in order) to the terms in the rate equation

(14) for the case k = 3 and [ = 4 ((i)—(iv)). The newly-introduced node and link are
shown dashed. The last case (v) arises only for k =1
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As in the case of the node degree, the N dependence is simply Ck; = Ncyy.
This reduces (14) to an N-independent recursion relation. While the details of
the solution are unwieldy [22], the asymptotic solution is relatively simple in the
scaling regime, k — oo and | — oo with y = I/k finite:

Ay(y+4)
4
Ckl = . 15

K 1+9) (15)
For fixed large k, the distribution ¢g; has a maximum at y* = (v/33 — 5)/2 =
0.372. Thus a node of degree k is typically attached to an ancestor node whose
degree is 37% that of the daughter node. In general, when k and [ are both large
and their ratio is different from one, the limiting behaviors of ¢y, are

16(/K) 1<k,
Ckt {4/(k212) > k. (16)

Here we explicitly see the absence of factorization in the degree correlation:
Crl ;é nrng o< (k} 1)73

2.4 Global Properties

The rate equations can be adapted to determine the in-component and out-
component of the network with respect to a given node x [22]. The former is
just the set of nodes that point to the node, plus all nodes that refer these
daughter nodes, etc. The latter are the set of nodes that can be reached by
following directed links that emanate from x (Fig. 4). We study the distribution
of these component sizes for the constant attachment kernel, A, = 1, because
many results about components are independent of the form of the kernel and
thus it suffices to consider the simplest situation.

X : in-component

Fig. 4. In-component and out-components of node x

The In-Component The number of in-components with s nodes, I,(N), sat-
isfies the rate equation
dly (s —1)I5—1 — sl

W = A +5sl- (17)
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Here the loss term accounts for processes in which the attachment of a new node
to an in-component of size s increases its size by one. This gives a loss rate
proportional to s. If there is more than one in-component of size s they must be
disjoint, so that the total loss rate for I;(N) is simply sIs(N). A similar argument
applies for the gain term. Dividing by A(N) =3, A;N;(N) converts these rates
to probabilities, where A(N) = My(IN) ~ N for the constant attachment kernel.
It is again easy to verify that each I; grows linearly in V. Thus we substitute
I;(N) = Ni, into Egs. (17) to obtain i = i5_1(s — 1)/(s + 1) and i; = 1/2.
This immediately gives )
s = s(s+1)° (18)
The 52 tail for the in-component distribution is independent of the form of the
attachment kernel [22]. The exponent value also agrees with recent measurements

of the web [10].

The Out-Component The complementary out-component (Fig. 4) from each
node can be determined by mapping the out-component to an underlying net-
work “genealogy”. We build a genealogical tree for the growing network by taking
generation g = 0 to be the initial node. Nodes that attach to those in generation
g are defined to form generation g + 1; the node index does not matter in this
characterization. For example, in the network of Fig. 1(a), node 1 is the ancestor
of 6, while 10 is the descendant of 6; there are 5 nodes in generation g = 1 and

4 in g =2 (Fig. 5).
{ 2

Fig. 5. Genealogy of the network in Fig. 1(a). The nodes indices indicate when each
is introduced. The nodes are also arranged accordlng to generation number

The genealogical tree is convenient because the number O, of out-components
with s nodes equals Ls_1, the number of nodes in generation s — 1 in the tree
(Fig. 5). We therefore compute Ly (IV), the size of generation g when the network
has N total nodes. We again treat the constant attachment kernel; more general
cases are treated in [22]. We determine Ly(N) by noting that Ly(N) increases
when a new node attaches to a node in generation g — 1. This occurs with
rate L, /My, where My(N) = 1 + N is the number of nodes. Thus L,(N) =
Ly_1/(1+ N), with solution Ly(7) = 79 /¢!, where 7 = In(1 + N). Thus

Os(r) =771/ (s = 1)L (19)
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The generation size L, (V) rapidly grows with g for g < 7, and then decreases
and becomes of order 1 when g = e7. To accommodate a network of N nodes,
the genealogical tree uses approximately er generations. Therefore the network
diameter is 2er ~ 2eln N, since the maximum distance between any pair of
nodes is twice the distance from the root to the last generation.

3 Finiteness, Fluctuations, and Extremes

3.1 Role of Finiteness

Thus far, we have focused on asymptotic properties when the number of nodes is
sufficiently large that the ansatz N = N ny is valid. We now consider the role of
finiteness on growing networks with attachment rate Ay = k+X (A > —1) [27,28].
This interpolates between linear attachment (for A = 0) to random attachment,
A =1 (for A — 00).

F(E)

Fig. 6. (a) Normalized degree distribution for networks of 10%,10%,...,10° nodes (up-
per left to lower right), with 10° realizations for each N, for Ay = k for a “triangle”
initial condition. The dashed line is the asymptotic result ny, = 4/[k(k + 1)(k + 2)];
the last three data sets were averaged over 3, 9, and 27 points, respectively. (b) The
corresponding scaling function as defined in F(€) in (20) from simulation data of 10°
realizations of a network with N = 10* nodes for the “dimer” initial condition (circles).
The solid curve (red) is the analytical result of (25)

As quoted in (6), the degree distribution of a network with N > 1 nodes
is Ni(N) o« Nk~G+®) for attachment rate A, = k 4+ A. However, for finite
N the degree distribution must eventually deviate from this prediction because
the maximal degree cannot exceed N. To establish the range of applicability of
Egs. (6), we estimate the largest degree in the network, kmax by the extreme
statistics criterion Y 5,  Ng(NN) & 1 [29]. This yields kmax o< N/Z+Y. The
degree distribution should therefore deviate from (6) when k becomes of the order
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of knax- The existence of a maximal degree suggests that the degree distribution
should have the finite-size scaling form (see also [27,28,30-32])

Ne(N) = NnpF(€), €= k/kmax. (20)

To determine the finite-IV behavior of the network, we start by writing the
exact recursion relation for the degree distribution after a single node is added:
(k= 1)Np_1(N) — kNi(N)

2N '

Ni(N +1) = Ni(N) + (21)

To solve this recursion we introduce the two-variable generating function [28]
o0 o0
N(w,z) = ZZNk(N)wN_lzk, (22)
N=1k=1

to transform (21) into

(2(1—w)i+z(1—z)%—2>./\/:( 2z (23)

ow 1—w)?’

The exact solution to this equation can be obtained by standard methods and
has the unwieldy form [28],

_B-2) 1 26T - 21— w) 12
N2 =G " T T 0w T G I-Dr )"
2(z7t —1)2 1/2
_Wln[1—z+z(1—w)/ : (24)

By expanding N (w, z), we can determine all the N (V). By this approach, we
find that the scaling function defined in (20) is

F() = erfec (%) + % e €1, (25)

where erfc(z) is the complementary error function. A related result was found
previously in [27]. This scaling function quantitatively accounts for the large-
degree tail of the degree distribution (Fig. 6(b)).

3.2 Extremes and Lead Changes

We now investigate properties associated with the statistics of the node with
the largest degree — the most popular node [33]; see also [34]. The degree of
this node can be determined by a simple extreme statistics argument [29,33,34].
Here we discuss related, socially-motivated questions of the identity of the most
popular node (the leader). These include the dependence of the leader identity
on network size, the rate at which lead changes occur, and the probability that
a leader retains the lead as a function of network size.
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Leader Identity We first determine the order index of the leader node. To
start with an unambiguous leader, we initialize the system with 3 nodes, with
the initial leader having degree 2 (and index 1) and the other two nodes having
degree 1. A new leader arises when its degree exceeds that of the current leader.
For the linear attachment rate, Ay = k, the average order index of the leader
Jiead (IV) saturates to a finite value of approximately 3.4 as N — oo (Fig. 7(a)).
With probability & 0.9, the leader is one of the 10 earliest nodes, while the
probability that the leader is not among the 30 earliest nodes is less than 0.01.
Thus only the earliest nodes have appreciable probabilities to be the leader; the
rich really do get richer. In the case of Ay, = k + A, the average index of the
leader also saturates to a finite value that is an increasing function of A.

For random attachment (Aj = 1), the leader index grows as Jieaq(IN) ~ N¥
with ¢ =~ 0.41 (Fig. 7). The leader is still an early node (since ¢ < 1), but
not necessarily one of the earliest. From our simulations, a node with index
greater than 100 has a probability of approximately 10~2 of being the leader for
a network of 10° nodes. Thus, in random attachment, the order of node creation
plays a significant, but not deterministic, role in the identity of the leader node.

10° : 6 :
o Ak:]_ oo o Ak:l ooo
A Ak:k oo N Ak:k 0,8
o o IN
o 0° A
Ooo 47 OOAAA -
2 0 73 00ue
L - - o
\/glo oo - OZAA
o Oa
Ll ooo 2L OgiA |
OOOAAAAAAAAAAAAAAAAAAA g%oAA
g @ .o ©
¢}
0
10 &8 1l 1 1 1l 0 TR SR ET] R tuunl | FREETI - L
10° 100 100 100 10° 10° 10° 100 100 100 100 10°
N N

Fig. 7. (a) Average index of the leader Jicada(/V) as a function of the total number of
nodes N for 10° realizations of a growing network. Shown are the cases of attachment
rates Ay = 1 and Ay = k. (b) Average number of lead changes L(N) as a function of
network size NV for 10° realizations of the network for A, = 1 and A, = k

For constant attachment rate, the identity of the leader can be simply read
off from (13); thus the index of the leader node, Jiead(N) = N (2/3)*max [33]. We
estimate the maximum degree from the extremal criterion ) -,  Ni(N) = 1.

Using Ni(N) = N/2F, we find 2¥=ex ~ N, or kpax ~ In N/In2. Therefore

In3
Jiead(N) o N¥,  with o =2— 12_2 ~ 0.415 037,

in excellent agreement with our numerical results.
For the linear attachment rate, (13) now gives Ji(IN) ~ 12N/k%. Since
Ni(N) ~ 4N/k?, the extremal criterion Y, -,  Ni(N) & 1 now gives kyax ~



12 Krapivsky & Redner

V/N. Therefore Jieaq(N) ~ 12N/k2, . = O(1) indeed saturates to a finite value.
A similar result holds in the general case Ay = k + A. Thus the leader is one of

the first few nodes in the network.

Lead Changes The average number of lead changes L(N) grows logarithmi-
cally in N for both Ay = 1 and Ay = k (Fig. 7), although the details of the
underlying distributions of the number of lead changes, P(L), are quite different.
For A;, =1, P(L) has a sharp peak, while for A, = k, P(L) has a significant tail
that stems from repeated lead changes among the two leading nodes. We also
observe numerically that the number of distinct nodes that enjoy the lead grows
logarithmically in V.

This logarithmic behavior can be easily understood. For A; = 1, the number
of lead changes cannot exceed the maximal degree kyax ~ In N/In2. For the
general case A = k + A, when a new node is added, the lead changes if the
leadership is currently shared between two (or more) nodes and the new node
attaches to a co-leader. The number of co-leader nodes (with degree k = kmax)
is N/k3+A while the probability of attaching to a co-leader is kmax/N. Thus the

max?

average number of lead changes satisfies

d kmax N
d—NL(N) 0.8 N k?ﬂtg{‘ (26)

Since kyax grows as NY/(+2 (26) reduces to dL(N)/dN < N~ or L(N)
In N. This argument can be adapted to arbitrary attachment rates that do not
grow faster than linearly with k.

Fate of the First Leader Finally, we study the survival probability S(IV) that
a node that was initially in the lead (has the maximum degree) remains in the
lead as the network evolves. For Ay = k + A with A < 0o, S(N) is non-zero as
N — oo (Fig. 8). Thus the rich get richer holds in a strong form — the lead never
changes with a positive probability.

For constant attachment rate the situation is more interesting, as being rich
at birth is not as deterministic an influence as in the case of linear attachment.
Numerically, S(N) decays very slowly to zero as N — oo (Fig. 8); a power law
S(N) oc N~ is a reasonable fit, but the local exponent is still slowly decreasing
at N ~ 10® where it has reached ¢(IN) ~ 0.18. To understand this behavior,
consider the degree distribution of the first node. This quantity satisfies the
recursion relation

N -1

Pk, N) = %P(k—l,N—1)+ NPk N - 1) (27)

which reduces to the convection-diffusion equation

0 0 1 9%P
<—61nN+%>P_§W (28)
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N

Fig. 8. Probability that the first node leads throughout the evolution for 10° realiza-
tions for N < 107 for Ay = k (upper), and N < 10® for Ay =1 (lower)

in the continuum limit. The solution is a Gaussian

1 (k—1InN)?
V2rin N P 2InN '

Thus the degree of the first node grows as In NV, with fluctuations of the order
of VInN. On the other hand, from the degree distribution Nj(N) = N/2*
the maximal degree grows as kmax = vIn N with v = 1/In2 = 1.44, and its
fluctuations are negligible.

We now estimate S(N) as the probability that the degree of the first node ex-
ceeds the maximal degree. For large IV, this criterion, S(N) ~ 35, P(k,N),

becomes
o dk (k—lnN)z}
S(N oc/ ex {—7
( ) vin N In N P 2In N

P(k,N) = (29)

x N~¢ (InN)~Y/2, (30)

with ¢ = (v — 1)?/2 =~ 0.0979.... The recursion (27) can, in fact, be solved
exactly and gives P(k,N) = []Z] /N1, for the dimer initial condition, where [IZ]
is the Stirling number of the first kind [35]. Using this instead of the Gaussian
approximation leads to the exact exponent ¢ = 1 — v + vlnv = 0.08607. In
either case, the logarithmic factor leads to the very slow approach to asymptotic
behavior seen in Fig. 8.

4 Protein Networks

Finally, we study a toy protein interaction network model that evolves by the
biologically-inspired processes of protein duplication and subsequent mutation,
as illustrated in Fig. 1(b) [14,16-18]. By adapting the rate equation to account
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for these growth steps, we show that: (i) the system undergoes an infinite-order
percolation transition as a function of mutation rate, with a rate-dependent
power-law cluster-size distribution everywhere below the threshold, (ii) there are
giant fluctuations in network structure and no self-averaging for large duplication
rate, and (iii) the degree distribution has a power-law tail with a peculiar rate-
dependent exponent.

4.1 Infinite-Order Percolation Transition

The protein network has rich percolation properties because the mutation pro-
cess in Fig. 1(b) can lead to an arbitrary number of clusters being joined in a
single step of the evolution. To study these percolation properties, we consider
the simpler limit where mutations can occur, but no duplication (5 > 0,0 = 1).
Let Cs(N) be the number of clusters of size s > 1. This distribution obeys the
rate equation

dCs, 50y =B 1 %Css
dN__BNJr;HeﬁZH N (31)

818, j=1

where the sum is over all s; > 1,...,s, > 1 such that s; +---+s, +1 = s. The
first term on the right accounts for the loss of Cs due to the linking of a cluster
of size s with the newly-introduced node. The gain term accounts for all possible
merging processes of n initially separated clusters whose total size is s — 1.

Employing the now familiar ansatz that C5(N) = Neg, and introducing the
generating function g(z) = > ., sc, €%, (31) becomes

g=—-Bg + 1+ Bg)etFle1)] (32)

where ¢ = dg/dz. To detect the percolation transition, we use the fact that
g(0) = > scs is the fraction of nodes within finite clusters. Thus in the non-
percolating phase ¢g(0) = 1 and the average cluster size (s) = Y s%c; = ¢'(0),
while in the percolating phase the size of the infinite cluster (the giant compo-
nent) is NG = N(1 — g(0)). To determine ¢'(0), we substitute the expansion
g(z) =14+2¢'(0)+. .. into (32) and take the z — 0 limit. This yields a quadratic
equation for ¢'(0), with solution

_1-28—-/1-4p
= o )
This real only for § < 1/4, thus identifying the percolation threshold as 5. = 1/4.

For 8 > 8., we express ¢'(0) in terms of the size of the giant component by setting
z =0 in (32) to give

9'(0) = (s)

(33)

/ e P +G -1

9'(0) = m- (34)

As B = B., we use G — 0 to simplify (34) and find (s) — (1 — 8.)3.2% = 12.
On the other hand, (33) shows that (s) — 4 when § — [, from below. Thus
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the average size of finite clusters jumps discontinuously from 4 to 12 as § passes
through g, = 1/4.

The cluster size distribution cs exhibits distinct behaviors below, at, and
above the percolation transition. For 8 < f., the asymptotic behavior of c¢;
can be read off from the generating function as z — 0. If ¢, has the power-law
behavior ¢s ~ B s~ as s — 00, then the corresponding generating function g(z)
has the small-z expansion g(z) = 1+ ¢'(0)z + BI'(2 — 7) (—=2)" 2 + .... The
regular terms are needed to reproduce the known zeroth and first derivatives
of the generating function, while the asymptotic behavior is controlled by the
dominant singular term (—z)7~2. Substituting this expansion into (32) we find
that the dominant terms are of the order of (—z)™~3. Balancing all contributions

of this order gives
2

T—1+1_ =1 (35)
Thus a power-law cluster size distribution with a non-universal exponent arises
for all B < B.; that is, the entire range 5 < [, is critical.

At the transition, (35) gives 7 = 3. However, ¢; x s~ cannot be correct as
it implies that ¢'(0) diverges. The above expansion of the generating function is
also not valid for 7 = 3. As in other such situations, we anticipate a logarithmic
correction. A detailed analysis of the generating function under this assumption
gives [18]

3

8
Cg ~ m as s — oQ. (36)
The size of the giant component G(f) is obtained by solving (32) near z = 0.
A detailed analysis shows that near 3.

G(B) o exp (—%) , (37)

so that all derivatives of G(f) vanish as  — .. Thus the transition is of infinite
order. Similar behaviors were observed [23,36-38] for growing network models

where single nodes and links were introduced independently. This generic growth
mechanism seems to give rise to fundamentally new percolation phenomena.

Giant Fluctuations In the complementary limit of no mutations (8 = 0), in-
dividual realizations of the network evolution fluctuate strongly. We can under-
stand the underlying mechanism for these fluctuations most directly by studying
the limit of deterministic duplication (6 = 0), where all the links of the duplicated
protein are completed [18]. There is still a stochastic element in this growth, as
the node to be duplicated is chosen randomly. Consider the generic initial state
of two nodes that are joined by a single link. We denote this graph as K i,
following the graph theoretic terminology [39] that K, ,, is the complete bipar-
tite graph in which every node in the subgraph of size n is linked to every node
in the subgraph of size m. Duplicating one of the nodes in K, ; gives Ky or
K », equiprobably. By continuing to duplicate nodes, it is easy to verify that at
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K

n,m

n
> Kn+1,m prob. o

(

n sites
degreem

SNOK

m
nm+1 prob. -

| ‘mysites
degreen

Fig. 9. Evolution of the complete bipartite graph K, , after one deterministic dupli-
cation. Only the links emanating from the top nodes of each component are shown

every stage the network always remains a complete bipartite graph, say Ky n—,
and that every value of K =1,..., N — 1 occurs with equal probability (Fig. 9).
Thus the degree distribution remains singular — it is always the sum of two delta
functions! For fixed IV, an average over all realizations of the evolution gives the
average degree distribution

k-1
Np)y=2[1—-——]). 38
vy =2 (1-371) (38)

This loss of self averaging is generic; different realizations of the growth lead
to statistically distinguishable networks for any initial condition. Similar giant
fluctuations also arise in the general case of imperfect duplication where § > 0
[18].

4.2 Non-Universal Degree Distribution

Finally, consider the evolution when both incomplete duplication and mutation
occur (6 < 1,8 > 0). In each growth step, the average number of links L increases
by 5+ (1 —6)D (Fig. 1(b)), where D is the average node degree of the network.
Therefore, L = [ + (1 — 0)D]N. Combining this with D = 2L/N gives [16,17]

2B

a result that applies only when § > 6. = 1/2. Below this threshold, the number
of links grows as

dL L
W_6+2(1_5)N’ (40)
and combining with D(N) = 2L(N)/N, we find
finite 5> 1/2,
D(N)={ BInN §=1/2, (41)

const. x N1720  § < 1/2.
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Without mutation (8 = 0) the average node degree always scales as N'=2° so
that a realistic finite average degree is recovered only when 6 = 1/2. Thus muta-
tions play a constructive role, as a finite average degree arises for any duplication
rate 0 > 1/2.

We now apply the rate equations to study the degree distribution Ny (V) for
this case of § > 1/2 and § > 0. The degree k of a node increases by one at a
rate Ay = (1 — )k + (. The first term arises because of the contribution from
duplication, while mutation leads to the k-independent contribution. The rate
equations for the degree distribution are therefore

dNy  Ap_1Np_1 — Ap Ny,
dN N

+ Gp. (42)

The first two terms account for processes in which the node degree increases by
one. The source term G, describes the introduction of a new node of k links,
with a of these links created by duplication and b = k — a created by mutation.
The probability of the former is > . ns()(1 — 6)*6*~*, where n, = N,/N
is the probability that a node of degree s is chosen for duplication, while the
probability of the latter is 3° e /b!l. Since duplication and random attachment

are independent processes, the source term is

Ge= Y Y n, <a>(1 —§)asce %676. (43)

a+b=k s=a

05 06 07 08 09 1

Fig.10. The degree distribution exponent ~ as a function of § from the numerical
solution of (46)

Substituting Ny (N) = N ny, into the rate equations yields

<k+%>nk=<k—l+%>nkl+lG—_’c5. (44)

Since GG depends on ng for all s > k, the above equation is not a recursion.
However, for large k, we reduce it to a recursion by noting that as k& — oo, the
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main contribution to the sum in (43) arises when b is small. Thus a is close to &,
and the summand is sharply peaked around s ~ k/(1 — §). We may then replace
the lower limit by s = k, and ng by its value at s = k/(1 — §). Further, if n
decays as k=7, we write ny = (1 — §)"ny and simplify Gy, to

= (1-0)" ", (45)

since the former binomial sum equals (1 —§) L.

These steps reduce (44) to a recursion, from which we deduce that nj has
the power-law behavior ny ~ k™7, with v determined from [18,40]

V() =1+ ﬁ _ (162 (46)

The exponent v has a strong dependence on ¢ (Fig. 10). Further, since the re-
placement of ny by (1—4)7n is valid only asymptotically, the degree distribution
should converge slowly to the predicted power law form. This slow approach to
asymptotic behavior is observed in large-scale simulations [18]. The correspond-
ing exponent (9) is independent of the mutation rate § but depends sensitively
on the duplication rate. Nevertheless, the presence of mutations (5 > 0) is vital
to suppress the non-self-averaging as the network evolves and thus make possible
a smooth degree distribution.

5 Outlook

We hope that the reader is persuaded that the rate equations are a powerful,
yet readily applicable tool, to investigate the structure of growing networks. For
incrementally growing networks, we have obtained rather complete results for the
degree distribution and some of the most important ensuing consequences. We
also studied a toy protein interaction network model that evolves by duplication
and mutation. In the absence of duplication, the network undergoes an infinite-
order percolation transition as a function of the mutation rate. In the absence of
mutation, the network exhibits giant sample-specific fluctuations. It is only with
the inclusion of mutations that robust and statistically similar networks can be
generated.

In summary, the rate equation approach is well-suited to treat a wide range
phenomenology associated with evolving networks. Its full potential in this field
is just starting to be fully exploited.

The work on protein networks was in collaboration with Byungnam Kahng
and Jeenu Kim. This research was supported in part by NSF grant DMR9978902.
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