
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 87, 010101(R) (2013)

Survival of the scarcer
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We investigate extinction dynamics in the paradigmatic model of two competing species A and B that
reproduce (A → 2A, B → 2B), self-regulate by annihilation (2A → 0, 2B → 0), and compete (A + B → A,
A + B → B). For a finite system that is in the well-mixed limit, a quasistationary state arises which describes
coexistence of the two species. Because of discrete noise, both species eventually become extinct in time that is
exponentially long in the quasistationary population size. For a sizable range of asymmetries in the growth and
competition rates, the paradoxical situation arises in which the numerically disadvantaged species according to
the deterministic rate equations survives much longer.
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In the paradigmatic two-species competition model, a
population is comprised of distinct species A and B, each
of which reproduce and self-regulate by intraspecies compet-
itive reactions. In addition, interspecies competitive reactions
occur, which are deleterious to both species [1]. For large, well-
mixed populations, the dynamics can be accurately described
by deterministic rate equations. For finite systems, however,
fluctuations in the numbers of individuals ultimately lead to
extinction, in stark contrast to the rate equation predictions.

In this Rapid Communication, we investigate how asymmet-
ric interspecies competition influences the extinction probabil-
ity of each species. In a finite ecosystem, extinction arises nat-
urally when multiple species compete for the same resources.
In such an environment, one species often dominates, while
the others become extinct [2–6], a feature that embodies the
competitive exclusion principle. A related paradigm appears in
the context of competing parasite strains that exploit the same
host population, or in the fixation of a new mutant allele in a
haploid population whose size is not fixed [7].

With asymmetric interspecies competition, we uncover the
surprising feature that deterministic and stochastic effects,
which originate from the same elemental reactions, act
oppositely. For sizable asymmetry ranges in the growth and
competition rates, the situation arises where the combined
effects of the elemental reactions leads to one species being
numerically disadvantaged at the mean-field level, despite
its interspecies competitive advantage, but this competitive
advantage dominates the other reaction processes at the level
of large deviations. Thus the outcompeted and less abundant
species has a higher long-term survival probability: “survival
of the scarcer.”

Model. Asymmetric competition of two species A and B is
defined by the reactions

A
1−→ A + A, B

g−→ B + B,

A + A
1/K−→ 0, B + B

1/K−→ 0, (1)

A + B
ε/K−→ B, A + B

αε/K−→ A.

The first line accounts for reproduction, the second for
intraspecies competition, and the last for interspecies com-
petition. Here K is the environmental carrying capacity,
which sets the size of the overall population, ε quantifies

the severity of the competition, while g and α quantify the
asymmetries in the growth and interspecies competition rates,
respectively. In our presentation, we focus on the limit K � 1.
While a general model should also contain asymmetry in the
intraspecies competition rate, no new phenomena arise by this
generalization; for simplicity, we study the model defined by
Eqs. (1).

To probe extinction in two-species competition, we focus on
Pm,n(t), the probability that the population consists of m � 0
A’s and n � 0 B’s at time t . In the limit of a perfectly mixed
population, the stochastic reaction processes in (1) lead to
Pm,n(t) evolving by the master equation

Ṗm,n(t) = ĤPm,n = [(E−1 − 1)m + g(F−1 − 1)n]Pm,n

+
[

(E2 − 1)
m(m − 1)

2K
+ (F2 − 1)

n(n − 1)

2K

]
Pm,n

+
[

ε

K
(E − 1) + αε

K
(F − 1)

]
mnPm,n. (2)

Here E and F are the raising and lowering operators [8]
for species A and B, respectively; viz. EiPm,n = Pm+i,n and
F jPm,n = Pm,n+j .

Deterministic rate equations. First we focus on the average
population sizes 〈m〉 = ∑

m,n mPm,n and 〈n〉 = ∑
m,n nPm,n.

From (2), the evolution of these quantities is given by

˙〈m〉 = 〈m〉
(

1 − 〈m〉
K

− ε
〈n〉
K

)
,

(3)
˙〈n〉 = 〈n〉

(
g − 〈n〉

K
− αε

〈m〉
K

)
.

Here we neglect correction terms of the order of 1/K and, more
importantly, we neglect correlations by assuming that 〈m2〉 =
〈m〉2, 〈n2〉 = 〈n〉2, and 〈mn〉 = 〈m〉〈n〉. We restrict ourselves
to the parameter range αε < g < 1/ε, which guarantees that
the fixed point corresponding to coexistence of both species is
stable. The four fixed points of the rate equations (3) are then

(m∗,n∗) = (0,0) unstable node,

= (K,0),(0,Kg) saddles, (4)

=
(

K
1 − gε

1 − αε2
,K

g − αε

1 − αε2

)
stable node.
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FIG. 1. (Color online) Schematic flow diagram in asymmetric
two-species competition for weak competition in the mean field. The
unstable node, the saddles, and the stable node are shown as open,
hatched, and solid, respectively.

If the initial populations of both species are nonzero, they
are quickly driven to the stable node (Fig. 1) that describes the
steady-state populations in the mean-field limit. The relaxation
time toward the stable node, τr , is independent of K . These
steady-state populations of the two species are equal when

g∗ = 1 + αε

1 + ε
. (5)

For g < g∗, the B population is scarcer. Naively, the scarcer
population should be more likely to become extinct first.
However, as we shall show, a proper account of the fluctuations
that stem from the underlying elemental reactions themselves
leads to a radically different outcome.

Extinction. The mean-field picture is incomplete because
fluctuations of the population sizes about their fixed-point
values are ignored. For large populations (corresponding to
carrying capacity K � 1), these fluctuations are typically
small. Thus the populations achieve a quasistationary state
where the two species coexist. This state is stable in the
mean-field description (heavy dot in Fig. 1). However, an
unlikely sequence of deleterious events eventually occurs
that ultimately leads one population, and then the other, to
extinction. After the first extinction, the remaining popula-
tion settles into another quasistationary state around one of
the single-species fixed points (m∗,n∗) = (K,0) or (0,Kg).
Eventually a large fluctuation drives the remaining species
to extinction. This second extinction time is typically much
longer [by a factor that scales as exp(const. × K)] than the
first time, because the remaining species does not suffer
interspecies competition. Once a species is extinct, there is
no possibility of recovery since there is no replenishment
mechanism.

The question that we address is: Which species typically
goes extinct first? The answer is encoded in the dynamics
of the two-species probability Pm,n(t). During the initial
relaxation stage, a quasistationary probability distribution is
quickly reached (Fig. 2). The probability distribution is sharply
peaked at the stable fixed point of the mean-field theory. This
probability slowly “leaks” into localized regions near each of
the single-species fixed points (m∗,n∗) = (K,0) and (0,Kg).
Thus two sharply peaked single-species distributions start to
form. If the (K,0) peak grows faster, then the B species is
more likely to go extinct first. Similarly, a faster growing
(0,Kg) peak means A extinction is more likely. Eventually,
the probability distribution that is localized at one of the two
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FIG. 2. (Color online) Quasistationary probability distributions
for species A, Pm = ∑

n Pm,n, and species B, Pn = ∑
m Pm,n.

Parameters are K = 100, ε = 0.9, g = 0.45, and α = 0. Symbols
are simulation results, while the solid curve is WKB approximation
for the B species distribution.

single-species fixed points slowly leaks toward the fixed point
(0,0) that corresponds to complete extinction [9].

To determine extinction rates, it is helpful to define PA, PB ,
and Pφ as the respective probabilities that species A is extinct,
species B is extinct, or neither is extinct at time t [10]. (Being
interested in times much shorter than the expected extinction
time of both species, we can neglect the probability of the latter
process.) By definition, these extinction probabilities are

PA =
∑
n>0

P0,n, PB =
∑
m>0

Pm,0, Pφ =
∑

m,n>0

Pm,n; (6)

these satisfy PA + PB + Pφ = 1, up to an exponentially small
correction that stems from the process where both species
become extinct simultaneously. In the limit K � 1 and for
times much greater than the relaxation time scale τr , the sums
in Eqs. (6) are dominated by contributions from values of
m and n that are close to the single-species and coexistence
fixed points. Moreover, these extinction probabilities evolve
according to the effective coupled equations

ṖA = RAPφ,

ṖB = RBPφ, (7)

Ṗφ = −(RA + RB)Pφ

that define RA and RB as the respective extinction rates for
species A and species B. Solving these equations yields the
time dependence of the extinction probabilities

PA(t) = RA

R (1 − e−Rt ), PB(t) = RB

R (1 − e−Rt ), (8)

with R = RA + RB . To determine RA and RB , we follow the
evolution of the eigenstate of the master equation (2) that
determines the leakage of probability from the vicinity of the
coexistence point:

Pm,n(t) = �m,ne
−Rt , m,n > 0, (9)
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where

Ĥ�m,n = −R�m,n, m,n > 0, (10)

and R is the third-lowest positive nontrivial eigenvalue of the
operator Ĥ . The two still-smaller positive nontrivial eigenval-
ues correspond to the much slower decay of quasistationary
single-species states and play no role in the dynamics of the
first extinction event. There is also a trivial eigenvalue that
corresponds to the final state of complete extinction.

Combining Eqs. (2) with (6)–(9), we obtain the following
expression for the extinction rate of the A species:

RA = 1

K

∑
n>0

(εn�1,n + �2,n). (11a)

As expected, the extinction rate for A’s involves two processes:
(i) elimination of the last remaining A via competition with
B’s and (ii) annihilation of the last remaining pair of A’s.
Similarly,

RB = 1

K

∑
m>0

(αεm�m,1 + �m,2). (11b)

To calculate RA and RB , we therefore need to evaluate the
small-population-size tails of �m,n. This task can be achieved
by applying a variant of Wentzel-Kramers-Brillouin (WKB)
approximation, that was pioneered in Refs. [11–14], and was
applied more recently to population extinction, in particular,
for stochastic two-population systems [10,15–22]. The WKB
ansatz for �m,n has the form

�m,n = e−KS(x,y), (12)

where x = m/K and y = n/K are treated as continuous
variables. Substituting Eq. (12) into (11a) and assuming
K � 1, gives, to lowest order in 1/K ,

RA ∼ e−KSA, RB ∼ e−KSB , (13)

where SA = S(0,g) and SB = S(1,0) (see Refs. [10,15–17]).
Thus as K � 1, the eventual extinction probabilities in (8)
simply become (up to preexponential factors that depend on K)

PA(t = ∞) = 1 − PB(t = ∞) 	 e−KSA

e−KSA + e−KSB
. (14)

To determine the extinction probabilities explicitly, we
therefore need SA and SB . To this end, we substitute the WKB
ansatz (12) in Eq. (10) and Taylor expand S(x,y) to lowest
order in 1/K . After some algebra, we obtain an effective
Hamilton-Jacobi equation H (x,y,∂xS,∂yS) = −R, with the
Hamiltonian

H (x,y,px,py) = x(epx − 1) + gy(epy − 1)

+ x2

2
(e−2px − 1) + y2

2
(e−2py − 1)

+ εxy(e−px − 1) + αεxy(e−py − 1). (15)

Here px = ∂xS and py = ∂yS are the canonical momenta that
are conjugate to the “coordinates” x and y. Correspondingly,
S(x,y) is the classical action of the system.

Since we expect that −R (which now has the meaning of
energy in this Hamiltonian system) is exponentially small,
we set it to zero. The Hamiltonian equations of motion

ẋ = ∂H/∂px , ṗx = −∂H/∂x, etc., have six finite zero-energy
fixed points, and three more fixed points where one or both
momenta are at minus infinity. Only three of the fixed points,
however, turn out to be relevant for answering our question
about which species typically goes extinct first. These are

Fφ =
(

1 − gε

1 − αε2
,
g − αε

1 − αε2
,0,0

)
,

FA = [0,g, ln(gε),0], (16)

FB = [1,0,0, ln(αε/g)].

A straightforward way to determine SA and SB is by cal-
culating the action along the activation trajectories. These
are zero-energy, but nonzero-momentum trajectories of the
Hamiltonian system (15) that go from Fφ to FA, and from Fφ

to FB , respectively. These actions are

SA =
∫ FA

Fφ

(px dx + py dy), (17)

and similarly for SB . In general, these activation trajectories—
separatrices, or instantons—cannot be calculated analytically
because of the lack of an integral of motion that is independent
of the energy. However, for ε 
 1 a perturbative solution for
these trajectories is possible.

As a preliminary, we outline how to calculate the action for
the special case ε = 0, which corresponds to two uncoupled
species. Here the zero-energy activation trajectories can be
easily found. For the Fφ → FA separatrix, the B species is
unaffected by A extinction so (y,py), which correspond to
the coordinates of the B’s, remains constant throughout the
evolution. As a result, a parametric form of the Fφ → FA

separatrix is

x = 2e2px

epx + 1
, (18a)

with y = g and py = 0 throughout. Similarly, for the
Fφ → FB separatrix one obtains

y = 2ge2py

epy + 1
, (18b)

with x = 1 and px = 0 throughout. Substituting the trajecto-
ries given in (18) into (17) and performing the integration by
parts gives SA = 2(1 − ln 2) and SB = 2g(1 − ln 2) [23,24].

For weak interspecies competition (ε 
 1), we can cal-
culate the corrections to the actions to first order in ε. For
this purpose, we split the Hamiltonian (15) into unperturbed
and perturbed parts, H = H0 + εH1, and similarly expand the
action as S = S0 + εS1 + · · · . Following [15,18,25], the cor-
rection to the action is S1 = ∫ ∞

−∞ H1[x(t),y(t),px(t),py(t)]dt ,
where the integral is evaluated along the unperturbed trajecto-
ries given by Eqs. (18). Performing this integral for S1 yields
the corrected actions

SA = 2(1 − ln 2) − ε(2g ln 2),
(19)

SB = 2g(1 − ln 2) − ε(2α ln 2).

Equations (13) and (19) give the analytic expression for the
extinction probabilities of each species for weak interspecies
competition. Using Eq. (19) and imposing the condition
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FIG. 3. (Color online) Probability that species B first becomes
extinct as a function of growth rate asymmetry g for α = 0, ε = 0.1,
and K = 40. The curve is the prediction of Eq. (14), with actions
given by (19), while circles are simulation results. In the hatched
region, the quasistationary population of B is less than that of A, but
B’s are less likely to become extinct first.

SA = SB from Eq. (14), we obtain the following condition
for equal extinction probability for both species:

g = 1 + αcε

1 + cε
, (20)

where c = [(ln 2)−1 − 1]−1. The predictions of Eqs. (14) and
(19) are in good agreement with our simulation results (Fig. 3).

Phase diagram. Comparing Eqs. (5) and (20), one sees
that there is a sizable region in the α-g parameter space
where one species has a smaller quasistationary population
and yet an (exponentially) smaller probability to first be-
come extinct. As an illustration, Fig. 3 shows the prob-
ability for B to become extinct first for fixed α and ε.
We also produced analogous curves as in Fig. 3 at many
values of α. From the value of g at which the extinction
probabilities are equal, we infer the phase diagram shown

0 0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

α

g

B dominant

A dominant

FIG. 4. (Color online) Phase diagram for ε = 0.1 showing loci of
equal quasistationary population sizes (dashed) and equal extinction
probabilities from Eq. (20) (solid). Circles indicate simulation results.
In the hatched region, A’s are more numerous in the quasistationary
state but are more likely to become extinct first. In the cross-hatched
region B’s are more numerous but are more likely to become extinct
first.

in Fig. 4. Simulations at larger values of ε yield the same
qualitative phase diagram.

Conclusion. In two-species competition, interspecies com-
petitive asymmetry leads to the unexpected phenomenon of
survival of the scarcer. The very same elemental reactions that
lead to a disadvantage in the quasistationary population size of
one species within a deterministic mean-field theory, may also
give this species a great advantage in its long-term survival
when fluctuation effects are properly accounted for.
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