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Non-Gaussianity and dynamical trapping in locally activated random walks
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We propose a minimal model of locally activated diffusion, in which the diffusion coefficient of a one-
dimensional Brownian particle is modified in a prescribed way—either increased or decreased—upon each
crossing of the origin. Such a local mobility decrease arises in the formation of atherosclerotic plaques due to
diffusing macrophage cells accumulating lipid particles. We show that spatially localized mobility perturbations
have remarkable consequences on diffusion at all scales, such as the emergence of a non-Gaussian multipeaked
probability distribution and a dynamical transition to an absorbing static state. In the context of atherosclerosis,
this dynamical transition can be viewed as a minimal mechanism that causes macrophages to aggregate in
lipid-enriched regions and thereby to the formation of atherosclerotic plaques.

DOI: 10.1103/PhysRevE.85.021137

I. INTRODUCTION

Many-particle systems that consume energy for self-
propulsion—active particle systems—have received growing
attention in the last decade, both because of the new physical
phenomena that they display and their wide range of appli-
cations. Examples include molecular motors, cell assemblies,
and even larger organisms [ 1]. The intrinsic out-of-equilibrium
nature of these systems leads to remarkable effects such as
non-Boltzmann distributions [2], long-range order even in low
spatial dimensions [3], and spontaneous flows [4].

At the single-particle level, the active forcing of a Brownian
particle leads to nontrivial statistics. For example, it has been
recently shown [5,6] that a random walk which is reset to its
starting point at a fixed rate has a nonequilibrium stationary
state, as opposed to standard Brownian motion. Another
example is given by self-propelled Brownian particles [7],
which can yield sharply peaked probability densities for the
particle velocity.

In this paper we consider a new class of problems in
which the active forcing of a Brownian particle is localized
in space. While the impact of localized perturbations on
random walks has been investigated [8], in part because of
its relevance to a wide range of situations, such as localized
sources and sinks [9,10], trapping [11,12], or diffusion with
forbidden [13], hop-over [14], or defective [15] sites, the role of
local activation on Brownian-particle dynamics remains open.
We present a minimal model of locally activated diffusion,
in which the diffusivity of a Brownian particle is modified—
either increased or decreased—in a prescribed way upon each
crossing of the origin.

A prototypical example is a bacterium in the presence of
a localized patch of nutrients, which enhances the ability of
the bacterium to move, or, alternatively, toxins that impair
bacterial mobility. This type of localized decrease of mobility
also underlies the dynamics of a cell (e.g., a macrophage)
that grows by accumulating smaller and spatially localized
particles, such as lipids (Fig. 1) [16,17]. As the cell grows,
its ability to move decreases and the ultimate result is
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the formation of an atherosclerotic plaque [18]. The spatial
localization arises from the presence of lipids at specific points
in the arterial network; these lipids can be located, as is
now well accepted, by the properties of the blood flow [19].
Observations show that macrophages that have accumulated
lipids move more slowly. Eventually the macrophage stops
in an lipid-enriched region, resulting in the formation of an
atherosclerotic plaque [20,21]. Here we propose a simple
model to account for this local mobility decrease and address
the particular questions of (i) the potential trapping of cells
in locally lipid-enriched regions, and (ii) the kinetics of the
resulting segregation process when it exists.

Our formalism allows us to describe both the situations of
decreased and increased localized mobility changes. We show
that this type of perturbation has remarkable consequences on
the diffusion process at all scales. We stress that the diffusion
coefficient of the active particle at any time depends on the
entire history of the trajectory. Thus the evolution of the parti-
cle position is intrinsically non-Markovian [22-25]. Our main
findings are: (i) The probability distribution of the position
has a non-Gaussian tail. (ii) For local acceleration, a diffusing
particle is repelled from the origin, so that the maximum in the
probability distribution is at nonzero displacement. (iii) For
local deceleration, a dynamical transition to an absorbing state
occurs. For sufficiently strong deceleration, the particle can get
trapped at the origin at a finite time. The exact time dependence
for the particle survival probability is determined explicitly.
Conversely, if the deceleration process is sufficiently weak,
the particle never gets trapped. This dynamical transition to an
absorbing state provides a minimal mechanism that could help
understand the formation kinetics of atherosclerotic plaques.

II. THE MODEL

A one-dimensional diffusing particle is accelerated or
decelerated whenever it crosses the origin x = 0 according
to the following Langevin equations:

¥ =+2DE@), D= f(D)sx), (1)
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FIG. 1. (Color online) (a) Sketch of the different stages of
atherosclerosis plaque formation: (1) rapid diffusion of a “free”
macrophage cell; (2) upon entering a localized lipid-enriched region,
the macrophage accumulates lipids, and thereby grows and becomes
less mobile; and (3) after many crossings of the lipid-enriched region,
the macrophage eventually gets trapped, resulting in the formation of
an atherosclerotic plaque. (b) Sketch of a one-dimensional particle
trajectory of the model of locally decelerated random walk.

where £ is a Gaussian white noise of intensity one, D is
the particle diffusion coefficient, x is the particle position,
8(x) is the Dirac distribution, and f(D) is an arbitrary
prescribed function that accounts for the local activation. For
simplicity we assume that the particle is initially at x =0
with D = Dy > 0. Note that (i) both the position x and the
diffusion coefficient D are random variables; (ii) as mentioned
previously, the evolutions of x or D alone are non-Markovian;
and (iii) the function f(D) can be positive (local acceleration)
or negative (local deceleration), but with f(0) = 0 so that D
remains nonnegative.

Following standard steps, the corresponding Fokker-Planck
equation [26] for the joint distribution of position x and
diffusion coefficient D at time ¢, P(x,D,t), is

2p
oP _Da__(s( )a[f(D)P]
ot dx? oD
where the last term of the right side accounts for the absorbing
state at (x = 0,D = 0). The explicit expression for A(t) is
determined demanding that P is normalized, from which we
obtain

—AMD8(x)3(D), (2

M) = lim [f(D)P(0,D,1)]. 3)

When f(D) is positive, then D is always nonzero. In this case,
the particle is never trapped and A(¢z) = O at all times. While
intuitively obvious for local acceleration [ f (D) > 0], we show
below that A(#) can equal zero for local deceleration processes.

III. LOCAL ACCELERATION: f(D) > 0

Laplace transforming Eq. (2) gives
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where P = P(x,D,s) is the Laplace transform of the proba-
bility distribution. For x # 0, the solution is

P(x,D,s) = A(D,s) e "IV5/D 5)

where the coefficient A(D,s) is determined by integrating
Eq. (4) across x = 0 to obtain the jump of the first derivative
of P with respect to x at this point:

D[B_P _ar } _PC=01_h by,
dx x=0+ dx x=0— oD
Using Eq. (5) we have
A
fg—D +[f' +2vsD]A = 8(D — Dy). (6)

When f(D) is positive, then A(D,s) =
for D > D the solution to (6) is

0 for D < Dy, while

f(Do) _JEF
A=B , 7
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The unknown function B(s) is determined by the jump of
A at Dy:

1
A(D{ ,5) — A(Dy ,5) = ——,
0 f(Dy)
which finally yields
~ 1
P(x,D,s) = ©(D—Dy) e 25, 8)
" F(D)

where © is the Heaviside step function and

7= +2F(D).

ek

Laplace inverting this expression, we obtain the joint distribu-
tion

P(x,D,t) = ©(D — Dy) L (9)

Z

f(D)Ware3

The marginal distribution with respect to x, that is, the
probability distribution of positions, is obtained by integrating
Eq. (9) over all D in the range [Dy,0c0]. While it does not
seem possible to evaluate this integral analytically, the large-
x behavior can be obtained by the Laplace method. For the
illustrative case where f(D) is a constant (that we define as
a), this method gives

1 /x| 8|x|3/2
P(x,t) ~ V34 exp | —

3a 9at

which we numerically checked is close to the exact value
P(x,t) over a wide spatial range. We wish to emphasize two
important features of this result for P(x,¢) that are in marked
contrast with the Gaussian propagator of the usual Brownian
motion: (i) P(x,t) generally has a non-Gaussian tail and
(i1) P(x,t) reaches its maximum at a nonzero displacement.
Equation (10) shows that the location of this maximum
asymptotically grows as /> when f(D) = a. Thus local
acceleration pushes a diffusing particle away from the origin.

X — 00, (10)
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From the general expression (9), the marginal distribution
with respect to D can also be easily obtained by integration
over x. We find

27D .
f(D)rt

In the particular case of f(D) = a, Eq. (11) shows that the dif-
fusion coefficient of the particle asymptotically grows as ¢'/3.

As a byproduct, Eq. (11) also provides the distribution of
the local time 7(¢) spent by the particle in the active zone (the
origin for the present case) up to time ¢. Using the second of
Eqgs. (1), this basic observable in the theory of diffusion, which
has dimension of time per unit of length [27], is related to the
diffusion coefficient at time ¢ by

P(D,t) = O(D — Dy) —F2/t (11)

D dD’

—_— 12
p, f(D) (12)

t(t)zfé[x(t’)]dt’:
0

Thus the distribution of the local time, defined as P(z,t),
is given by P(z,t) = f(D)P(D,t), with P(D,t) given by
Eq. (11) and D implicitly defined as a function of t in Eq. (12).
For the illustrative case of f(D) = a, the distribution of the
local time at time ¢ therefore is

2at + Dy 4[(at + Do)** - D)*T
——expy— .
NVt 9at

P(‘L’,l‘) =
(13)

This result strongly contrasts with the Gaussian distribution
that arises in the case of Brownian motion, which can be
recovered from Eq. (13) in the limita — O:

24/ Dy e—Dorz/t

Prm(z,t) = o

(14)

Notice in particular, the typical local time for an accelerated
particle with (D) = a grows as t'/? instead of ¢'/? in the case
of Brownian motion.

It is worth noting an intriguing dichotomy with a discrete-
time version of local acceleration—the “greedy” random walk
[28]. In this discrete model, the step length ¢, after the kth
return of a random walk to the origin is given by ¢; = k“.
To match with the continuous model with f(D) = D%, one
must choose the value o = 1/2. With this choice, Eq. (13)
of [28] gives, ignoring all multiplicative factors, P(x,r)
x!/3 /t exp[—x*3 /1], which is different from (10). The source
of this discrepancy is that the probability of being at the origin
is not affected by the enhancement mechanism of greedy
walks [28], while this return probability is fundamentally
modified in the case of locally activated random walks, as
seen explicitly from the distribution of the local time (13).
Thus our locally activated diffusion model cannot be viewed
as the continuous limit of the greedy random walk. However, it
can be shown that it is the continuous limit of a discrete space
and continuous time random walk whose jump frequency is
modified at each visit of the active site, which is intrinsically
different from the greedy random walk.
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IV. LOCAL DECELERATION: f(D) <0

Following the same analysis as that used for local acceler-
ation, the Laplace transform of the joint distribution is

ODy=D) ;5 Ms)
_— — —=48(x)4(D), 15
D)) e S (x)3(D) (15)

where A is the Laplace transform of A(¢) defined in Egs. (2)
and (3). Using these defining relations for A(z), Eq. (15)
gives

P =

) = lim[f(D) PO.D.s)] = —eV¥ T, (16)

where we define

Dy i
F(D) = f VD dD’.
o D)

In this result for A, we have used 8(D)f(D) =0 since

S (0) = 0 by the definition of our model. The important feature

of Eq. (16) is that A(s) = 0 as soon as F diverges.
Thus our final result is

©(Dy—D) e 5(x)3(D) N
| f(D)] s ’

which gives, after Laplace inversion,

P(x,D,s)= (17)

O(D—Dy) Z e 214

lf(D) ame3

P(x,D,1)=

+ T()s(x)5(D).  (18)

Here

VD dD/) (19)

(I
T(t) = erfc| —
© erc(ﬁfo 7 D)

is the trapping probability, namely the probability that the
particle becomes stuck at x = 0 by time 7 because the diffusion
coefficient has reached zero. As a corollary, the survival
probability is given by S(t) = 1 — T'(¢), and we have obtained
this quantity for an explicitly non-Markovian process. We
also mention that, as in the case of local acceleration, the
joint distribution easily gives the marginal distributions of
the position and the diffusion coefficient, as well as the local
time.

A fundamental consequence of the local deceleration of
a Brownian particle is that two different dynamical regimes
emerge. We illustrate these regimes for the particular case
where f(D) = —D# as D — 0. If the deceleration is suffi-
ciently strong, which occurs when 8 < 3/2, there is a nonzero
probability for the particle to get trapped at the origin. More
precisely, the survival probability has the asymptotic behavior

D(3]/2*/3

S() TG _2p) — 0,
Thus in this regime of strong deceleration, the survival
probability has the same scaling with time as in the case
of a usual Brownian particle in the presence of a perfect
trap. In the opposite case of § > 3/2, then S(r) =1 for
all #+ > 0 and the particle never gets trapped at the origin.
Thus a locally decelerated Brownian particle undergoes a
dynamical transition to the absorbing state (x =0,D =0)
as the deceleration strength increases. Mathematically this

t — 00. (20)
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transition occurs at the point where F is no longer
divergent.

V. CONCLUSION

We introduced a minimal model of locally activated
diffusion, in which the diffusion coefficient of a Brownian
particle is modified in a prescribed way at each crossing
of the origin. In one dimension, a purely diffusing particle
hits the origin of the order of /¢ times after a time ¢.
Consequently, the local activation mechanism is repeatedly
invoked during the trajectory of a Brownian particle. Thus
the asymptotic dynamics of a Brownian particle is globally
affected, leading to markedly different behavior than that of
pure diffusion. Since the unusual properties of local activation
rely on the recurrence of Brownian motion, we anticipate
that qualitatively similar, but quantitatively distinct, behavior
would arise in two dimensions.

Our model encompasses both the situations where the
Brownian particle is locally accelerated or decelerated. For
local acceleration, the probability distribution is non-Gaussian
and multipeaked, with maxima away from the origin no
matter how weak the acceleration. For sufficiently weak local
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deceleration, a Brownian particle manages to avoid getting
trapped at the origin in spite of its recurrence. However,
for strong deceleration there is a dynamical transition to an
absorbing state in which the particle ultimately gets trapped at
the origin.

In the context of atherosclerosis mentioned initially, the
dynamical transition to an absorbing state can be viewed
as a minimal mechanism that leads to the segregation of
macrophages in lipid-enriched regions and thus to the for-
mation of atherosclerotic plaques. Our model suggests that
even in absence of chemical signals (such as chemokines or
cytokines) that can bias the motion of cells, there exists a
critical intensity of the mobility decrease, which depends on
the local lipid concentration, beyond which an atherosclerotic
plaque will occur. Our model can also help understand the
kinetics of this plaque formation.
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