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AbstratAn elementary disussion of the statistial properties of the produt of N indepen-dent random variables is given. Our motivation is to emphasize the essential di�erenesbetween the asymptoti N ! 1 behavior of a random produt and the asymptoti be-havior of a sum of random variables { a random additive proess. For this latter proess,it is widely appreiated that the asymptoti behavior of the sum and its distribution isprovided by the entral limit theorem. However, no suh universal priniple exists for arandom multipliative proess. In this ase, the ratio between the average value of theprodut, hP i, and the most probable value, Pmp, diverges exponentially in N as N !1.Within a ontinuum approximation, the lassial log-normal form is often invoked to de-sribe the distribution of the produt. We show, however, that the log-normal providesa poor approximation for the asymptoti behavior of the average value, and also for thehigher moments of the produt. A proedure for omputing the orret leading asymptotibehavior of the moments is outlined. The impliations of these results for simulations ofrandom multipliative proesses are also disussed. For a suh a simulation, the numeri-ally observed \average" value of the produt is of the order of Pmp, and it is only whenthe simulation is large enough to sample a �nite fration of all the states in the systemthat a monotoni rossover to the true average value hP i ours. We provide an idealized,but quantitative aount for this rossover.P.A.C.S. Numbers: 02.50.+s, 05.40.+j.
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1. IntrodutionAn important omponent of an elementary statistial mehanis ourse is a disussionof the theory of random walks.1 Usually, an initial treatment is based on a one-dimensionallattie random walk, whih is a sequene of equal length displaements whose diretionis hosen randomly at eah step. One of the basi goals in the study of random walks isto �nd the average displaement of the probability distribution after a large number ofsteps N . This example is a realization of a random additive proess, as the displaement,r, is the sum of random steps. For the one-dimensional random walk, the probabilitydistribution for the displaement is the binomial funtion. In the limit as N ! 1, theentral limit theorem2�4 guarantees that this distribution approahes a Gaussian funtion,with the 2kth moment of the displaement, hr2ki, varying as Nk. This limiting Gaussiandistribution is a universal property of a wide lass of stohasti proesses, in that detailsof the underlying random proess at the single step level are irrelevant in determiningthe asymptoti properties of the distribution of displaements.3 Thus the existene ofthe entral limit theorem provides ruial information for understanding the asymptotibehavior of a random additive proess. This universality priniple has stimulated extensivestudy of a variety of physial realizations of random walks, in order to eluidate the limitsof appliability of the entral limit theorem.5�7In ontrast to the well-studied and (relatively) well-understood situation of randomadditive proesses, there is a lesser degree of appreiation of the statistial properties ofa produt of random variables in the physis researh literature. This apparent dearthbelies the ubiquity of random multipliative proesses. They underlie a diverse range ofnatural phenomena suh as the distribution of inomes, body weights, rainfall, fragmentsizes in rok rushing proesses, et.5;8 Random multipliative proesses have also beenfound to underlie a range of physial proesses whih fall under the rubri of multifratalphenomena.9;10 Quite reently, the notions of random multipliative proesses have beenapplied to di�usive transport in random media.11 Given the ubiquity and reent interestin random multipliative proesses, it should prove to be fruitful to provide a relativelyomplete, yet elementary treatment of their statistial properties.As a spei� example, onsider a suessive proess of rok fragmentation in whih thesize of a fragment evolves aording to x0 ! x1 ! x2 ! � � � ! xN , with a redution fatorat eah stage of breakup, rn = xn=xn�1 < 1 that has some well-behaved distribution. Thesize of a fragment at the N th level is thus given by the produt of the relative redutionfators, xN = (QNk=1 rk)x0. The primary foal of this paper is to eluidate some of thebasi statistial properties of suh a produt of N random variables. It is hoped that theensuing disussion represents a useful self-ontained presentation of the basi features ofrandom multipliative proesses whih will �ll the apparent gap in the literature.2



We shall argue that the behavior of suh a produt is onsiderably riher than that ofa sum of N random variables. A ruial feature of suh a proess is that extreme events,although exponentially rare in N , are exponentially di�erent from the typial, or mostprobable value of the produt. Thus it turns out to be neessary to properly aount forthe extremes in the distribution of the produt in order to ompute averages orretly.In the limit of large N , a time-honored approximation for desribing the distributionof produts is based on noting that the logarithm of the produt, lnP , is merely thesum of N random variables, so that lnP obeys a Gaussian distribution. This leads tothe lassi log-normal form for the distribution of the produt.8 By this onstrution,however, information about the tail of the distribution has been lost, and these details areruial in determining the higher moments of the produt. We shall show expliitly howthe log-normal form fails in providing an aurate desription of the statistial propertiesof the produt. Correspondingly, one of our basi results will be to derive an aurateontinuum limit for a random multipliative proess from whih the orret asymptotibehavior of the higher moments an be obtained. In the ontext of asymptoti expansions,this ontinuum limit is a Gaussian funtion, but one in whih the loation of the peakdepends on the order of the moment being omputed.The fat that the average is dominated by rare events has fundamental impliationsfor numerial studies of systems governed by a random multipliative proess. If onesamples only an in�nitesimal fration of the total number of states of the system, as isthe ase in most realisti situations, then by de�nition, one will detet the typial valueof an observable. As the sale of the simulation is inreased, progressively more extremeevents beome aessible, and the observed average also inreases. However, it is only whenone has the resoures to sample a �nite fration of all the states of the system that themeasurement will onverge to the true average value of the observable. The quantitativedesription of this rossover between the most probable value of a random produt and its\true" average value is another major goal of this paper.While many of our basi results are straightforward to derive, it appears that theyare not as widely-known as one might expet. We have therefore endeavored to give apedagogial disussion in what follows.2. A Binomial Multipliative ProessTo be onrete, onsider a binary sequene in whih the real, positive numbers z1and z2 appear independently and with probabilities p and q, respetively. Without loss ofgenerality, we take z1 > z2. If there are N elements in the sequene, we ask what is theaverage value of this N -fold produt, hP i? In order to ompute hP i, de�ne p(n) to be theprobability that the binary produt of N independent fators assumes the value zn1 zN�n2 .3



This probability is simply the binomialp(n) = �Nn�pnqN�n; (1)where �Nn� = N !n! (N�n)! . By averaging over all possible outomes of the produt, one �ndsthe average value hP i = NXn=0�Nn�pnqN�n � zn1 zN�n2 = (pz1 + qz2)N : (2)On the other hand, the most probable event is one in whih the produt ontains Npfators of z1 and Nq fators of z2. This is obtained by maximizing the probabilisti fator�Nn�pnqN�n with respet to n in Eq. (2). Consequently, the most probable value of theprodut, Pmp, is simply Pmp = (zp1zq2)N : (3)While the most probable event yields a good approximation for the average value of thesum in a random additive proess, we see that it is inadequate for determining the averagevalue of the produt in a random multipliative proess. In fat, the ratio hP i=Pmp divergesexponentially in N as N !1.Another way to ompute Pmp is to onsider the logarithm of the produt. This is arandom additive proess for whih the average value and the most probable value divergeat the same rate as N !1. Therefore by omputing hlnP i, one also obtains the value oflnPmp. Then by re-exponentiating, one hasPmp = ehlnP i; (4a)while by de�nition hP i = helnP i: (4b)Mathematially, the interhange of exponentiation and averaging is not generally justi�ed.In fat, by expanding Eqs. (4) in power series and using the basi fat2�4 that hxki > hxik,it is lear that hP i > Pmp. In general, there is no reason why Pmp and hP i shouldhave similar values, or even be of the same order of magnitude for a suÆiently broaddistribution.The disparity between hP i and Pmp an be niely illustrated by onsidering severalspeial ases with z1 = 2 and z2 = 1=2: (i) For p = q = 1=2, hP i = (5=4)N = eN ln(5=4),while Pmp = 1; (ii) For p = 13 and q = 23 , the 1/2's are twie as likely to our as2's in the sequene of numbers omprising the produt. In this ase hP i = 1, whilePmp = ((1=2) � (1=2) � 2)N=3 = 2�N=3 = e� 13N ln 2; (iii) For p stritly within the range 13 to4



12 , one has the urious situation where hP i � e+�N !1 and Pmp � e��N ! 0, where �and � are positive onstants, as N !1.The essential reason for the large disrepany between hP i and Pmp is the relativelyimportant role played by rare events. For example, a sequene onsisting only of N fatorsof z1 ours with an exponentially small probability, but the value of this produt isexponentially large ompared to the typial value. Consequently, this extreme event makesa �nite ontribution to hP i, and a dominant ontribution to the higher moments of theprodut, hP ki. From Eq. (2), we see that hP ki redues to (pzk1 )N as k ! 1, i.e., thekth moment is determined solely by the most extreme event. A losely related featureis that the moments obey the inequalities hP ki(pzk1 + qzk2 )N � hP ik = (pz1 + qz2)Nk,and more generally, hP ki � hP k�1ik=(k�1). These relations also show that there does notexist a unique sale whih governs the saling of all the moments of the produt. Thatis, hP ki annot be written in the form hP ki � akhP ik, with ak a non-singular funtion ofk and N . This loss of saling stems from the long tail in the underlying distribution ofproduts. However, as the order of the moment goes to 1, the ontribution of the singleevent where the produt has the value zN1 dominates in the value of the moment. In thisirumstane, a onventional saling piture is restored sine the value of the moment isessentially determined by a single event.An additional intriguing feature of the binomial multipliative proess is the sensitivityof hP i to short-range orrelations in the sequene of variables that are being multiplied.As a simple example, onsider the ase where z1 = 2, z2 = 1=2, with these two fatorsourring with equal probability. Further suppose that there are \no immediate reversals"in the sequene of z1's and z2's that omprise the produt. That is, when a 2 �rst appearsin the sequene, the next element must also be a 2. Only after the seond appearane of a2 does the sequene beome unorrelated again. For a random walk proess with this typeof orrelation (persistent random walk), it is well-known that the asymptoti propertiesof the mean displaement are una�eted.6 However, for a random multipliative proess,this nearest-neighbor orrelation is equivalent to replaing the sequene of N orrelatedvariables, whih may be either 2 or 1=2, by a sequene of N=2 independent variables,whih may be either 4 or 1=4. For this new sequene, hP i = (p17=8)N � (5=4)N asN ! 1. The inrease in hP i ompared to the original binomial proess beomes muhmore pronouned as the range of orrelation in the sequene beomes longer. The origin ofthis inrease stems from the relatively larger role played by \rare" events, i.e., a sequeneontaining only 2's beomes relatively more likely as the orrelation range inreases. Thissimple but remarkable result shows that there is no analog of a entral limit theorem fora random multipliative proess, as the mean value depends on orrelations among thefators omprising the produt. 5



3. The ontinuum limitAn important aspet of treating any stohasti proess is determining the distributionof relevant observables in the ontinuum limit. For a produt of random variables, theexat distribution funtion for the disrete system is simply the binomial funtion givenin Eq. (1). From this form, one is naturally led to �rst apply Stirling's approximation,and then expand the resulting distribution about its maximum to arrive at the lassiallog-normal form. While this is the time-honored approah for deriving the ontinuumlimit in virtually all stohasti proesses, it is an ill-founded approximation for a randommultipliative proess. Let us follow this general presription, however, in order to illustratethe pitfalls assoiated with the Gaussian approximation. We then present an appropriateexpansion proedure that leads to the orret ontinuum limit.The kth moment of the produt an be approximated byhP ki ' Z +N�N eln p(n) znk1 z(N�n)k2 dn: (5)The Gaussian approximation is based on �rst applying Stirling's formula to the binomialdistribution of Eq. (1) to yield1� ln p(n) ' n ln nN + (N �n) ln(1� nN )�n ln p� (N �n) ln q+ 12N ln(2�n(1� nN )): (6)We now expand this approximation for ln p(n) about its maximum whih is loated atn = Np, with orretions to this ondition that vanish in the limit N ! 1. Then byre-exponentiating this expansion, one obtains the Gaussian formpGaussian(n) ' 1p2�Npq exp�� (n�Np)22Npq � : (7)By writing a generi value of the produt as P = ( z1z2 )nzN2 and Pmp = ( z1z2 )NpzN2 , Eq. (7)an be reast as pGaussian(n) ' 1p2�Npq exp(� (lnP � lnPmp)22Npq(ln z1z2 )2 ) : (8)This is the well-known log-normal distribution,8 whose name reets the fat that thelogarithm of the produt is normally distributed.The kth moment of the produt within the Gaussian approximation is, from Eq. (7),hP kiGaussian ' 1p2�Npq Z +1�1 e� (n�Np)22Npq znk1 z(N�n)k2 dn; (9)6



and we evaluate this integral by ompleting the square in the exponential to yieldhP kiGaussian = exp�Npq2 k2(ln z1z2 )2 +N(p� q)k ln z1z2 + Nk2 ln z1z2� : (10)It is instrutive to ompare the values for hP kiGaussian with the exat result for hP kigiven in Eq. (2). For z1 � z2 and for p; q � 12 the agreement between the exat result andthe Gaussian approximation is reasonable beause the role of extreme events is lessenedby having z1 lose to z2 and p � q. However, when either of these relations is not satis�ed,then the agreement beomes poor (see Table 1). This is espeially true for large k beausethe Gaussian approximation predits that the kth moment of an N -fold produt inreasesas eNk2 , where  = pq2 (ln z1z2 )2, while the exat value inreases only as eNk ln z1 .What is wrong with the Gaussian approximation? The essential aw an be seenin omparing Eqs. (5) and (9). In Eq. (5), the kth moment equals the probability of anevent, times the kth power of the value of that event, averaged over all events. The kthpower of the produt is exponentially large in N , so that both fators in the integralare of the same order of magnitude. However in writing the Gaussian approximationof Eq. (9), the binomial distribution has �rst been expanded about the point where itahieves a maximum. The proess of ompleting the square in the exponent in Eq. (9) isthen tantamount to �nding the maximum of the funtion in the exponent in whih oneportion of this funtion has already been expanded to seond order. This represents aninorret appliation of Laplae's method12 to provide an asymptoti expansion of theintegral in Eq. (9).To see expliitly where suh an approah leads, we hange variables from n to x = n=Nand rewrite Eq. (6) as ln p(x) ' �Nf(x), wheref(x) = �N(x lnx+ (1� x) ln(1� x)� x ln p� (1� x) ln q + 12N ln(2�Nx(1� x)): (11)Eq. (5) then beomes hP ki ' Z +1�1 e�N [f(x)+g(x)℄N dx; (12)where g(x) = kx ln z1+k(1�x) ln z2. In the Gaussian approximation, f(x) is �rst replaedby fGaussian(x) = f(x0)+ 12 (x�x0)2f 00(x0), where x0 = p. The ompletion of the square inthe exponential in Eq. (9) is equivalent to expanding about the maximum of fGaussian(x)+g(x). The interested reader an readily verify that this generally is a poor approximationfor the loation of the peak of the exat exponent funtion, h(x) � f(x) + g(x).To perform the integral orretly by the Laplae method, we expand h(x) about itstrue maximum. Writingh(x) = x lnx+ (1� x) ln(1� x)� x ln p� (1� x) ln q + 12N ln(2�Nx(1� x))� kx ln(z1z2 )� k ln z2; (13)7



di�erentiating with respet to x, and setting this expression to zero, one �nds that h(x)has a maximum at x� ' �1 + � ; � = pzk1qzk2 (14)in the limit N !1. Notie that this maximum is always greater than the value xmp = pthat orresponds to the most probable value of the produt. This shows that the dominantontribution to hP ki generally omes from produt values whih are larger than Pmp. Atx = x�, straightforward algebra givesh(x�) = ln �(1 + �)pzk1 + 12N ln 2�N �(1 + �)2 ; (15a)and h00(x�) = (1 + �)2� : (15b)Therefore the kth moment beomeshP ki ' Z +1�1 e�Nh(x)Ndx� Z +1�1 e�N [h(x�)+ 12 (x�x�)2h00(x�)+ ::: ℄Ndx� e�Nh(x�)s 2�Nh00(x�) : (16)
Employing the expressions for h(x�) and h00(x�) given in Eqs. (15) yieldshP ki � (pzk1 + qzk2 )N : (17)Thus the orret value of hP ki is obtained if the ontinuum limit is formulated ap-propriately. This formulation only requires that Laplae's method is applied to the exatform of the exponent funtion in Eq. (12). In this irumstane, Laplae's method is guar-anteed to give the orret leading asymptoti behavior of the integral.12 The shortomingof the log-normal approximation stems from the fat that an approximation to one of thetwo terms in the exponent funtion has been made before Laplae's method is applied.It is also noteworthy that the orret ontinuum distribution funtion annot be ast asa single funtion, suh as a simple log-normal. From Eqs. (12) and (16) the produt ofthe distribution funtion times the value of the kth moment an itself be represented by aGaussian, but one in whih the loation of the peak depends on k. This emphasizes thatthere does not exist a unique sale whih aounts for all the moments of the produt, butrather, eah moment is governed by distint portions of the underlying distribution. It is8



important to keep these basi features in mind when writing the ontinuum distributionfuntions for stohasti proesses in whih extreme events play a major role.4. The dependene of the \observed" average value on the sample sizeWhile the true average value of an N -fold produt of random variables is governed byextreme events whih are at the tail of the distribution, most probable events will tend todominate in a typial numerial simulation of suh a proess. That is, most simulationsare performed in situations for whih one an sample only an in�nitesimal fration of allthe states of the system. Therefore the \observed" average value of the produt in suh asimulation will atually be lose to Pmp. As the number of realizations R in the simulationensemble is inreased, however, there is a orresponding inrease in the aessibility to thetails of the distribution. In a given simulation, this inreased aess will manifest itself inthe sporadi appearane of exeptional realizations whih will ause the observed averagesto utuate wildly as a funtion of R. However for a large enough ensemble, all events aresampled with the orret weight and the utuating observations as a funtion of R willross over and onverge to the true average. We now give a quantitative analysis of this\rossover" within an idealized piture in whih the inreased aess to the tails ourssystematially as a funtion of R. This approximate treatment predits a smooth, but sharpinrease in the observed average as the number of realizations in the simulation reahes arossover value R� � e�N , where � is a onstant. While our analysis is rather rude, tothe best of our knowledge, an expliit desription of this rossover has not appeared in theliterature previously.A ruial step in our analysis is determining the expeted value of the largest produtin an ensemble of R realizations of an N -fold produt. For this largest produt, the numberof appearanes of the fator z1 (the larger fator in the produt) attains a maximal valuen+ whih we will show inreases only logarithmially with the number of realizations R.Consequently, R needs to be of the order of eN , i.e., of the order of all the states in thesystem, before the extreme events that lead to the orret averages are e�etively sampled.To estimate n+, we employ the Gaussian approximation for the probability distribution ofthe produt, p(n). This will provide an aurate estimate for n+ as long as R is not toolarge so that n+ falls within several standard deviations of the Gaussian peak. This is verylikely to be true in any realisti simulation. The ase where R approahes 2N an also betreated within the present framework, but at the expense of introduing unenlighteningtehnial ompliations.To determine n+, we require the probability that in an ensemble of R independentrealizations, there exists a single realization for whih the expeted maximal number ofz1's in an N -fold produt is greater than or equal to n+. In other words, we wish to speifythe lower limit for the integral over p(n) suh that the probability of having n � n+ is9



equal to 1=R. That is, Z Nn+ p(n) dn = 1R: (18)Employing the Gaussian approximation for p(n), Eq. (18) beomes1p2�Npq Z 1n+ e� (n�Np)22Npq dn = 1R: (19)This an be reast as 1R = 12erf(u+), where u+ = (n�Np)p2Npq and erf(x) is the error funtionomplement. Finally, using the asymptoti expansion for the error funtion13 yields thefundamental result n+ ' Np+p2Npq � lnR: (20)Correspondingly, there is a minimal number n� ' Np�p2Npq � lnR whih spei�es thesmallest value of the produt in an ensemble of R realizations. Thus n+ is greater thanthe typial value of n = Np by an amount that is of the order of pN when the saleof the simulation is small, i.e., typial random walk utuations, and n+ approahes themaximum possible value of N only when the simulation is large enough to sample a �nitefration of all events, i.e., when R >� R� � O(2N ). When R reahes R�, the squareroot term in Eq. (20) beomes of the order to N , and the most extreme events in theensemble are now aessible. We emphasize that although this approah predits thatn+ is a smoothly inreasing funtion of R, n+ will atually be a sporadially inreasingfuntion in a given simulation, and it is only the expeted value of n+ whih will onformto Eq. (20).Due to the predited systemati dependene of the magnitude of the extreme eventon the number of realizations R in a simulation, there will be a orresponding smoothdependene of observed averages on R. Within this formulation, the kth moment of theprodut in a simulation ontaining R realizations beomeshP kiR ' Z x+x� e�Nh(x)Ndx� Z x+x� e�N [h(x�)+ 12 (x�x�)2h00(x�)+ ::: ℄Ndx; (21)where x+ = n+=N . The qualitative behavior of hP iR is determined by the relative positionof the peak in the integrand ompared to the limits of the integral, as illustrated in Fig. 1.For relatively small R, both limits of the integral lie far to the left of the peak, so thathP iR is vanishingly small. As the number of realizations R inreases, the upper limit ofthe integral, x+, slowly inreases and eventually reahes the loation of the peak at x�.10



From Eqs. (14) and (20), the number of realizations, R�, required for x+ to reah x� isgiven by lnR� = N2pq �p� �1 + ��2 = N2pq  p� pq( z1z2 )kq + p( z1z2 )k!2 : (22)When R = R� ' e�N , with � dependent on the details of the multipliative proess, wehave integrated over one-half of the ontribution to hP kiR in Eq. (21), and hP iR ' 12hP ki1(see Figs. 1 and 2). For R > R�, x+ has passed the far side of the peak and hP kiR veryquikly approahes hP ki1. Sine the width of the peak is of order 1=pN , hP iR is sharplyinreasing in the narrow range x+ ' x��O( 1pN ), and this orresponds to R ' R��O(epN )(Fig. 2). Furthermore, sine there is a distint peak loation for eah value of k, whih isan inreasing funtion of k, progressively more realizations are needed in a simulation toestimate the higher moments to the same degree of auray as the low-order moments.The value of the kth moment of the produt in an ensemble ontaining R realizationsan now be obtained by substituting in the expressions for h(x�) and h00(x�) given inEqs. (15) into Eq. (21). This yields,hP kiR ' 1p� (pzk1 + qzk2 )N Z u+u� e�u2 du; (23)where u� =p 12Nh00(x�)(x� � x�): (24)We expet that this expression is quantitatively orret when u+ > 0, where we areessentially performing a Laplae expansion of an exponential integral. For u+ < 0, weare integrating a rapidly varying exponential funtion over a range where there is noextremum in the integrand. In this ase the Gaussian approximation is not justi�ed, butit does provide a simple and orret qualitative piture of the behavior of the moments onthe number of realizations.Eq. (23) an be rewritten in terms of error funtions, and there are two ases dependingon the relative position of the limits with respet to the peak (f. Fig. 1). We thereby �ndhP kiR ' 8<: 12(pzk1 + qzk2 )N [erf(ju�j)� erf(ju+j)℄ if u+ � 0 (R < R�);12(pzk1 + qzk2 )N [erf(u+) + erf(ju�j)℄ if u+ > 0 (R > R�). (25)Thus the observed value of the kth moment suddenly rosses over from a relatively smallnumber to the true value of the kth moment when R passes through R�. While a realsimulation will not atually exhibit suh a smooth behavior, Eq. (25) provides an appealingand quantitative aount of the expeted nature of the rossover.5. Conlusions11



The statistial properties of the produt of N random variables has been outlined.We have shown that the distribution of the produt and the behavior of the momentsare ruially sensitive to extreme events. Consequently, there is no analog of a entrallimit theorem, as in the ase of random additive proesses, in whih typial events aresuÆient to determine the statistial properties of the sum of a large number of randomvariables. We have shown expliitly why the log-normal approximation fails to adequatelyrepresent the statistial properties of the produt in the ontinuum limit. It is worthwhileto be ognizant of these shortomings, given the wide range of phenomena for whih thelog-normal is invoked. We have also provided the orret ontinuum limit whih an beviewed as a log-normal funtion, but one whose preise form depends on the order of themoment being onsidered. This emphasizes that there does not exist a unique sale whihaounts for all the moments of the produt.We have also disussed how these features would appear in numerial simulations ofrandom multipliative proesses. Numerially observed \averages" are determined by theextreme events that appear in a �nite number of realizations of a random produt, and wehave derived the ondition whih spei�es the nature of these extreme events. When thesize of the simulation ensemble is of the order of the total number of possible realizations ofthe produt, then the most extreme events will appear. It is only when this �nally happensthat a simulation an provide aurate numerial estimates. The logarithmi dependeneof the magnitude of the extreme event on the size of the ensemble provides the basis foran idealized, but quantitative aount of the rossover to asymptoti behavior. The basimessage of this analysis is that numerial estimates from realisti-sale simulations of arandom multipliative proess have no relation to true average values. A nie graphisdemonstration of these general features has been given by R. L. Blumberg.14AknowledgementsI wish to thank Profs. B. Shapiro and H. E. Stanley for very useful disussions. I amalso grateful to H. E. Stanley for a areful reading of the manusript and for many helpfulsuggestions. The Center for Polymer Studies is supported in part by grants from the ARO,NSF, and ONR. This �nanial support is greatfully aknowledged.Referenes1. See e.g., F. Reif, Fundamentals of Statistial and Thermal Physis (MGraw-Hill, NewYork, 1965).2. J. L. Doob, Stohasti Proesses (Wiley, New York, 1953).3. B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of IndependentRandom Variables (Addison-Wesley, Cambridge, MA, 1954).12
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Table 1. Comparison between the exat value and the Gaussian estimate of the average valueof the produt of N fators for the ase where p = q = 12 and z2 = z�11 . Sine hP iand hP iGaussian both grow as �N , we write the value of � to provide a omparisonbetween two numbers whih are of the same order of magnitude. The agreement isreasonable for small z1, but beomes poor for larger values of z1.z1 �exat �Gaussian2 1.2500 1.27153 1.6667 1.82854 2.1250 2.61415 2.6000 3.651510 5.0500 14.16720 10.025 88.873
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Figure 1. Qualitative behavior of the integral in Eq. (21). For small R, the limits of the integralare lose together and on the tail of the distribution. As R inreases, more of thepeak is inluded within the integration limits, and the value of the integral inreasessharply as R! R� as shown in Fig. 2.Figure 2. A sketh of the \observed" value of the kth moment in a simulation, hP kiR, as afuntion of the logarithm of the number of realizations, R. The sharp inrease in hP kiRmoves progressively to the right for larger values of k. As an illustrative example,we have hosen p = q = 12 , z1 = z�12 = 4, k = 1, and N = 100. The value oflnR� ' 38:93, orresponding to R� � 8 � 1016. Thus to �nd the moments of aprodut of only 100 random numbers numerially, a simulation beyond the sope ofpresent-day omputation is required!
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