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Abstra
tAn elementary dis
ussion of the statisti
al properties of the produ
t of N indepen-dent random variables is given. Our motivation is to emphasize the essential di�eren
esbetween the asymptoti
 N ! 1 behavior of a random produ
t and the asymptoti
 be-havior of a sum of random variables { a random additive pro
ess. For this latter pro
ess,it is widely appre
iated that the asymptoti
 behavior of the sum and its distribution isprovided by the 
entral limit theorem. However, no su
h universal prin
iple exists for arandom multipli
ative pro
ess. In this 
ase, the ratio between the average value of theprodu
t, hP i, and the most probable value, Pmp, diverges exponentially in N as N !1.Within a 
ontinuum approximation, the 
lassi
al log-normal form is often invoked to de-s
ribe the distribution of the produ
t. We show, however, that the log-normal providesa poor approximation for the asymptoti
 behavior of the average value, and also for thehigher moments of the produ
t. A pro
edure for 
omputing the 
orre
t leading asymptoti
behavior of the moments is outlined. The impli
ations of these results for simulations ofrandom multipli
ative pro
esses are also dis
ussed. For a su
h a simulation, the numeri-
ally observed \average" value of the produ
t is of the order of Pmp, and it is only whenthe simulation is large enough to sample a �nite fra
tion of all the states in the systemthat a monotoni
 
rossover to the true average value hP i o

urs. We provide an idealized,but quantitative a

ount for this 
rossover.P.A.C.S. Numbers: 02.50.+s, 05.40.+j.
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1. Introdu
tionAn important 
omponent of an elementary statisti
al me
hani
s 
ourse is a dis
ussionof the theory of random walks.1 Usually, an initial treatment is based on a one-dimensionallatti
e random walk, whi
h is a sequen
e of equal length displa
ements whose dire
tionis 
hosen randomly at ea
h step. One of the basi
 goals in the study of random walks isto �nd the average displa
ement of the probability distribution after a large number ofsteps N . This example is a realization of a random additive pro
ess, as the displa
ement,r, is the sum of random steps. For the one-dimensional random walk, the probabilitydistribution for the displa
ement is the binomial fun
tion. In the limit as N ! 1, the
entral limit theorem2�4 guarantees that this distribution approa
hes a Gaussian fun
tion,with the 2kth moment of the displa
ement, hr2ki, varying as Nk. This limiting Gaussiandistribution is a universal property of a wide 
lass of sto
hasti
 pro
esses, in that detailsof the underlying random pro
ess at the single step level are irrelevant in determiningthe asymptoti
 properties of the distribution of displa
ements.3 Thus the existen
e ofthe 
entral limit theorem provides 
ru
ial information for understanding the asymptoti
behavior of a random additive pro
ess. This universality prin
iple has stimulated extensivestudy of a variety of physi
al realizations of random walks, in order to elu
idate the limitsof appli
ability of the 
entral limit theorem.5�7In 
ontrast to the well-studied and (relatively) well-understood situation of randomadditive pro
esses, there is a lesser degree of appre
iation of the statisti
al properties ofa produ
t of random variables in the physi
s resear
h literature. This apparent dearthbelies the ubiquity of random multipli
ative pro
esses. They underlie a diverse range ofnatural phenomena su
h as the distribution of in
omes, body weights, rainfall, fragmentsizes in ro
k 
rushing pro
esses, et
.5;8 Random multipli
ative pro
esses have also beenfound to underlie a range of physi
al pro
esses whi
h fall under the rubri
 of multifra
talphenomena.9;10 Quite re
ently, the notions of random multipli
ative pro
esses have beenapplied to di�usive transport in random media.11 Given the ubiquity and re
ent interestin random multipli
ative pro
esses, it should prove to be fruitful to provide a relatively
omplete, yet elementary treatment of their statisti
al properties.As a spe
i�
 example, 
onsider a su

essive pro
ess of ro
k fragmentation in whi
h thesize of a fragment evolves a

ording to x0 ! x1 ! x2 ! � � � ! xN , with a redu
tion fa
torat ea
h stage of breakup, rn = xn=xn�1 < 1 that has some well-behaved distribution. Thesize of a fragment at the N th level is thus given by the produ
t of the relative redu
tionfa
tors, xN = (QNk=1 rk)x0. The primary foal of this paper is to elu
idate some of thebasi
 statisti
al properties of su
h a produ
t of N random variables. It is hoped that theensuing dis
ussion represents a useful self-
ontained presentation of the basi
 features ofrandom multipli
ative pro
esses whi
h will �ll the apparent gap in the literature.2



We shall argue that the behavior of su
h a produ
t is 
onsiderably ri
her than that ofa sum of N random variables. A 
ru
ial feature of su
h a pro
ess is that extreme events,although exponentially rare in N , are exponentially di�erent from the typi
al, or mostprobable value of the produ
t. Thus it turns out to be ne
essary to properly a

ount forthe extremes in the distribution of the produ
t in order to 
ompute averages 
orre
tly.In the limit of large N , a time-honored approximation for des
ribing the distributionof produ
ts is based on noting that the logarithm of the produ
t, lnP , is merely thesum of N random variables, so that lnP obeys a Gaussian distribution. This leads tothe 
lassi
 log-normal form for the distribution of the produ
t.8 By this 
onstru
tion,however, information about the tail of the distribution has been lost, and these details are
ru
ial in determining the higher moments of the produ
t. We shall show expli
itly howthe log-normal form fails in providing an a

urate des
ription of the statisti
al propertiesof the produ
t. Correspondingly, one of our basi
 results will be to derive an a

urate
ontinuum limit for a random multipli
ative pro
ess from whi
h the 
orre
t asymptoti
behavior of the higher moments 
an be obtained. In the 
ontext of asymptoti
 expansions,this 
ontinuum limit is a Gaussian fun
tion, but one in whi
h the lo
ation of the peakdepends on the order of the moment being 
omputed.The fa
t that the average is dominated by rare events has fundamental impli
ationsfor numeri
al studies of systems governed by a random multipli
ative pro
ess. If onesamples only an in�nitesimal fra
tion of the total number of states of the system, as isthe 
ase in most realisti
 situations, then by de�nition, one will dete
t the typi
al valueof an observable. As the s
ale of the simulation is in
reased, progressively more extremeevents be
ome a

essible, and the observed average also in
reases. However, it is only whenone has the resour
es to sample a �nite fra
tion of all the states of the system that themeasurement will 
onverge to the true average value of the observable. The quantitativedes
ription of this 
rossover between the most probable value of a random produ
t and its\true" average value is another major goal of this paper.While many of our basi
 results are straightforward to derive, it appears that theyare not as widely-known as one might expe
t. We have therefore endeavored to give apedagogi
al dis
ussion in what follows.2. A Binomial Multipli
ative Pro
essTo be 
on
rete, 
onsider a binary sequen
e in whi
h the real, positive numbers z1and z2 appear independently and with probabilities p and q, respe
tively. Without loss ofgenerality, we take z1 > z2. If there are N elements in the sequen
e, we ask what is theaverage value of this N -fold produ
t, hP i? In order to 
ompute hP i, de�ne p(n) to be theprobability that the binary produ
t of N independent fa
tors assumes the value zn1 zN�n2 .3



This probability is simply the binomialp(n) = �Nn�pnqN�n; (1)where �Nn� = N !n! (N�n)! . By averaging over all possible out
omes of the produ
t, one �ndsthe average value hP i = NXn=0�Nn�pnqN�n � zn1 zN�n2 = (pz1 + qz2)N : (2)On the other hand, the most probable event is one in whi
h the produ
t 
ontains Npfa
tors of z1 and Nq fa
tors of z2. This is obtained by maximizing the probabilisti
 fa
tor�Nn�pnqN�n with respe
t to n in Eq. (2). Consequently, the most probable value of theprodu
t, Pmp, is simply Pmp = (zp1zq2)N : (3)While the most probable event yields a good approximation for the average value of thesum in a random additive pro
ess, we see that it is inadequate for determining the averagevalue of the produ
t in a random multipli
ative pro
ess. In fa
t, the ratio hP i=Pmp divergesexponentially in N as N !1.Another way to 
ompute Pmp is to 
onsider the logarithm of the produ
t. This is arandom additive pro
ess for whi
h the average value and the most probable value divergeat the same rate as N !1. Therefore by 
omputing hlnP i, one also obtains the value oflnPmp. Then by re-exponentiating, one hasPmp = ehlnP i; (4a)while by de�nition hP i = helnP i: (4b)Mathemati
ally, the inter
hange of exponentiation and averaging is not generally justi�ed.In fa
t, by expanding Eqs. (4) in power series and using the basi
 fa
t2�4 that hxki > hxik,it is 
lear that hP i > Pmp. In general, there is no reason why Pmp and hP i shouldhave similar values, or even be of the same order of magnitude for a suÆ
iently broaddistribution.The disparity between hP i and Pmp 
an be ni
ely illustrated by 
onsidering severalspe
ial 
ases with z1 = 2 and z2 = 1=2: (i) For p = q = 1=2, hP i = (5=4)N = eN ln(5=4),while Pmp = 1; (ii) For p = 13 and q = 23 , the 1/2's are twi
e as likely to o

ur as2's in the sequen
e of numbers 
omprising the produ
t. In this 
ase hP i = 1, whilePmp = ((1=2) � (1=2) � 2)N=3 = 2�N=3 = e� 13N ln 2; (iii) For p stri
tly within the range 13 to4



12 , one has the 
urious situation where hP i � e+�N !1 and Pmp � e��N ! 0, where �and � are positive 
onstants, as N !1.The essential reason for the large dis
repan
y between hP i and Pmp is the relativelyimportant role played by rare events. For example, a sequen
e 
onsisting only of N fa
torsof z1 o

urs with an exponentially small probability, but the value of this produ
t isexponentially large 
ompared to the typi
al value. Consequently, this extreme event makesa �nite 
ontribution to hP i, and a dominant 
ontribution to the higher moments of theprodu
t, hP ki. From Eq. (2), we see that hP ki redu
es to (pzk1 )N as k ! 1, i.e., thekth moment is determined solely by the most extreme event. A 
losely related featureis that the moments obey the inequalities hP ki(pzk1 + qzk2 )N � hP ik = (pz1 + qz2)Nk,and more generally, hP ki � hP k�1ik=(k�1). These relations also show that there does notexist a unique s
ale whi
h governs the s
aling of all the moments of the produ
t. Thatis, hP ki 
annot be written in the form hP ki � akhP ik, with ak a non-singular fun
tion ofk and N . This loss of s
aling stems from the long tail in the underlying distribution ofprodu
ts. However, as the order of the moment goes to 1, the 
ontribution of the singleevent where the produ
t has the value zN1 dominates in the value of the moment. In this
ir
umstan
e, a 
onventional s
aling pi
ture is restored sin
e the value of the moment isessentially determined by a single event.An additional intriguing feature of the binomial multipli
ative pro
ess is the sensitivityof hP i to short-range 
orrelations in the sequen
e of variables that are being multiplied.As a simple example, 
onsider the 
ase where z1 = 2, z2 = 1=2, with these two fa
torso

urring with equal probability. Further suppose that there are \no immediate reversals"in the sequen
e of z1's and z2's that 
omprise the produ
t. That is, when a 2 �rst appearsin the sequen
e, the next element must also be a 2. Only after the se
ond appearan
e of a2 does the sequen
e be
ome un
orrelated again. For a random walk pro
ess with this typeof 
orrelation (persistent random walk), it is well-known that the asymptoti
 propertiesof the mean displa
ement are una�e
ted.6 However, for a random multipli
ative pro
ess,this nearest-neighbor 
orrelation is equivalent to repla
ing the sequen
e of N 
orrelatedvariables, whi
h may be either 2 or 1=2, by a sequen
e of N=2 independent variables,whi
h may be either 4 or 1=4. For this new sequen
e, hP i = (p17=8)N � (5=4)N asN ! 1. The in
rease in hP i 
ompared to the original binomial pro
ess be
omes mu
hmore pronoun
ed as the range of 
orrelation in the sequen
e be
omes longer. The origin ofthis in
rease stems from the relatively larger role played by \rare" events, i.e., a sequen
e
ontaining only 2's be
omes relatively more likely as the 
orrelation range in
reases. Thissimple but remarkable result shows that there is no analog of a 
entral limit theorem fora random multipli
ative pro
ess, as the mean value depends on 
orrelations among thefa
tors 
omprising the produ
t. 5



3. The 
ontinuum limitAn important aspe
t of treating any sto
hasti
 pro
ess is determining the distributionof relevant observables in the 
ontinuum limit. For a produ
t of random variables, theexa
t distribution fun
tion for the dis
rete system is simply the binomial fun
tion givenin Eq. (1). From this form, one is naturally led to �rst apply Stirling's approximation,and then expand the resulting distribution about its maximum to arrive at the 
lassi
allog-normal form. While this is the time-honored approa
h for deriving the 
ontinuumlimit in virtually all sto
hasti
 pro
esses, it is an ill-founded approximation for a randommultipli
ative pro
ess. Let us follow this general pres
ription, however, in order to illustratethe pitfalls asso
iated with the Gaussian approximation. We then present an appropriateexpansion pro
edure that leads to the 
orre
t 
ontinuum limit.The kth moment of the produ
t 
an be approximated byhP ki ' Z +N�N eln p(n) znk1 z(N�n)k2 dn: (5)The Gaussian approximation is based on �rst applying Stirling's formula to the binomialdistribution of Eq. (1) to yield1� ln p(n) ' n ln nN + (N �n) ln(1� nN )�n ln p� (N �n) ln q+ 12N ln(2�n(1� nN )): (6)We now expand this approximation for ln p(n) about its maximum whi
h is lo
ated atn = Np, with 
orre
tions to this 
ondition that vanish in the limit N ! 1. Then byre-exponentiating this expansion, one obtains the Gaussian formpGaussian(n) ' 1p2�Npq exp�� (n�Np)22Npq � : (7)By writing a generi
 value of the produ
t as P = ( z1z2 )nzN2 and Pmp = ( z1z2 )NpzN2 , Eq. (7)
an be re
ast as pGaussian(n) ' 1p2�Npq exp(� (lnP � lnPmp)22Npq(ln z1z2 )2 ) : (8)This is the well-known log-normal distribution,8 whose name re
e
ts the fa
t that thelogarithm of the produ
t is normally distributed.The kth moment of the produ
t within the Gaussian approximation is, from Eq. (7),hP kiGaussian ' 1p2�Npq Z +1�1 e� (n�Np)22Npq znk1 z(N�n)k2 dn; (9)6



and we evaluate this integral by 
ompleting the square in the exponential to yieldhP kiGaussian = exp�Npq2 k2(ln z1z2 )2 +N(p� q)k ln z1z2 + Nk2 ln z1z2� : (10)It is instru
tive to 
ompare the values for hP kiGaussian with the exa
t result for hP kigiven in Eq. (2). For z1 � z2 and for p; q � 12 the agreement between the exa
t result andthe Gaussian approximation is reasonable be
ause the role of extreme events is lessenedby having z1 
lose to z2 and p � q. However, when either of these relations is not satis�ed,then the agreement be
omes poor (see Table 1). This is espe
ially true for large k be
ausethe Gaussian approximation predi
ts that the kth moment of an N -fold produ
t in
reasesas e
Nk2 , where 
 = pq2 (ln z1z2 )2, while the exa
t value in
reases only as eNk ln z1 .What is wrong with the Gaussian approximation? The essential 
aw 
an be seenin 
omparing Eqs. (5) and (9). In Eq. (5), the kth moment equals the probability of anevent, times the kth power of the value of that event, averaged over all events. The kthpower of the produ
t is exponentially large in N , so that both fa
tors in the integralare of the same order of magnitude. However in writing the Gaussian approximationof Eq. (9), the binomial distribution has �rst been expanded about the point where ita
hieves a maximum. The pro
ess of 
ompleting the square in the exponent in Eq. (9) isthen tantamount to �nding the maximum of the fun
tion in the exponent in whi
h oneportion of this fun
tion has already been expanded to se
ond order. This represents anin
orre
t appli
ation of Lapla
e's method12 to provide an asymptoti
 expansion of theintegral in Eq. (9).To see expli
itly where su
h an approa
h leads, we 
hange variables from n to x = n=Nand rewrite Eq. (6) as ln p(x) ' �Nf(x), wheref(x) = �N(x lnx+ (1� x) ln(1� x)� x ln p� (1� x) ln q + 12N ln(2�Nx(1� x)): (11)Eq. (5) then be
omes hP ki ' Z +1�1 e�N [f(x)+g(x)℄N dx; (12)where g(x) = kx ln z1+k(1�x) ln z2. In the Gaussian approximation, f(x) is �rst repla
edby fGaussian(x) = f(x0)+ 12 (x�x0)2f 00(x0), where x0 = p. The 
ompletion of the square inthe exponential in Eq. (9) is equivalent to expanding about the maximum of fGaussian(x)+g(x). The interested reader 
an readily verify that this generally is a poor approximationfor the lo
ation of the peak of the exa
t exponent fun
tion, h(x) � f(x) + g(x).To perform the integral 
orre
tly by the Lapla
e method, we expand h(x) about itstrue maximum. Writingh(x) = x lnx+ (1� x) ln(1� x)� x ln p� (1� x) ln q + 12N ln(2�Nx(1� x))� kx ln(z1z2 )� k ln z2; (13)7



di�erentiating with respe
t to x, and setting this expression to zero, one �nds that h(x)has a maximum at x� ' �1 + � ; � = pzk1qzk2 (14)in the limit N !1. Noti
e that this maximum is always greater than the value xmp = pthat 
orresponds to the most probable value of the produ
t. This shows that the dominant
ontribution to hP ki generally 
omes from produ
t values whi
h are larger than Pmp. Atx = x�, straightforward algebra givesh(x�) = ln �(1 + �)pzk1 + 12N ln 2�N �(1 + �)2 ; (15a)and h00(x�) = (1 + �)2� : (15b)Therefore the kth moment be
omeshP ki ' Z +1�1 e�Nh(x)Ndx� Z +1�1 e�N [h(x�)+ 12 (x�x�)2h00(x�)+ ::: ℄Ndx� e�Nh(x�)s 2�Nh00(x�) : (16)
Employing the expressions for h(x�) and h00(x�) given in Eqs. (15) yieldshP ki � (pzk1 + qzk2 )N : (17)Thus the 
orre
t value of hP ki is obtained if the 
ontinuum limit is formulated ap-propriately. This formulation only requires that Lapla
e's method is applied to the exa
tform of the exponent fun
tion in Eq. (12). In this 
ir
umstan
e, Lapla
e's method is guar-anteed to give the 
orre
t leading asymptoti
 behavior of the integral.12 The short
omingof the log-normal approximation stems from the fa
t that an approximation to one of thetwo terms in the exponent fun
tion has been made before Lapla
e's method is applied.It is also noteworthy that the 
orre
t 
ontinuum distribution fun
tion 
annot be 
ast asa single fun
tion, su
h as a simple log-normal. From Eqs. (12) and (16) the produ
t ofthe distribution fun
tion times the value of the kth moment 
an itself be represented by aGaussian, but one in whi
h the lo
ation of the peak depends on k. This emphasizes thatthere does not exist a unique s
ale whi
h a

ounts for all the moments of the produ
t, butrather, ea
h moment is governed by distin
t portions of the underlying distribution. It is8



important to keep these basi
 features in mind when writing the 
ontinuum distributionfun
tions for sto
hasti
 pro
esses in whi
h extreme events play a major role.4. The dependen
e of the \observed" average value on the sample sizeWhile the true average value of an N -fold produ
t of random variables is governed byextreme events whi
h are at the tail of the distribution, most probable events will tend todominate in a typi
al numeri
al simulation of su
h a pro
ess. That is, most simulationsare performed in situations for whi
h one 
an sample only an in�nitesimal fra
tion of allthe states of the system. Therefore the \observed" average value of the produ
t in su
h asimulation will a
tually be 
lose to Pmp. As the number of realizations R in the simulationensemble is in
reased, however, there is a 
orresponding in
rease in the a

essibility to thetails of the distribution. In a given simulation, this in
reased a

ess will manifest itself inthe sporadi
 appearan
e of ex
eptional realizations whi
h will 
ause the observed averagesto 
u
tuate wildly as a fun
tion of R. However for a large enough ensemble, all events aresampled with the 
orre
t weight and the 
u
tuating observations as a fun
tion of R will
ross over and 
onverge to the true average. We now give a quantitative analysis of this\
rossover" within an idealized pi
ture in whi
h the in
reased a

ess to the tails o

urssystemati
ally as a fun
tion of R. This approximate treatment predi
ts a smooth, but sharpin
rease in the observed average as the number of realizations in the simulation rea
hes a
rossover value R� � e�N , where � is a 
onstant. While our analysis is rather 
rude, tothe best of our knowledge, an expli
it des
ription of this 
rossover has not appeared in theliterature previously.A 
ru
ial step in our analysis is determining the expe
ted value of the largest produ
tin an ensemble of R realizations of an N -fold produ
t. For this largest produ
t, the numberof appearan
es of the fa
tor z1 (the larger fa
tor in the produ
t) attains a maximal valuen+ whi
h we will show in
reases only logarithmi
ally with the number of realizations R.Consequently, R needs to be of the order of eN , i.e., of the order of all the states in thesystem, before the extreme events that lead to the 
orre
t averages are e�e
tively sampled.To estimate n+, we employ the Gaussian approximation for the probability distribution ofthe produ
t, p(n). This will provide an a

urate estimate for n+ as long as R is not toolarge so that n+ falls within several standard deviations of the Gaussian peak. This is verylikely to be true in any realisti
 simulation. The 
ase where R approa
hes 2N 
an also betreated within the present framework, but at the expense of introdu
ing unenlighteningte
hni
al 
ompli
ations.To determine n+, we require the probability that in an ensemble of R independentrealizations, there exists a single realization for whi
h the expe
ted maximal number ofz1's in an N -fold produ
t is greater than or equal to n+. In other words, we wish to spe
ifythe lower limit for the integral over p(n) su
h that the probability of having n � n+ is9



equal to 1=R. That is, Z Nn+ p(n) dn = 1R: (18)Employing the Gaussian approximation for p(n), Eq. (18) be
omes1p2�Npq Z 1n+ e� (n�Np)22Npq dn = 1R: (19)This 
an be re
ast as 1R = 12erf
(u+), where u+ = (n�Np)p2Npq and erf
(x) is the error fun
tion
omplement. Finally, using the asymptoti
 expansion for the error fun
tion13 yields thefundamental result n+ ' Np+p2Npq � lnR: (20)Correspondingly, there is a minimal number n� ' Np�p2Npq � lnR whi
h spe
i�es thesmallest value of the produ
t in an ensemble of R realizations. Thus n+ is greater thanthe typi
al value of n = Np by an amount that is of the order of pN when the s
aleof the simulation is small, i.e., typi
al random walk 
u
tuations, and n+ approa
hes themaximum possible value of N only when the simulation is large enough to sample a �nitefra
tion of all events, i.e., when R >� R� � O(2N ). When R rea
hes R�, the squareroot term in Eq. (20) be
omes of the order to N , and the most extreme events in theensemble are now a

essible. We emphasize that although this approa
h predi
ts thatn+ is a smoothly in
reasing fun
tion of R, n+ will a
tually be a sporadi
ally in
reasingfun
tion in a given simulation, and it is only the expe
ted value of n+ whi
h will 
onformto Eq. (20).Due to the predi
ted systemati
 dependen
e of the magnitude of the extreme eventon the number of realizations R in a simulation, there will be a 
orresponding smoothdependen
e of observed averages on R. Within this formulation, the kth moment of theprodu
t in a simulation 
ontaining R realizations be
omeshP kiR ' Z x+x� e�Nh(x)Ndx� Z x+x� e�N [h(x�)+ 12 (x�x�)2h00(x�)+ ::: ℄Ndx; (21)where x+ = n+=N . The qualitative behavior of hP iR is determined by the relative positionof the peak in the integrand 
ompared to the limits of the integral, as illustrated in Fig. 1.For relatively small R, both limits of the integral lie far to the left of the peak, so thathP iR is vanishingly small. As the number of realizations R in
reases, the upper limit ofthe integral, x+, slowly in
reases and eventually rea
hes the lo
ation of the peak at x�.10



From Eqs. (14) and (20), the number of realizations, R�, required for x+ to rea
h x� isgiven by lnR� = N2pq �p� �1 + ��2 = N2pq  p� pq( z1z2 )kq + p( z1z2 )k!2 : (22)When R = R� ' e�N , with � dependent on the details of the multipli
ative pro
ess, wehave integrated over one-half of the 
ontribution to hP kiR in Eq. (21), and hP iR ' 12hP ki1(see Figs. 1 and 2). For R > R�, x+ has passed the far side of the peak and hP kiR veryqui
kly approa
hes hP ki1. Sin
e the width of the peak is of order 1=pN , hP iR is sharplyin
reasing in the narrow range x+ ' x��O( 1pN ), and this 
orresponds to R ' R��O(epN )(Fig. 2). Furthermore, sin
e there is a distin
t peak lo
ation for ea
h value of k, whi
h isan in
reasing fun
tion of k, progressively more realizations are needed in a simulation toestimate the higher moments to the same degree of a

ura
y as the low-order moments.The value of the kth moment of the produ
t in an ensemble 
ontaining R realizations
an now be obtained by substituting in the expressions for h(x�) and h00(x�) given inEqs. (15) into Eq. (21). This yields,hP kiR ' 1p� (pzk1 + qzk2 )N Z u+u� e�u2 du; (23)where u� =p 12Nh00(x�)(x� � x�): (24)We expe
t that this expression is quantitatively 
orre
t when u+ > 0, where we areessentially performing a Lapla
e expansion of an exponential integral. For u+ < 0, weare integrating a rapidly varying exponential fun
tion over a range where there is noextremum in the integrand. In this 
ase the Gaussian approximation is not justi�ed, butit does provide a simple and 
orre
t qualitative pi
ture of the behavior of the moments onthe number of realizations.Eq. (23) 
an be rewritten in terms of error fun
tions, and there are two 
ases dependingon the relative position of the limits with respe
t to the peak (
f. Fig. 1). We thereby �ndhP kiR ' 8<: 12(pzk1 + qzk2 )N [erf(ju�j)� erf(ju+j)℄ if u+ � 0 (R < R�);12(pzk1 + qzk2 )N [erf(u+) + erf(ju�j)℄ if u+ > 0 (R > R�). (25)Thus the observed value of the kth moment suddenly 
rosses over from a relatively smallnumber to the true value of the kth moment when R passes through R�. While a realsimulation will not a
tually exhibit su
h a smooth behavior, Eq. (25) provides an appealingand quantitative a

ount of the expe
ted nature of the 
rossover.5. Con
lusions11



The statisti
al properties of the produ
t of N random variables has been outlined.We have shown that the distribution of the produ
t and the behavior of the momentsare 
ru
ially sensitive to extreme events. Consequently, there is no analog of a 
entrallimit theorem, as in the 
ase of random additive pro
esses, in whi
h typi
al events aresuÆ
ient to determine the statisti
al properties of the sum of a large number of randomvariables. We have shown expli
itly why the log-normal approximation fails to adequatelyrepresent the statisti
al properties of the produ
t in the 
ontinuum limit. It is worthwhileto be 
ognizant of these short
omings, given the wide range of phenomena for whi
h thelog-normal is invoked. We have also provided the 
orre
t 
ontinuum limit whi
h 
an beviewed as a log-normal fun
tion, but one whose pre
ise form depends on the order of themoment being 
onsidered. This emphasizes that there does not exist a unique s
ale whi
ha

ounts for all the moments of the produ
t.We have also dis
ussed how these features would appear in numeri
al simulations ofrandom multipli
ative pro
esses. Numeri
ally observed \averages" are determined by theextreme events that appear in a �nite number of realizations of a random produ
t, and wehave derived the 
ondition whi
h spe
i�es the nature of these extreme events. When thesize of the simulation ensemble is of the order of the total number of possible realizations ofthe produ
t, then the most extreme events will appear. It is only when this �nally happensthat a simulation 
an provide a

urate numeri
al estimates. The logarithmi
 dependen
eof the magnitude of the extreme event on the size of the ensemble provides the basis foran idealized, but quantitative a

ount of the 
rossover to asymptoti
 behavior. The basi
message of this analysis is that numeri
al estimates from realisti
-s
ale simulations of arandom multipli
ative pro
ess have no relation to true average values. A ni
e graphi
sdemonstration of these general features has been given by R. L. Blumberg.14A
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Table 1. Comparison between the exa
t value and the Gaussian estimate of the average valueof the produ
t of N fa
tors for the 
ase where p = q = 12 and z2 = z�11 . Sin
e hP iand hP iGaussian both grow as �N , we write the value of � to provide a 
omparisonbetween two numbers whi
h are of the same order of magnitude. The agreement isreasonable for small z1, but be
omes poor for larger values of z1.z1 �exa
t �Gaussian2 1.2500 1.27153 1.6667 1.82854 2.1250 2.61415 2.6000 3.651510 5.0500 14.16720 10.025 88.873
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Figure 1. Qualitative behavior of the integral in Eq. (21). For small R, the limits of the integralare 
lose together and on the tail of the distribution. As R in
reases, more of thepeak is in
luded within the integration limits, and the value of the integral in
reasessharply as R! R� as shown in Fig. 2.Figure 2. A sket
h of the \observed" value of the kth moment in a simulation, hP kiR, as afun
tion of the logarithm of the number of realizations, R. The sharp in
rease in hP kiRmoves progressively to the right for larger values of k. As an illustrative example,we have 
hosen p = q = 12 , z1 = z�12 = 4, k = 1, and N = 100. The value oflnR� ' 38:93, 
orresponding to R� � 8 � 1016. Thus to �nd the moments of aprodu
t of only 100 random numbers numeri
ally, a simulation beyond the s
ope ofpresent-day 
omputation is required!
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