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Abstract. We introduce a toy model of the ‘rat race’ in which individuals try
to better themselves relative to the rest of the population. An individual is
characterized by a real-valued fitness and each advances at a constant rate by an
amount that depends on its standing in the population. The leader advances to
remain ahead of its nearest neighbour, while all others advance by an amount
that is set by the distance to the leader. A rich dynamics occurs as a function
of the mean jump size of the trailing particles. For small jumps, the leader
maintains its position, while for large jumps, there are long periods of stasis that
are punctuated by episodes of explosive advancement and many lead changes.
Intermediate to these two regimes, in a typical realization of the system, agents
reach a common fitness and evolution grinds to a halt.
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1. Introduction

A basic fact of life is competition. In evolution, only the fittest survive; in the workplace,
we compete for professional advancement; in social events, we compete for attention; in
sports, its very purpose is to excel in competition. Idealized models of social competition
have recently been proposed in which the status of each individual is determined by
competitive success [1]–[4]. In this spirit, we introduce a simple ‘rat race’ model that
embodies the struggle for advancement in a competitive environment. Because everyone
is engaged in the same perpetual rat race, one’s relative standing may change slowly
or not at all, even though the population as a whole may be advancing. When the
competition favours the strong, the leader runs away from the rest of the population. As
the competition becomes more equitable, in any typical realization of the system, everyone
reaches the same fitness and the population become static. When the leader is easily
overtaken, the mean fitness undergoes periods of near stasis and explosive advancement
that qualitatively mirrors the phenomenon of punctuated evolution [5].

Empirical motivations for our model come from evolution and from sports. In
evolution, large-scale species extinctions occur during sudden spurts, with much slower
development during the intervening periods [5, 6]. These periods of near stasis characterize
many sports, where it is not possible to maintain a long-term competitive advantage. If
one finds such a winning strategy, competitors will eventually find a counter-strategy so
that any advantage is lost. Conversely, a consistent loser will be replaced by a more
competent individual so that losing strategies also do not persist.

A famous example of the latter idea comes from baseball, where the mythic
achievement of a .400 hitter, an exceptional player who gets a hit in more than 40%
of his turns at bat, occurred multiple times during the early years of the sport—25 times
from 1871 to 1941 (last accomplished by the .406 batting average of Ted Williams of
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Figure 1. Stochastic rat race model. Each particle has a fitness xk. The leader
can advance by an amount that is uniformly distributed in the range x0 − x1.
The kth particle can advance by an amount that is uniformly distributed in
m(x0 − xk).

the Boston Red Sox in 1941)—but none since then. An appealing explanation for this
phenomenon, proposed by Gould [7], is that the increasing competitiveness as the sport
has developed makes outliers less likely to occur. To illustrate this point, Gould found
that the dispersion in the batting averages of all regular players decreased systematically
from 1875 until 1980, even though year-to-year fluctuations in their mean batting average
are larger than the systematic decrease in the dispersion. Thus outliers become rarer and
exceptional achievements, such as a season batting average over .400, or a consecutive-
game hitting streak longer than 56 achieved by Joe DiMaggio also in 1941, should not
recur.

In the next section, we define the rat race model and then we analytically determine its
dynamical features for a two-agent system in section 3. In section 4, we investigate many
agents in the framework of an almost deterministic version of the rat race. Simulation
results for the evolutionary behaviour of the model are given in section 5, and we conclude
in section 6.

2. Rat race model

In our rat race model, each individual i = 0, 1, 2, . . . possesses a real-valued fitness xi, with
larger xi representing higher fitness (figure 1). An individual attempts to improve with
respect to the competition by advancing to larger x. Advancement events occur one at a
time and each individual has the same rate of advancing; i.e., we consider serial dynamics
in which a randomly selected competitor advances. The leader, located at x0, advances
by an amount that is drawn from a uniform distribution of width x0 − x1. That is, the
leader is aware only of the next strongest individual and attempts to maintain its lead by
advancing by an amount that is of the order of the separation to this nearest neighbour.
On the other hand, all other individuals seek to overtake the leader. The ith agent, with
fitness xi, moves a distance that is uniformly distributed in the range m(x0 −xi). Here m
is the fundamental parameter—the ‘catch-up’ factor—that quantifies the severity of the
competition. When m < 1, the leader maintains the lead forever, while for m > 1 the
leader can be overtaken.

In the context of competition, it would be more realistic to eliminate laggards and
replace them by typical individuals. However, our model mimics precisely this situation,
as a laggard typically moves toward the average fitness. A lazy population is characterized
by a small value of m for which the leader maintains the lead on the rest of the pack. For
a sufficiently large value of m, however, the lead changes often and by large amounts so
that the width of the fitness distribution increases after each advancement event. Between
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Figure 2. Advancement events that contribute to the change in the gap length
for a two-particle rat race. Gaps of length g are lost by the first two process,
while the latter three lead to a gain of gaps of length g. The last process is a
lead-changing event.

these two extremes there is an intermediate regime of stasis where the spread of the pack
shrinks to zero and the population stops advancing.

3. Two competitors

We begin by studying the case of two agents with fitnesses x0 and x1 < x0 and gap
g = x0−x1. The fitness of the leader increases by an amount that is uniformly distributed
in [0, g] to try to maintain its lead. Similarly, the laggard advances by a distance that is
uniformly distributed in the range [0, mg]. For m < 1 the agents always maintain their
order, while for m > 1 lead changes can occur. We now determine the evolution of the
gap length for any m.

The gap length undergoes a random multiplicative process because each advancement
step leads to a multiplicative change. Thus we expect that the distribution of gap lengths
for an ensemble of two-agent systems will have a log-normal form. Additionally, over a
suitable range for the catch-up factor m we also expect large fluctuations between different
realizations of the process, as is well known to occur in random multiplicative processes [8].

3.1. Gap evolution

The gap evolution is completely described by P (g, t), the probability for a gap of length
g at time t. For the case m < 1 (no lead changes), the evolution of P is described the
master equation

Ṗ (g) = −P (g) +
1

2

∫ g

g/2

P (g′)

g′ dg′ +
1

2m

∫ g/(1−m)

g

P (g′)

g′ dg′, (1)

where the overdot denotes time derivative. The first term on the right accounts for the
loss of gaps of length g because of the hopping of either particle ((a), (b) in figure 2). The
second term accounts for the creation of a gap of length g due to the leader advancing
from a previous gap of length g′ < g (figure 2(c)). The length g′ of this previous gap
must be in the range [g/2, g] so that a gap of length g can be created and the factor 1/g′
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accounts for the hopping distance being uniformly distributed in [0, g′]. The last term
accounts for the laggard advancing to create a gap of length g (figure 2(d)). Here, the
previous gap length g′ must be in the range [g, g/(1 − m)] and the hopping probability
then equals 1/(mg′).

Similarly, the master equation for P (g) for m > 1 is:

Ṗ (g) = −P (g) +
1

2

∫ g

g/2

P (g′)

g′ dg′ +
1

2m

∫ ∞

g

P (g′)

g′ dg′ +
1

2m

∫ ∞

g/(m−1)

P (g′)

g′ dg′. (2)

The third term on the right accounts for events in which the laggard remains the laggard
(figure 2(d)), while the last term accounts for overtaking events (figure 2(e)).

For both m < 1 and m > 1, it is straightforward to check that these equations
conserve the total probability,

∫ ∞
0

Ṗ (g) dg = 0. For this purpose, we need to compute∫ ∞

0

Ṗ (g) dg =

∫ ∞

0

[ · · ·] dg (3)

where [· · ·] denotes the right-hand side of equation (1) or equation (2). To perform this
type of integral, we merely interchange the order of the g and g′ integrations. We illustrate
this calculation for the second term on the right-hand side of equation (1). The interchange
of integration order in this term gives∫ ∞

0

dg
1

2

∫ g

g/2

P (g′)

g′ dg′ =
1

2

∫ ∞

0

dg′
∫ 2g′

g′

P (g′)

g′ dg.

The integration over g merely gives g′ and then the g′ integral becomes simply
1
2

∫ ∞
0

P (g′) dg′ = 1
2
. The same manipulation works for all the other terms in the master

equation and we thus verify that
∫

P (g) dg is conserved.

3.2. Moments of the gap length

The equation of motion for the moments of the gap length distribution is

Ṁk ≡
〈

dgk

dt

〉
=

∫ ∞

0

gkṖ (g) dg =

∫ ∞

0

gk [· · ·] dg, (4)

where [· · ·] again denotes the right-hand side of equation (1) or equation (2). Employing
the same interchange of integration order as illustrated above, the integrals can be
evaluated straightforwardly to yield the following closed equations for the moments:

Ṁk = Mk ×

⎧⎪⎪⎨
⎪⎪⎩

−1 +
2k+1 − 1

2(k + 1)
+

1 − (1 − m)k+1

2m(k + 1)
m < 1;

−1 +
2k+1 − 1

2(k + 1)
+

(m − 1)k+1 + 1

2m(k + 1)
m > 1.

(5)

For m < 1, the first few moments obey:

Ṁ0 = 0

Ṁ1 = M1

(
1 − m

4

)

Ṁ2 = M2

(
3 − 2m + m2

6m

) (6)
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etc. All positive integer moments increase in time for m < 1 because the leader hops
further than the laggard, on average, in every single event. Conversely, for m > 1 the
corresponding moment equations are:

Ṁ0 = 0

Ṁ1 = M1

[
(m − 1)(m − 2)

4m

]

Ṁ2 = M2

[
(m − 1)3 + m + 1

6m

] (7)

etc. Curiously, different moments can have opposite time dependences. For m < 1 the
laggard trails further and further behind after each step and the average separation grows,
while for m > 2, overtaking events are so drastic in character that the average separation
between the two agents also grows. Conversely, for 1 < m < 2, the first moment decreases
in time. In spite of the differing behaviours for the first moment as a function of m, higher
moments grow for any m > 1 (equation (7)).

Why does this dichotomy between moments of different order arise? The source is
the multiplicative process that underlies the gap dynamics. This multiplicativity leads to
the very broad log-normal distribution of gap sizes (to be derived in the next section),
for which the time dependence of moments of different order can be quite different [8].
In a random multiplicative process, extreme realizations, with an exponentially small
probability, make an exponentially large contribution to the moment of a given order. For
m < 1 or m > 2, the interplay between these two extremes leads to a first moment that
grows with time when summing over all realizations. In simulations, however, we study
only a small fraction of all realizations and thus can observe only the very different most
probable behaviour.

The most probable gap gmp = e〈ln g〉 (the geometric average of g) may be obtained by

computing Ẋ ≡ 〈 ˙ln g〉, using the same approach that leads from equation (4) to (5). We
thereby find that X = At with

A =

⎧⎪⎨
⎪⎩

ln 2 − 1 +
(m − 1) ln(1 − m)

2m
m < 1;

ln 2 − 1 +
(m − 1) ln(m − 1)

2m
m > 1.

(8)

Setting A = 0 gives the transition at which the most probable gap length does not change.
Again there are two transitions; from the first line of (8), the condition A = 0 gives a
transcendental equation for m with solution m∗

1 = 0.596 754 . . .. Similarly, from the second
line of (8), the condition A = 0 gives the threshold m∗

2 = 3.388 46 . . .. The most probable
gap length gmp thus increases with time for m < m∗

1 and m > m∗
2, while gmp shrinks

to zero in a finite time for m∗
1 < m < m∗

2. Comparing equations (7) and (8), there
exists a range of m for which the average gap grows while the most probable gap shrinks.
Again, the interplay between exponentially unlikely events that have exponentially large
contributions to an observable gives seemingly contradictory results that are natural
outcomes of a random multiplicative process [8].

doi:10.1088/1742-5468/2007/04/L04002 6
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3.3. The gap length distribution

We now compute the asymptotic tails of the gap length distribution itself. Our approach
to determine this distribution is to write the moments of the gap length distribution in
equations (5) as a Fourier transform and then invert this transform.

Thus we write∫ ∞

0

P (g, t) gk dg = eln[Mk(t)].

Now define X = ln g and make an analytic continuation from k to ik to give [9]

∫ ∞

−∞
P (X, t)eikX dX = eln[Mik(t)].

The left-hand side is just the Fourier transform of P (X, t). Inverting this Fourier
transform, we obtain

P (X, t) =
1

2π

∫ ∞

−∞
dk e−ikX eln[Mik(t)].

To derive the asymptotic distribution for large X, we need the small-k behaviour of ln Mik.
Using (5), we expand ln Mik for small k and then invert the Fourier transform to obtain
a Gaussian distribution for X, i.e., a log-normal distribution for g. The final result is

P (X, t) ∼ 1√
2πBt

e−(X−At)2/2Bt, (9)

where A is given by equation (8) and

B =

⎧⎪⎨
⎪⎩

C − m − 1

2m

[
2 ln(1 − m) − ln2(1 − m)

]
m < 1

C − m − 1

2m

[
2 ln(m − 1) − ln2(m − 1)

]
m > 1,

(10)

with C = 2− 2 ln 2 + (ln 2)2. We again emphasize that while the distribution of X = ln g
extends over range that grows as

√
t, the distribution of g itself is extremely broad so that

it cannot be characterized by any individual moment.

4. Deterministic model

It is not clear how to adapt the theory given above in an analytically tractable way to
treat more than two particles. We therefore introduce an nearly deterministic version of
the model that mimics the advancement steps in the stochastic rat race model by defining
the length of each jump to be exactly one half of the total possible range (figure 3).
We again consider serial dynamics in which one of the competitors, chosen at random,
advances. The order in which competitors are selected is the only source of stochasticity
in this version of the model.

doi:10.1088/1742-5468/2007/04/L04002 7
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Figure 3. Deterministic rat race. The laggard advances by mg/2. For m < 2,
the order never changes, while for m > 2, the move of the laggard always leads
to passing.

4.1. Two particles

There are two possibilities for particle movement, depending on the value of the catch-up
factor m:

• For m < 2, if the leader moves, the gap g → (3/2)g, while if the laggard moves, the
gap g → βg, where β = 1 − (m/2).

• For m > 2 the laggard overtakes the leader. If the leader moves, again g → (3/2)g,
while if the laggard moves g → βg, where β = (m/2) − 1.

Since either particle is selected with probability 1/2 at each step, after t steps the gap
could assume any of the values (3/2)τβt−τ , τ = 0, 1, . . . , t (assuming an initial gap length
g = 1). After t steps, the probability of a gap of length (3/2)τβt−τ is

pτ =
1

2t

(
t

τ

)
.

It follows that the kth moment of the gap length is

Mk ≡ 〈gk〉 =
[

1
2

(
3
2

)k
+ 1

2
βk

]t

. (11)

Thus, the large-time behaviour of the kth moment depends on the factor [(3/2)k + βk]/2.
If this factor is greater than 1, i.e., β exceeds βc(k) = exp[ln(2 − (3/2)k)/k], the kth
moment diverges as t → ∞. On the other hand, for β < βc(k), the kth moment vanishes
as t → ∞. For β > βc(0) = 2/3, all positive moments of the gap size, as well as the
most probable gap size, diverge. The value βc(0) = 2/3 thus marks the transition from
convergent to explosive behaviour in the gap size. Notice that this transition value for β
corresponds to the threshold values m∗

1 = 2/3 and m∗
2 = 10/3, which agree well with the

corresponding thresholds from the stochastic rat race.

4.2. Many particles

We study an N + 1-particle system, with N > 1, with particles located at xi, with
i = 0, 1, 2, . . . , N . The gap between particle n and the leader is defined as gn = x0 − xn.
We limit ourselves to the case of catch-up factor m > 2, so that any non-leader that
jumps always overtakes the leader. This fact allows us to keep track of the ordering of

doi:10.1088/1742-5468/2007/04/L04002 8
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the particles and an exact analysis is then possible. For generality, we assume the leader
jumps a distance αg1 ahead; α = 1/2 corresponds to the case analysed previously, while
for α = 0 the leader is completely lazy and never jumps.

If particle n is selected, this results in a re-distribution of the vector (g1, g2, . . . , gN)
of the gap lengths:

g′ = Ang,

where

A0 =

⎛
⎜⎜⎜⎜⎝

1 + α 0 0 · · · 0
1 − α 1 0 · · · 0
1 − α 0 1 · · · 0

...
...

...
. . .

...
1 − α 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ ,A1 =

⎛
⎜⎜⎜⎜⎝

β 0 0 · · · 0
β 1 0 · · · 0
β 0 1 · · · 0
...

...
...

. . .
...

β 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ ,

A2 =

⎛
⎜⎜⎜⎜⎝

0 β 0 · · · 0
1 β 0 · · · 0
0 β 1 · · · 0
...

...
...

. . .
...

0 β 0 · · · 1

⎞
⎟⎟⎟⎟⎠ , . . . ,AN =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · β
1 0 0 · · · β
0 1 0 · · · β
...

...
. . .

...
0 0 · · · 1 β

⎞
⎟⎟⎟⎟⎠ .

The vector g, after t steps, is the result of the product of t matrices, drawn at random
from among the An. Unfortunately, none of the matrices commute, so we cannot deduce
the probability distribution of gap sizes as in the scalar case of two particles (N = 1). On
the other hand, according to the Oseledec theorem [10] (also known as the multiplicative

ergodic theorem), the growth of g is determined by the product λ̃0λ̃1 · · · λ̃N , where λ̃n is
the largest eigenvalue of the matrix An (n = 0, 1, 2, . . . , N). More precisely, the product

P ≡
∏N

i=0 λ̃i determines the largest Lyapunov exponent of the growth of g with N . Thus
explosive growth results if the product P > 1, and stasis results otherwise. We now derive
the critical value for β at the transition point, where λ̃0λ̃1 · · · λ̃N = 1.

The largest eigenvalue of A0 is clearly λ̃0 = 1+α. To determine the largest eigenvalue
of An for n > 0, we write the characteristic equation det(An − λI) = 0, obtained by
expanding the determinant about the column of β’s:

[β(1 + λ + λ2 + · · · + λn−1) − λn](1 − λ)N−n = 0.

From the second factor on the left-hand side we conclude that An has N − n eigenvalues
λn = 1. We argue, self-consistently, that for n = 1, 2, . . . , N − 1 these are also the largest
eigenvalues, that is, λ̃n = 1. Indeed, if that is the case, then the criticality condition
dictates λ̃N = 1/(1 + α). Substituting this value into the characteristic equation for AN

we find

β∗ =
α

(1 + α)N+1 − (1 + α)
. (12)

It follows that β∗ ≤ 1/N (with the equality being realized in the limit α → 0). We can now
show that our initial assumption that the remaining eigenvalues of An (n = 1, 2, . . . , N−1)
are not larger than 1 is indeed valid. From the factor in the square brackets of the
characteristic equation, we see that these eigenvalues satisfy

β =
λn

1 + λ + λ2 + · · · + λn−1
.
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The expression on the right-hand side is a monotonically increasing function of λ, hence
if λ > 1 then β > 1/n > 1/N , in contradiction with (12).

For α = 0, namely, the case of a lazy leader that never advances as long as it leads,
the critical value of the catch-up parameter β is no longer exponential in N , but rather

β∗ =
1

N
, (13)

as can be seen by taking the limit of α → 0 in equation (12).

5. Simulation results

For any number of agents, the time dependence of the fitness of each agent exhibits
rich behaviour. For two agents, simulations clearly show a transition between a regime
where the leader runs away from the laggard and stasis as m passes through a critical
value close to m∗

1 = 0.596 754 . . .. This stasis continues until a second transition at
m ≈ m∗

2 = 3.388 46 . . .. For m > m∗
2, there is explosive growth, with many lead changes

between the two agents. It bears emphasizing that the observed transitions occur close to
the values associated with the most probable gap size, even though the true transitions
occur at m1 = 1 and m2 = 2, corresponding to the average gap size. Since simulations
reflect the most probable behaviour, they can provide qualitative information about the
nature of stasis and explosive growth, as well as the transition between these two regimes,
but little else.

Figures 4 and 5 show typical results for six agents. Again, the existence of two
transitions is clearly visible. For m < m∗

1 ≈ 0.4, the initial leader always maintains
its lead, but the laggards are able to remain relatively close behind by virtue of the
multiplicative nature of the jumps. Strikingly, large jumps occur with some frequency so
that the population still advances rapidly. However, for slightly larger m, the distance
between the strongest and weakest eventually disappears and the evolution quickly grinds
to a halt (figure 4 bottom). Here lead changes are rare and no longer occur after a short
time. This nearly static behaviour continues until m ≈ 1.6 (figure 5 top).

For a slightly larger m, this system exhibits periods of near stasis followed by periods
of explosive growth (figure 5 bottom). Here lead changes occur at roughly a constant rate
and the total number of lead changes grows linearly with time. During periods of rapid
advancement, the gap between the strongest and weakest agent is nearly comparable to
the fitness (position) of any agent. Conversely, during periods of near stasis, the gap
between the strongest and weakest agent is orders of magnitude smaller than the typical
fitness.

Qualitatively similar behaviour occurs for more particles, except that the critical
values of m that separates leader runaway from stasis and stasis from explosive growth
seem to approach 0 and 1, respectively, as the number of particles increases.

6. Summary

We introduced an idealized social competition model where individuals try to better
their fitness (a real-valued variable) by advancing relative to the rest of the population:
the leader advances to remain ahead of its closest pursuer, while others in the pack
advance by a random amount, in proportion to their distance from the leader. When
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Figure 4. Fitnesses of each agent for a six-particle system for m = 0.4 on a
linear–log scale (top), and m = 0.44 on a log–linear scale (bottom).

this proportionality constant is too small or too large, the fitness of all the agents grows
explosively during short sporadic bursts. These explosive regimes are the analogue of the
rapid growth of new species after massive die-offs in punctuated evolution. Between these
two extremes there is a window of stasis, where the spread of the pack shrinks indefinitely
and evolution comes to a stop. Here outliers becomes progressively less likely and extreme
achievements disappear; this situation parallels the disappearance of the 0.400 hitter in
baseball mentioned in the introduction.

Basic features of the model already arise in the simple limits of just two agents, and
in a deterministic model where agents advance by a fixed multiple of their gap to the
leader. These simplified models allow for an exact analysis, yielding specific expressions
for the distribution of gaps in the two-agent model, and for the N -dependence of the
threshold parameters that demarcate between the regimes of stasis and explosive growth

doi:10.1088/1742-5468/2007/04/L04002 11

http://dx.doi.org/10.1088/1742-5468/2007/04/L04002


J.S
tat.M

ech.(2007)
L04002

A toy model of the rat race

Figure 5. Fitnesses of each agent for a six-particle system for m = 1.61 on a log–
linear scale (top) and m = 1.64 on a linear–log scale (bottom). Shown dotted is
the distance between the strongest and weakest agent.

in the deterministic model. Our simulation results suggest that similar behaviour occurs
for a general many-agent system. A full analytical solution of the general many-agent
problem seems intractable, however, even in the simplified deterministic version. Thus
some basic questions remain unanswered, such as, for example, what is the distribution
of agents in the pack in the various regimes of explosive growth, stasis, and at the critical
transition points.
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this research was started, for hospitality. Two of us gratefully acknowledge financial
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