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We investigate a model protein interaction network whose links represent interactions between individual
proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition
to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a
function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural
fluctuations in different realizations. For biologically relevant growth rates, the node degree distribution has an
algebraic tail with a peculiar rate dependence for the associated exponent.
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Interprotein interactions underlie the performance of vital dc *  on n sC
. . . . . s sCq B _p Vs
biological functions. Organisms with sequenced genomes, =—B—+E —e E H , (1)
dN N #=on! s s, j=1 N

such as the yeas$. cerevisiad 1], provide important test
beds for analyzing protein interaction networKa|. The

number of interactions per protein 8t cerevisiadollows a +s,+1=s. The first term on the right-hand side of

power law[3-5], a feature common to many complex net- Ea. (1 nts for the | to the link f
works, such as the Internet, the World Wide Web, and meta- a. (1) accounts for the loss s due to the age ot a

bolic networks[6]. Similar behavior is exhibited by protein cluster of sizes with the newly introduced node. The gain

. i ) term accounts for all merging processesnahitially sepa-
interaction networks of various bactelfi@]. Based on the rated clusters whose total sizess 1.

centy been formlated (& accoun 1o, the evoluton of this, . S0ING fr the fst fenC(N), we see that they are al
y proportional toN. Thus writingC¢(N)=Nc,, and introduc-

interaction network8—11], where proteins are viewed as the : . ) 'S L, ’
nodes of a graph and links connect functionally related pro- 2 the generating functiog(z) ==.-;sce™, Eq. (1) be

teins. comes

In this work, we determine the structure of a minimal g=—pg’ +(1+pg’)e* AlE-1) 2
protein interaction network model that evolves by the bio-
logically inspired processes of protein duplication and subwhereg’=dg/dz. To detect the percolation transition, we
sequent mutation. That is, the functionality of a duplicateuse the fact thag)(0)=ZXsc, is the fraction of nodes within
protein is similar, but not identical, to the original and canfinite clusters. Thus the size of the infinite clustdre giant
gradually evolve with time due to mutatiofd]. Within a  componentis NG=N[1—g(0)]. Suppose that we are in the
rate equation approagh2,13, we show thatfi) the system nonpercolating phase; this means tigg¢0)=1. In this re-
undergoes an infinite-order percolation transition as a funcgime, the average cluster size equals=>s?cs=g’(0). To
tion of mutation rate, with a rate-dependent power-lawdetermine g’(0), we substitute the expansiom(z)=1
cluster-size distribution everywhere below the thresh@idl, +zg'(0)+--- into Eq. (2) and take thez—0 limit. This
there are giant fluctuations in network structure and no selfyields a quadratic equation fgr (0) with solution
averaging for large duplication rate, afid) the degree dis-

where the sum is over ak;=1,...5,=1 such thats;

tribution has an algebraic tail with a peculiar rate-dependent 1-2B—\1-48
exponent when the duplication and mutation rates have bio- 9'(0)=(s)= Y ©)
logically realistic values. Some aspects of this last result B

were recently seen in Refgl0,11].
In the model, nodes are added sequentially and the new

. 5
. 2 F 1 duplication 1- &
node duplicates a randomly chosen pre-existing “target” i g ._\P
! -

new nowde

node, viz., the new node links to each of the neighbors of the

targel noxde

target with probability - §; each new node also links to any ofr . ed fn o
previous node with probability3/N, whereN is the current e ‘*&rl} ‘,K Oy
total number of nodeg&Fig. 1). Thus an arbitrary number of R =

clusters can merge when a single node is introduced. As we FIG. 1. Growth steps of the protein interaction network: The

now discuss, this unusual dynamics appears to be responsitjg,; node duplicates two out of the three links between the target
for the unconventional percolation properties of this networkode(shadegiand its neighbors. Each successful duplication occurs
in the limit of zero duplication rate but finite mutation rate wijth probability 1— & (solid line9. The new node also attaches to
(6=0, p>0). any other network node with probabili{§/N (dotted lines. Thus

Let C4(N) be the expected number of clusters of size three previously disconnected clusters are joined by the complete
=1. This cluster-size distribution obeys the rate equation event.
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This has a real solution only fgg<1/4, thus identifying the this differential equation asymptotically we obtain the lead-
percolation threshold ag.=1/4. For 8> fB., we express ing behavioru~8/In(—2); this indeed vanishes slower than
g’ (0) in terms of the size of the giant component by settingany power ofz for z— 0. Substituting this form fou(z) in

z=0 in Eq.(2) to give the modified expansion fay(z) and inverting yields
oy & o6l c 8 as s—o (8)
9O=ero) @ s -

When B— 8., we useG—0 to simplify Eq.(4) and find Thus exactly at the transition, the cluster-size distribution
(8)—(1-B 3;8_2=12 On the other hand ' Eq3) shows acquires a logarithmic correction. This result also implies
C C . )

that(s)—4 whenB— B, from below. Thus the average size that the size of the largest component scales sag,

1/2
of thefinite clusters jumps discontinuously from 4 to 12@&s xNAl:ftl)T/t'e\Lthe ercolation transition, bot(0)=1—G and
passes througB.= 3. P :

The cluster-size distributiong exhibits distinct behaviors 9'(0) [Eq. (4)] are finite, so that the expansion igfz) has

below, at, and above the percolation transition. Bet 3., the formg(z)=1-G+g'(0)z+ - -. Substituting this into

the asymptotic behavior af can be read off from the be- IrEeq.u(IZ,';r ci):g (;?]ré (Sigom;ha;:])etrg(;:u”ff:g[?(::'gs/;ggs) 'S
havior of the generating function as—0. If ¢ has the 9 ' 9 9 ges af

: =1/s, . This latter fact implies thatsxe™ ¥+ ass—. The
power-law behavior location of the singularity is determined by the condition
c~Bs " as s—, (59 eP7P=1. This givess, —16/G as B— .. Realistic
protein interaction networks are always above the percola-
then the corresponding generating functg(z) has the fol- tion transition, e.g., for yeast the giant component includes

lowing smallz expansion 54% of all nodes and 68% of the links of the systEsi
, Ly thus a giant component always exists and the cluster-size
9(2)=1+9'(0)z+BI'(2—=7)(=2)" “+---.  (6)  distribution has an exponential tail.

The size of the giant compone@&(B) is obtained by
The regular terms are needed to reproduce the known zeroth, . = .
and first derivatives of the generating function, while theSOIVIng Eq.(2) nearz=0. Alengthy analysi$15] shows that

asymptotic behavior is controlled by the dominant singularnear the percolation threshold

term (—z)7 2. Higher-order regular terms are asymptoti- -

cally irrelevant. Substituting this expansion into Eg) we G(lg)ocexp< — ) , (9)
find that the dominant terms are of the order ef#)™ 3. Vap—1

Balancing all contributions of this order gives

so that all derivatives o66(8) vanish asB— B.. Thus the
2 transition is of infinite order. Similar behavior has been re-

=1+ ——. (7)  cently observed16-18,13 for several growing network
1-Vi-4p models where single nodes and links were introduced inde-

pendently. This generic growth mechanism seems to give
rise to fundamentally new percolation phenomena.
We now examine the complementary limit of no muta-

Intriguingly, a power-law cluster-size distribution with a
nonuniversal exponent arises fall B<pB.. In contrast to

ordinary critical phenomena, the entire range S is criti-  yjons (3=0) and show that individual realizations of the

cal. o _ evolution lead to widely differing results. Consider first the

The power-law tail implies that the size of the largest)init ot geterministic duplication of=0, where all the links
clustersy,, grows as a power law of the system size. Fromqs e qyplicated protein are completed. There is still a sto-
the extreme statistics criterioBs=s NG=1 and the as-  cpagiic element in this growth, as the node to be duplicated is
ymptotics of Eq. (5), we find spuNY0™, or sy, chosen randomly. Whed=0, the rate equation approach
«NY2-VB=F_ |n contrast, for conventional percolation be- [Egs.(14) and (15) below] predicts that the degree distribu-
low threshold, the largest cluster has s&g.<In N, reflect-  tion N, (defined as the number of nodes that are linked to
ing the exponential tail of the cluster-size distributid®].  other nodeksis given byN,=2(1—2/N)k"1,

At the transition, Eq(7) gives 7= 3. However, the naive However, this “solution” does not correspond to the out-
asymptoticscsxs™3 cannot be correct as it implies that come of any single realization of the duplication process. To
g’ (0) diverges. Similarly, we cannot expand the generatingappreciate this, consider the simple and generic initial state
function as in Eq.(6) with 7=3, since the singular term of two nodes that are joined by a single link. We denote this
I'(—1)X(—2) has an infinite prefactor. As in other situa- graph asK,;, following the graph theoretic terminology
tions where the order of a singular term coincides with g19] that K, ,, denotes a complete bipartite graph in which
regular term, we anticipate a logarithmic correction. Thusevery node in the subgraph of simés linked to every node
consider the modified expansiogy(z)=1+4z+2z u(z) in the subgraph of sizen. Duplicating one of the nodes in
+ -+, whereu(z) vanishes slower than any powernfas K, givesK,,, or K, ,, equiprobably. By continuing to du-
z—0. Substituting this into Eq(2), setting 8=8., and plicate nodes, one finds that at every stage the network al-
equating singular terms yields ¢8u)z u’+u?=0. Solving ways remains a complete bipartite graph, $ayn—-k, and
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K. and combining withD(N)=2L(N)/N, we find
== finite, 5>1/2
o }Q\*« T K“"']-m prob. n:-rn
.0 ._\.,\\\\ D(N)= BInN, 6=1/2 (13
Il v ANE [y
(|4 “-.\.. o I\ g | prob. ! consxN1720 §<1/2.
= Bl || ) s e
s \ | Without mutation 3=0) the average node degree always
degree m A ' sites

scales afN'~??, so that a realistic finite average degree is
recoveredonly when §=1/2. Thus mutations play a con-

FIG. 2. Evolution of the complete bipartite grafsl, , after one ~ Structive role, as a finite average degree arises for any dupli-
deterministic duplication event. Only the links emanating from thecation rateé>1/2.

degree n

top nodes of each component are shown. We now consider this case éf>1/2 andB>0 and apply

the rate equation approagh2,13 to study the degree distri-
that every value ok=1, ... N—1 occurs with equal prob- bution N, (N). The degre& of a node increases by one at a
ability (Fig. 2. Thus the degree distribution remains rate A,=(1—6)k+ 3. The first term arises because of the
singular—it is always the sum of two delta functions! contribution from duplication, while mutation leads to the

For fixedN, we average over all realizations of the evo- k-independent contribution. The rate equations for the degree
lution to obtain theaveragedegree distribution distribution are therefore
k-1 ANk A- 1Nk 1= AN
(Nk>—2(1 N—l)' (10 N N +Gy. (14)

Computing (N,) for other generic initial conditions, e.g., The first two terms account for processes in which the node
completem-partite graphs and ring graphs5], we find that  degree increases by one. The source t&describes the
the initial condition dependence persists throughout the evantroduction of a new node df links, with a of these links
lution. More importantly, self-averaging breaks down: differ- created by duplication artu=k— a created by mutation. The
ent realizations of the growth lead to statistically distinguish-probability of the former isS- ,ng(S)(1— 5)25°2, where
able networks. Similar giant fluctuations arise in the gener «=N¢/N is the probability that a node of degreés chosen
case of imperfect duplication whef=0 and6>0 [15]. To  for duplication, while the probability of the latter is
illustrate the origin of these macroscopic fluctuations, con-gba-8/p1. Since duplication and random attachment are in-
sider the network growth in the limif<1. The probability dependent processes, the source term is

that the first few duplication steps are complé&é eligible

links are createdis close to one. For this initial develop- > s B°

ment, the degrees of each node increase and the probability G= > >, ns( )(1— 5ass 2 —e P (15

to create isolated nodes becomes very small as the network at+b=k s=a a b!

grows. On the other hand, if the first duplication event was . ) o
totally incomplete, an isolated node would be created. The From Eq.(14), theNy grows linearly withN. Substituting
creation of isolated nodes necessarily leads to more isolatddk(N) =N ny in the rate equations yields

nodes in subsequent duplication events. Thus the number of

isolated nodes is a non-self-averaging quantity. In a similar 10
fashion, the number of nodes of degrkefor any finite P
k>0 is also non-self-averaging. 102 | T,
Finally, we investigate the evolution of the network when n,
both incomplete duplication and mutation occdi<(1 and %
B>0). Let us first determine the average node degree of the 10
network, D, for such general rates. In each growth step, the
average number of linkis increases by8+ (1— 6)D. There- 10
fore, L=[B+(1—6)D]N. Combining this withD=2L/N
gives[9,10] i
0 10' 10° 10’ 10°
D= 2_’3 (12) k
26-1°

FIG. 3. Degree distributiom, versusk for the protein interac-
. . tion network with6=0.53 andB=0.06. Shown is the distribution
a result that applies only whed> 6.=1/2. Below this for N=1C%, 1¢*, and 16 (bottom to top, with 10¢, 1%, and 20
threshold, the number of links grows as realizations, respectively. A straight lifeotted of the predicted
slope of —2.37 is shown for visual reference. The inset shows the
d_L =B+2(1-9) E (12) degree distribution exponentas a function of§ from the numeri-
dN N’ cal solution of Eq(18).
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B+1 B Gy Notice that the replacement of by (1— 6) n, is valid only

k+ m)nﬁ(k—l*' m)nkﬁm- (16) asymptotically. This explains the slow convergence of the
degree distribution to the predicted power-law fofffig. 3).

Since G, depends omg for all s=k, the above equation is Intriguingly, the exponenty( ) is independent of the muta-
not a recursion. However, for larde we can reduce it to a tion rate 8 [20]. Nevertheless, the presence of mutations
recursion by simple approximations. As- o, the main con-  (8>0) is vital to suppress the non-self-averaging as the net-
tribution to the sum in Eq15) arises wher is small, so that  work evolves and thus make possible a smooth degree dis-
a is close tok, and the summand is sharply peaked aroundribution. If we adopts=0.53, as suggested by observations

s~k/(1-06). This simplifies the sum, as we may replace the[4], we obtain y=2.373 --, compared to the numerical
lower limit by s=k, andns by its value ats=k/(1—6).  simulation result ofy=2.5+0.1[10].

Further, if n, decays ak™”, we write ng=(1-6)"n, and In summary, network growth by duplication and mutation
simplify G to leads to rich behavior with an infinite-order percolation tran-
= g - b sition and no self-averaging in the absence of mutations.

Gy~(1-8)"n.>, ( )(1_ S)kss k> e B Without mutation, different realizations of the network lead
s=k |k 6=0 b! to drastically different outcomes and each outcome is itself
—(1-8)""n,, 17) singular. Mutations are needed to form networks that are

statistically similar to observed protein interaction networks.

since the former binomial sum equals<{1) ~*. Thus mutations seem to play a constructive role in forming
Thus fork—oe, Eq. (16) reduces to a recursion relation, robust networks.

from which we deduce that, has the power-law behavior

~k™7, with y determined from the relation
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