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Infinite-order percolation and giant fluctuations in a protein interaction network
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We investigate a model protein interaction network whose links represent interactions between individual
proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition
to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a
function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural
fluctuations in different realizations. For biologically relevant growth rates, the node degree distribution has an
algebraic tail with a peculiar rate dependence for the associated exponent.
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Interprotein interactions underlie the performance of v
biological functions. Organisms with sequenced genom
such as the yeastS. cerevisiae@1#, provide important test
beds for analyzing protein interaction networks@2#. The
number of interactions per protein ofS. cerevisiaefollows a
power law@3–5#, a feature common to many complex ne
works, such as the Internet, the World Wide Web, and me
bolic networks@6#. Similar behavior is exhibited by protei
interaction networks of various bacteria@7#. Based on the
observational data, simple proteome growth models have
cently been formulated to account for the evolution of t
interaction network@8–11#, where proteins are viewed as th
nodes of a graph and links connect functionally related p
teins.

In this work, we determine the structure of a minim
protein interaction network model that evolves by the b
logically inspired processes of protein duplication and s
sequent mutation. That is, the functionality of a duplica
protein is similar, but not identical, to the original and c
gradually evolve with time due to mutations@4#. Within a
rate equation approach@12,13#, we show that:~i! the system
undergoes an infinite-order percolation transition as a fu
tion of mutation rate, with a rate-dependent power-l
cluster-size distribution everywhere below the threshold,~ii !
there are giant fluctuations in network structure and no s
averaging for large duplication rate, and~iii ! the degree dis-
tribution has an algebraic tail with a peculiar rate-depend
exponent when the duplication and mutation rates have
logically realistic values. Some aspects of this last res
were recently seen in Refs.@10,11#.

In the model, nodes are added sequentially and the
node duplicates a randomly chosen pre-existing ‘‘targ
node, viz., the new node links to each of the neighbors of
target with probability 12d; each new node also links to an
previous node with probabilityb/N, whereN is the current
total number of nodes~Fig. 1!. Thus an arbitrary number o
clusters can merge when a single node is introduced. As
now discuss, this unusual dynamics appears to be respon
for the unconventional percolation properties of this netw
in the limit of zero duplication rate but finite mutation ra
(d50, b.0).

Let Cs(N) be the expected number of clusters of sizes
>1. This cluster-size distribution obeys the rate equation
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where the sum is over alls1>1, . . . ,sn>1 such thats1
1•••1sn115s. The first term on the right-hand side o
Eq. ~1! accounts for the loss ofCs due to the linkage of a
cluster of sizes with the newly introduced node. The gai
term accounts for all merging processes ofn initially sepa-
rated clusters whose total size iss21.

Solving for the first fewCs(N), we see that they are a
proportional toN. Thus writingCs(N)5Ncs , and introduc-
ing the generating functiong(z)5(s>1scse

sz, Eq. ~1! be-
comes

g52bg81~11bg8!ez1b(g21), ~2!

where g85dg/dz. To detect the percolation transition, w
use the fact thatg(0)5(scs is the fraction of nodes within
finite clusters. Thus the size of the infinite cluster~the giant
component! is NG5N@12g(0)#. Suppose that we are in th
nonpercolating phase; this means thatg(0)51. In this re-
gime, the average cluster size equals^s&5(s2cs5g8(0). To
determine g8(0), we substitute the expansiong(z)51
1zg8(0)1••• into Eq. ~2! and take thez→0 limit. This
yields a quadratic equation forg8(0) with solution

g8~0!5^s&5
122b2A124b

2b2
. ~3!

FIG. 1. Growth steps of the protein interaction network: T
new node duplicates two out of the three links between the ta
node~shaded! and its neighbors. Each successful duplication occ
with probability 12d ~solid lines!. The new node also attaches
any other network node with probabilityb/N ~dotted lines!. Thus
three previously disconnected clusters are joined by the comp
event.
©2002 The American Physical Society01-1
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This has a real solution only forb<1/4, thus identifying the
percolation threshold asbc51/4. For b.bc , we express
g8(0) in terms of the size of the giant component by sett
z50 in Eq. ~2! to give

g8~0!5
e2bG1G21

b~12e2bG!
. ~4!

When b→bc , we useG→0 to simplify Eq. ~4! and find
^s&→(12bc)bc

22512. On the other hand, Eq.~3! shows
that ^s&→4 whenb→bc from below. Thus the average siz
of thefinite clusters jumps discontinuously from 4 to 12 asb
passes throughbc5 1

4 .
The cluster-size distributioncs exhibits distinct behaviors

below, at, and above the percolation transition. Forb,bc ,
the asymptotic behavior ofcs can be read off from the be
havior of the generating function asz→0. If cs has the
power-law behavior

cs;B s2t as s→`, ~5!

then the corresponding generating functiong(z) has the fol-
lowing small-z expansion

g~z!511g8~0!z1BG~22t!~2z!t221•••. ~6!

The regular terms are needed to reproduce the known ze
and first derivatives of the generating function, while t
asymptotic behavior is controlled by the dominant singu
term (2z)t22. Higher-order regular terms are asympto
cally irrelevant. Substituting this expansion into Eq.~2! we
find that the dominant terms are of the order of (2z)t23.
Balancing all contributions of this order gives

t511
2

12A124b
. ~7!

Intriguingly, a power-law cluster-size distribution with
nonuniversal exponent arises forall b,bc . In contrast to
ordinary critical phenomena, the entire rangeb,bc is criti-
cal.

The power-law tail implies that the size of the large
clustersmax grows as a power law of the system size. Fro
the extreme statistics criterion(s>smax

N cs51 and the as-

ymptotics of Eq. ~5!, we find smax}N1/(t21), or smax

}N1/22Abc2b. In contrast, for conventional percolation b
low threshold, the largest cluster has sizesmax}ln N, reflect-
ing the exponential tail of the cluster-size distribution@14#.

At the transition, Eq.~7! givest53. However, the naive
asymptoticscs}s23 cannot be correct as it implies tha
g8(0) diverges. Similarly, we cannot expand the generat
function as in Eq.~6! with t53, since the singular term
G(21)3(2z) has an infinite prefactor. As in other situa
tions where the order of a singular term coincides with
regular term, we anticipate a logarithmic correction. Th
consider the modified expansiong(z)5114z1z u(z)
1•••, whereu(z) vanishes slower than any power ofz, as
z→0. Substituting this into Eq.~2!, setting b5bc , and
equating singular terms yields (81u)z u81u250. Solving
05510
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this differential equation asymptotically we obtain the lea
ing behavioru'8/ln(2z); this indeed vanishes slower tha
any power ofz for z→0. Substituting this form foru(z) in
the modified expansion forg(z) and inverting yields

cs;
8

s3~ ln s!2 as s→`. ~8!

Thus exactly at the transition, the cluster-size distribut
acquires a logarithmic correction. This result also impl
that the size of the largest component scales assmax
}N1/2/ ln N.

Above the percolation transition, bothg(0)512G and
g8(0) @Eq. ~4!# are finite, so that the expansion forg(z) has
the form g(z)512G1g8(0)z1•••. Substituting this into
Eq. ~2! one can show that:~i! the full expansion ofg(z) is
regular inz, and ~ii ! the generating function diverges atz*
51/s* . This latter fact implies thatcs}e2s/s

* ass→`. The
location of the singularity is determined by the conditio
ez1b(g21)51. This givess* →16/G as b→bc . Realistic
protein interaction networks are always above the perc
tion transition, e.g., for yeast the giant component includ
54% of all nodes and 68% of the links of the system@3#;
thus a giant component always exists and the cluster-
distribution has an exponential tail.

The size of the giant componentG(b) is obtained by
solving Eq.~2! nearz50. A lengthy analysis@15# shows that
near the percolation threshold

G~b!}expS 2
p

A4b21
D , ~9!

so that all derivatives ofG(b) vanish asb→bc . Thus the
transition is of infinite order. Similar behavior has been
cently observed@16–18,13# for several growing network
models where single nodes and links were introduced in
pendently. This generic growth mechanism seems to g
rise to fundamentally new percolation phenomena.

We now examine the complementary limit of no mut
tions (b50) and show that individual realizations of th
evolution lead to widely differing results. Consider first th
limit of deterministic duplication ofd50, where all the links
of the duplicated protein are completed. There is still a s
chastic element in this growth, as the node to be duplicate
chosen randomly. Whend50, the rate equation approac
@Eqs.~14! and ~15! below# predicts that the degree distribu
tion Nk ~defined as the number of nodes that are linked tk
other nodes! is given byNk52(122/N)k21.

However, this ‘‘solution’’ does not correspond to the ou
come of any single realization of the duplication process.
appreciate this, consider the simple and generic initial s
of two nodes that are joined by a single link. We denote t
graph asK1,1, following the graph theoretic terminolog
@19# that Kn,m denotes a complete bipartite graph in whi
every node in the subgraph of sizen is linked to every node
in the subgraph of sizem. Duplicating one of the nodes in
K1,1 givesK2,1, or K1,2, equiprobably. By continuing to du
plicate nodes, one finds that at every stage the network
ways remains a complete bipartite graph, sayKk,N2k , and
1-2
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that every value ofk51, . . . ,N21 occurs with equal prob
ability ~Fig. 2!. Thus the degree distribution remain
singular—it is always the sum of two delta functions!

For fixedN, we average over all realizations of the ev
lution to obtain theaveragedegree distribution

^Nk&52S 12
k21

N21D . ~10!

Computing ^Nk& for other generic initial conditions, e.g
completem-partite graphs and ring graphs@15#, we find that
the initial condition dependence persists throughout the e
lution. More importantly, self-averaging breaks down: diffe
ent realizations of the growth lead to statistically distinguis
able networks. Similar giant fluctuations arise in the gene
case of imperfect duplication whereb50 andd.0 @15#. To
illustrate the origin of these macroscopic fluctuations, c
sider the network growth in the limitd!1. The probability
that the first few duplication steps are complete~all eligible
links are created! is close to one. For this initial develop
ment, the degrees of each node increase and the proba
to create isolated nodes becomes very small as the net
grows. On the other hand, if the first duplication event w
totally incomplete, an isolated node would be created. T
creation of isolated nodes necessarily leads to more isol
nodes in subsequent duplication events. Thus the numbe
isolated nodes is a non-self-averaging quantity. In a sim
fashion, the number of nodes of degreek for any finite
k.0 is also non-self-averaging.

Finally, we investigate the evolution of the network wh
both incomplete duplication and mutation occur (d,1 and
b.0). Let us first determine the average node degree of
network,D, for such general rates. In each growth step,
average number of linksL increases byb1(12d)D. There-
fore, L5@b1(12d)D#N. Combining this withD52L/N
gives @9,10#

D5
2b

2d21
, ~11!

a result that applies only whend.dc51/2. Below this
threshold, the number of links grows as

dL

dN
5b12~12d!

L

N
, ~12!

FIG. 2. Evolution of the complete bipartite graphKm,n after one
deterministic duplication event. Only the links emanating from
top nodes of each component are shown.
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and combining withD(N)52L(N)/N, we find

D~N!5H finite, d.1/2

b ln N, d51/2

const3N122d, d,1/2.

~13!

Without mutation (b50) the average node degree alwa
scales asN122d, so that a realistic finite average degree
recoveredonly when d51/2. Thus mutations play a con
structive role, as a finite average degree arises for any du
cation rated.1/2.

We now consider this case ofd.1/2 andb.0 and apply
the rate equation approach@12,13# to study the degree distri
bution Nk(N). The degreek of a node increases by one at
rate Ak5(12d)k1b. The first term arises because of th
contribution from duplication, while mutation leads to th
k-independent contribution. The rate equations for the deg
distribution are therefore

dNk

dN
5

Ak21Nk212AkNk

N
1Gk . ~14!

The first two terms account for processes in which the n
degree increases by one. The source termGk describes the
introduction of a new node ofk links, with a of these links
created by duplication andb5k2a created by mutation. The
probability of the former is(s>ans(a

s)(12d)ads2a, where
ns5Ns /N is the probability that a node of degrees is chosen
for duplication, while the probability of the latter i
bbe2b/b!. Since duplication and random attachment are
dependent processes, the source term is

Gk5 (
a1b5k

(
s5a

`

nsS s

aD ~12d!ads2a
bb

b!
e2b. ~15!

From Eq.~14!, theNk grows linearly withN. Substituting
Nk(N)5N nk in the rate equations yields

FIG. 3. Degree distributionnk versusk for the protein interac-
tion network withd50.53 andb50.06. Shown is the distribution
for N5103, 104, and 106 ~bottom to top!, with 104, 103, and 20
realizations, respectively. A straight line~dotted! of the predicted
slope of22.37 is shown for visual reference. The inset shows
degree distribution exponentg as a function ofd from the numeri-
cal solution of Eq.~18!.
1-3



n
he

,
r

the

-
ns
et-
dis-
ns
l

n
n-
ns.
d
elf

are
ks.
ing

-
m,

RAPID COMMUNICATIONS

KIM et al. PHYSICAL REVIEW E 66, 055101~R! ~2002!
S k1
b11

12d Dnk5S k211
b

12d Dnk211
Gk

12d
. ~16!

SinceGk depends onns for all s>k, the above equation is
not a recursion. However, for largek, we can reduce it to a
recursion by simple approximations. Ask→`, the main con-
tribution to the sum in Eq.~15! arises whenb is small, so that
a is close tok, and the summand is sharply peaked arou
s'k/(12d). This simplifies the sum, as we may replace t
lower limit by s5k, and ns by its value ats5k/(12d).
Further, if nk decays ask2g, we write ns5(12d)gnk and
simplify Gk to

Gk'~12d!gnk(
s5k

` S s

kD ~12d!kds2k(
b50

`
bb

b!
e2b

5~12d!g21nk , ~17!

since the former binomial sum equals (12d)21.
Thus fork→`, Eq. ~16! reduces to a recursion relation

from which we deduce thatnk has the power-law behavio
;k2g, with g determined from the relation

g~d!511
1

12d
2~12d!g22. ~18!
in
a,

i,

v

05510
d

Notice that the replacement ofns by (12d)gnk is valid only
asymptotically. This explains the slow convergence of
degree distribution to the predicted power-law form~Fig. 3!.
Intriguingly, the exponentg(d) is independent of the muta
tion rate b @20#. Nevertheless, the presence of mutatio
(b.0) is vital to suppress the non-self-averaging as the n
work evolves and thus make possible a smooth degree
tribution. If we adoptd50.53, as suggested by observatio
@4#, we obtain g52.373•••, compared to the numerica
simulation result ofg52.560.1 @10#.

In summary, network growth by duplication and mutatio
leads to rich behavior with an infinite-order percolation tra
sition and no self-averaging in the absence of mutatio
Without mutation, different realizations of the network lea
to drastically different outcomes and each outcome is its
singular. Mutations are needed to form networks that
statistically similar to observed protein interaction networ
Thus mutations seem to play a constructive role in form
robust networks.
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