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Abstract

The tools of aggregation kinetics are applied to the “popularity” phenomena of single-lane
tra)c clustering, and to the growth of a network that mimics citations of scienti+c publications. In
the latter, the network is built by introducing papers (new nodes) one at a time, with preferential
linking to more popular previously existing nodes. From the rate equations, the distribution of
node degree, as well as various global properties, can be determined easily. A simple extension of
the model appears to describe the degree distributions of the world-wide web. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In aggregation, clusters Ai of mass i evolve according to

Ai + Aj
K(i; j)→ Ai+j ; (1)

where K(i; j) is the rate at which clusters of mass i and mass j form a cluster of
mass k = i + j. Assuming spatial homogeneity, the system is characterized by the
concentrations ck(t) of aggregates of mass k at time t. Under the law of mass action,
these concentrations evolve according to the rate equations

dck

dt
=

1
2

∑
i+j=k

Kijcicj − ck

∞∑
j=1

Kkjcj : (2)

The +rst term on the right accounts for processes that increase ck(t), while the
second term accounts for loss processes.
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Due to its fundamental appeal, as well as its broad range of applications [1], there
has been intense eDort to solve the rate equations for physically relevant reaction rates
(see e.g. [2]). Generally, the nature of these solutions depends on: (i) the homogeneity
index 
 of the reaction rate; this is de+ned by K(ai; aj) ∼ a
K(i; j), and (ii) a secondary
index �, de+ned by K(1; j) ∼ j�, that characterizes the relative importance of large–
large and large–small interactions. In many such situations the cluster size distribution
exhibits scaling, that is

ck(t) ∼ s(t)−2f(k=s(t)) (3)

with typical size s(t) ∼ t1=(1−
) for 
 ¡ 1. Further, the scaled size distribution is a
power law, when 
 ¿ �, and is a localized peak, for 
 ¡ � [3].

We now investigate two measures of popularity: tra)c clustering and the growth of
citation-driven networks. The basic message is that the tools of aggregation kinetics
are both convenient and powerful in determining the time evolution of these systems.

2. Tra�c clustering on suicide alley

Consider tra)c on a single-lane road with no passing. Each vehicle has an intrinsic
speed that is drawn from a distribution P0(v). When a faster vehicle overtakes a slower
one, the former then moves at the speed of the latter (Fig. 1). The inspiration for this
model comes from an infamous 13-mile stretch of Massachusetts highway on Cape
Cod known as “suicide alley”. Here, two lanes in both directions each are constricted
to a single lane, along which no passing is allowed.

As anyone who drives on this type of road has experienced, homogeneous tra)c
entering such a constriction becomes strongly clustered upon reaching the far end. We
can +nd the typical cluster size n(v) and speed v(t) at time t by a simple dimensional
argument [4]. Since the typical distance ‘ between clusters varies as ‘ ∼ vt, the
typical number of cars in a cluster is proportional to this distance, yielding n ∼ ‘ ∼ vt.

bus

n

l

space

time

t=0
BMW

Fig. 1. Space–time evolution of single-lane tra)c with no passing. When a slow cluster is overtaken, the
combined cluster moves with the speed of the slow cluster.
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To +nd the typical speed, we relate the cluster size to its speed. The probability of
+nding a fast car (with speed ¿ v) is Q+(v) =

∫∞
v P0(v′) dv′, while Q− = 1 − Q+ is

the complementary slow car probability. Then the typical size of a cluster of speed
v may be obtained from n(v) =

∑∞
1 kQ−Qk

+ = Q+=Q− ∼ v−(1+�), under the general
assumption that P0(v) ∼ v� as v → 0. Here, the speed of the slowest car has been
subtracted oD so that the speed distribution extends to v=0. Combining n(v) ∼ v−(1+�)

with n ∼ vt gives [4]

n ∼ t(�+1)=(�+2); v ∼ t−1=(�+2) : (4)

Thus, a car that enters suicide alley slows down considerably and typically becomes
part of a large cluster by the far end.

3. Structure of growing networks

We now investigate a growing network, introduced in Ref. [5], that was inspired
by modeling the distribution of scienti+c citations. The model, however, has wider
applications, with the world-wide web [6,7] as one notable example. A characteristic
feature of these systems is that the node degree distribution Nk(t)—the average number
of nodes with k links—is a power law [5,12] (some of the results in Ref. [12] were
also obtained in Ref. [13]). We can account for this behavior by the rate equation
approach.

Some citation data motivates our discussion. From ISI data of 783,339 papers (with
6,716,198 citations) published in 1981 and cited between 1981 and June 1997 [9], 64
papers are cited ¿ 1000 times, 282 papers are cited ¿ 500 times, and 2103 papers
are cited ¿ 200 times. Conversely, 633,391 articles are cited 6 10 times and 368,110
are uncited! More relevant for this presentation is that the citation distribution itself
appears to be a power law with exponent −3 (Fig. 2) [10]; however, Ref. [11] suggests
a stretched exponential form.

A crude but eDective model [5] for this citation dynamics is illustrated in Fig. 3.
Nodes are introduced one at a time and each links to one earlier node. In terms of
citations, nodes are publications, and a link from one paper to an earlier one is a
citation. The key ingredient that determines the network structure is the attachment
kernel Ak , namely, the probability that a new node links to an existing node with k
links. While much attention has been focused on the linear attachment kernel Ak = k,
the rate equation approach easily gives the solution for general attachment kernels.

3.1. The degree distribution

The rate equations for the degree distribution Nk(t) are [12]

dNk

dt
= [Ak−1Nk−1 − AkNk ]=A + �k1 : (5)

The +rst term on the right accounts for processes in which a node with k − 1 links
is connected to the new node, thus increasing Nk by one. This happens with prob-
ability Ak−1=A, where A(t) =

∑
j¿1 AjNj(t) is the appropriate normalization factor.
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Fig. 2. ISI citation distribution data for the number of papers N (x) with x citations on a double logarithmic
scale. The straight line has slope −3.
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Fig. 3. Growing network. Nodes are added sequentially and a single link joins a new node to an earlier
node. Node 1 has degree 5, node 2 has degree 3, nodes 4 and 6 have degree 2, and the remaining nodes
have degree 1. Node 1 is the “ancestor” of 6, while 10 is the “descendant” of 6.

A corresponding role is played by the second (loss) term on the right-hand side. The
last term accounts for the introduction of new nodes with no incoming links.

It is easy to verify that the moments of the degree distribution, Mn(t)=
∑

j¿1 j nNj(t),
increase linearly with time for 06 n6 1. In fact, M0(t) is the total number of nodes
and it grows as M0(t) = M0(0) + t. Similarly, the +rst moment gives the number of
link endpoints which grows as M1(t) = M1(0) + 2t. The +rst two moments are thus
independent of the attachment kernel.

For kernels of the form Ak = k� with 06 �6 1, both the degree distribution and
A(t) grow linearly with time. By substituting Nk(t) = t nk and A(t) = �t into Eq. (5),
we obtain the recursion relation nk = nk−1Ak−1=(� + Ak) and n1 = �=(� + A1). These
yield the formal expression

nk =
�
Ak

k∏
j=1

(
1 +

�
Aj

)−1

: (6)
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To complete the solution, we need the amplitude � which can be found numerically
by combining the de+nition � =

∑
j¿1 Ajnj and Eq. (6). The +nal asymptotic result is

[12,13]

nk ∼




k−� exp[ − �( k1−�−21−�

1−� )]; 06 � ¡ 1;{
k−3; Ak = k;

k−�; � ¿ 2; Ak ∼ k;
� = 1;

best seller; 1 ¡ � ¡ 2;

bible; 2 ¡ �:

(7)

The degree distribution decays exponentially for � = 0, while for 0 ¡ � ¡ 1, this dis-
tribution exhibits a robust stretched exponential decay. For the strictly linear kernel
Ak = k, the solution to Eq. (5) is nk = 4=[k(k + 1)(k + 2)]. For asymptotically linear
attachment kernels Ak ∼ k, the situation is more delicate, as the exponent of the degree
distribution is non-universal and depends on microscopic details of Ak . From Eq. (6),
we +nd nk ∼ k−�, where the exponent �=1+� can be tuned to any value larger than
2 [12,14].

For super-linear kernels, one node links to almost every other node. For � ¿ 2, all
but a +nite number of nodes are linked to a “bible” that has the rest of the links.
For 1 ¡ � ¡ 2, the number of nodes with a small number of links grows slower than
linearly in time while a “best seller” has the rest of the links. There is also an accom-
panying in+nite sequence of transitions as � ranges between 1 and 2. Generally for
(m + 1)=m ¡ � ¡ m=(m − 1), the number of nodes with ¿ m links is +nite, while
Nk ∼ tk−(k−1)� for k6m.

3.2. Node degree correlations

An important advantage of the rate equation approach is that we can obtain properties
beyond the single-particle degree distribution with minimal additional eDort. One such
property is the correlation between degrees of connected nodes [14]. These develop
naturally because a node with large degree is likely to be old. Thus, its ancestor is
also old and hence also has a large degree. De+ne Ckl(t) as the number of nodes of
degree k that attach to an ancestor node of degree l. For example, in the network of
Fig. 3, there are N1 = 6 nodes of degree 1, with C12 = C13 = C15 = 2. There are also
N2 = 2 nodes of degree 2, with C25 = 2, and N3 = 1 nodes of degree 3, with C35 = 1.

For the linear attachment kernel, the degree correlation Ckl(t) evolves according to
the rate equation

M1
dCkl

dt
= [(k − 1)Ck−1; l − kCkl]

+ [(l − 1)Ck; l−1 − lCkl] + (l − 1)Cl−1 �k1 : (8)

The +rst two terms on the right account for the change in Ckl due to the addition of a
link onto a node of degree k − 1 (gain) or k (loss), respectively, while the second set
of terms gives the change in Ckl due to the addition of a link onto the ancestor node.
Finally, the last term accounts for the gain in C1l due to the addition of the new node.
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Fig. 4. In-component and out-component of node x.

Once again Ckl → tckl; this reduces Eq. (8) to time-independent recursion relations,
whose solution in the scaling regime k → ∞ and l → ∞ is [14]

ckl →
{

16 (l=k5) when l�k ;

4=(k2 l2) when l�k :
(9)

The basic feature is that the degree correlation does not factorize; that is, ckl �= nknl =
(k l)−3.

3.3. Global properties

In the context of citations, several global properties are of interest. One is obtained by
taking the reference list of this paper, plus the reference lists of all these cited papers,
etc. In a growing network, this citation ancestry is the out-component with respect to
a given node x—the set of nodes that can be reached by following directed links that
emanate from x (Fig. 4). In a similar vein, we could track all publications that cite
this work, plus all papers that cite these daughter papers, etc. This progeny comprises
the in-component to node x—the set from which x can be reached by following a path
of directed links on the network.

The rate equations for these two components can be written and solved in much the
same spirit as the degree correlation [14]. From these, the number of in-components
with s nodes at time t, Is(t), has the generic asymptotic behavior

Is(t) = t=[s(s + 1)] : (10)

The salient feature is that there is a robust s−2 tail, independent of the form of the
attachment kernel. The result agrees with measurements of the web [7].

The complementary out-component from each node is related to an underlying net-
work “genealogy” A genealogical tree may be built by taking generation g = 0 to
contain the initial node. Nodes that attach to those in generation g form generation
g + 1. For example, the network of Fig. 3 has +ve nodes in generation g = 1 and four
in g = 2, leading to the genealogical tree of Fig. 5.

By construction, the number Os of out-components with s nodes equals Ls−1, the
number of nodes in generation s − 1 in the genealogical tree. We may compute Lg(t)
by noting that Lg(t) increases when a new node attaches to a node in generation g−1.
For the uniform attachment kernel, this occurs with rate Lg−1=M0, where M0(t) = 1 + t
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Fig. 5. Genealogy of the network in Fig. 3. The indices indicate when a node is introduced, while the
ancestor determines the generation number of the new node.
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Fig. 6. A node with in-degree i = 4, out-degree j = 5, and total degree 9.

is the number of nodes. This gives a simple diDerential equation for Lg(t) with solution
Lg($)= $g=g!, where $=ln(1+ t). Thus at +xed (large) time, the generation size grows
with g when g ¡ $, and then decreases. The number Os of out-components with s
nodes simply equals

Os($) = $s−1=(s − 1)! (11)

As a useful corollary, since the genealogical tree contains approximately e$ generations
at time t, the network diameter D ≈ 2e$ ≈ 2e ln N , where N is the number of nodes.

3.4. Joint in- and out-degree distribution

In the world-wide web, link directionality is relevant and the node degree should
be resolved into the in-degree—the number of incoming links to a node, and the
complementary out-degree (Fig. 6). Measurements on the web indicate that these two
distributions are power laws with diDerent exponents [8]. We now determine these
distributions by the rate equation approach.

To generate a non-trivial, out-degree distribution and distinct in- and out-degree
distributions spontaneously, we consider the following generalized network (the earliest
network model of the type was proposed in Ref. [16]) [17] where growth occurs by
two processes (Fig. 7):

(i) With probability p, a new node is introduced and attaches to an earlier node. The
attachment probability depends only on the in-degree of the target.

(ii) With probability q = 1−p, a new link is created between already existing nodes.
The choices of the originating and target nodes depend on the out-degree of the
originating node and the in-degree of the target.

The average node degree can be determined simply. Let N (t) be the total number of
nodes, and let I(t) and J (t) be the total in- and out-degree, respectively. According to
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(ii)(i)

Fig. 7. The growth processes of: (i) node creation (shaded) plus attachment, and (ii) link creation (dashed).

the elemental growth processes, these degrees evolve according to one of the following
at each step:

(N; I; J ) →
{

(N + 1; I + 1; J + 1) with probability p ;

(N; I + 1; J + 1) with probability q ;
(12)

so that N (t) = pt, and I(t) = J (t) = t. Thus the average in- and out-degrees, Din ≡
I(t)=N (t) and Dout ≡ J (t)=N (t), are both equal to 1=p.

For the joint degree distribution, we need: (i) the attachment rate A(i; j)—the prob-
ability that a new node links to an existing node with i incoming and j outgoing links,
and (ii) the creation rate C(i1; j1|i2; j2)—the probability of adding a new link from an
(i1; j1) to an (i2; j2) node. Interesting behavior arises for linear–bilinear rates Ai = i+
,
and C(j; i) = (i + 
)(j + �), with 
 ¿ 0 and � ¿− 1. The latter conditions ensure that
the rates are positive for all attainable in- and out-degree values, i¿ 0 and j¿ 1.

The joint degree distribution, Nij(t), de+ned as the average number of nodes with i
incoming and j outgoing links, obeys the rate equation

dNij

dt
= (p + q)

[
(i − 1 + 
)Ni−1; j − (i + 
)Nij

I + 
N

]

+ q
[
(j − 1 + �)Ni;j−1 − (j + �)Nij

J + �N

]
+ p�i0�j1 : (13)

The +rst group of terms on the right accounts for the changes in the in-degree of target
nodes by simultaneous creation of a new node and link (probability p) or by creation
of a new link only (probability q). For example, the creation of a link to a node
with in-degree i leads to a loss in the number of such nodes. This occurs with rate
(p+q)(i+
)Nij, divided by the appropriate normalization factor

∑
i; j (i+
)Nij=I+
N .

Similarly, the terms in the second group of terms account for out-degree changes.
These occur due to the creation of new links between already existing nodes—hence
the prefactor q. The last term accounts for the introduction of new nodes with no
incoming links and one outgoing link. This rate equation conserves the total number of
nodes, N =

∑
i; j Nij, while the total in- and out-degrees, I =

∑
i; j iNij and J =

∑
i; j jNij,

obey İ = J̇ = 1.
Because the Nij grow linearly with time, we use Nij(t) = t nij, as well as N = pt

and I = J = t, in Eq. (13) to yield algebraic recursion relations for nij. The asymptotic
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behavior of the in- and out-degree distributions, Ii and Oj, respectively, are found to
be the distinct power laws [15],

Ii ∼ i−�in ; �in = 2 + p
 ; (14)

Oj ∼ j−�out ; �out = 1 + q−1 + �pq−1 (15)

with �in and �out necessarily ¿ 2. These can be tuned to the observed values for the
web, �in ≈ 2:1, �out ≈ 2:7 [8], by using the fact that p is +xed by the constraint that
p−1 =Din =Dout ≈ 7:5, and then choosing 
 = 0:75 and � = 3:55. The fact that these
adjustable parameters are of order 1 indicates that the linear–bilinear rate is a viable
working hypothesis.

4. Summary

In this presentation, I have tried to highlight how the rate equations of aggregation
give a powerful and appealing way to obtain many geometrical properties of growing
networks. For the degree distribution, we +nd a stretched exponential, power law, or
a “winner take all” situation, depending on whether the exponent in the attachment
rate Ak ∼ k� is � ¡ 1; =1 or ¿ 1. More general properties can be obtained by natural
extensions of the basic approach. There are many other applications of the rate equation
approach to growing network phenomena that can be envisioned.

Acknowledgements

It is a pleasure to thank Eli Ben-Naim, Paul Krapivsky, Francois Leyvraz, and GeoD
Rodgers for the pleasant collaborations that led to the work reported here. I am also
grateful to NSF Grants INT9600232 and DMR9978902 for +nancial support.

References

[1] S.K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York, 1977.;
F. Family, D.P. Landau (Eds.), Kinetics of Aggregation and Gelation, North-Holland, Amsterdam, 1984.

[2] R.L. Drake, in: G.M. Hidy, J.R. Brock (Eds.), Topics in Current Aerosol Research, Vol. III, Part 2,
Pergamon, Oxford, UK, 1972, p. 201;
M.H. Ernst, in: E.G.D. Cohen (Ed.), Fundamental Problems in Statistical Physics VI, Elsevier,
New York, 1985.

[3] P.G.J. van Dongen, M.H. Ernst, Phys. Rev. Lett. 54 (1985) 1396.
[4] E. Ben-Naim, P.L. Krapivsky, S. Redner, Phys. Rev. E 50 (1994) 822.
[5] A.L. BarabSasi, R. Albert, Science 286 (1999) 509.
[6] B.A. Huberman, P.L.T. Pirolli, J.E. Pitkow, R. Lukose, Science 280 (1998) 95;

B.A. Huberman, L.A. Adamic, Nature 401 (1999) 131.
[7] G. Caldarelli, R. Marchetti, L. Pietronero, Europhys. Lett. 52 (2000) 386.
[8] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, in: Proceedings of the International

Conference on Combinatorics and Computing, Lecture Notes in Computer Science, Vol. 1627, Springer,
Berlin, 1999;



S. Redner / Physica A 306 (2002) 402–411 411

M. Faloutsos, P. Faloutsos, C. Faloutsos, Comp. Commun. Rev. 29 (4) (1999) 251;
A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener,
Comput. Networks 33 (2000) 309.

[9] Science Citation Index Journal Citation Reports, Institute for Scienti+c Information, Philadelphia,
Web site: http://www.isinet.com/welcome.html.

[10] S. Redner, Eur. Phys. J. B 4 (1998) 131.
[11] J. Laherrere, D. Sornette, Eur. Phys. J. B 2 (1998) 525.
[12] P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85 (2000) 4629.
[13] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85 (2000) 4633.
[14] P.L. Krapivsky, S. Redner, Phys. Rev. E 63 (2001) 066123.
[15] P.L. Krapivsky, G.J. Rodgers, S. Redner, Phys. Rev. Lett. 86 (2001) 5401.
[16] H.A. Simon, Biometrica 42 (1955) 425, to describe word frequency.
[17] R. Albert, A.-L. BarabSasi, Phys. Rev. Lett. 85 (2000) 5234;

S.N. Dorogovtsev, J.F.F. Mendes, Europhys. Lett. 52 (2000) 33.

http://www.isinet.com/welcome.html

	Aggregation kinetics of popularity
	Introduction
	Traffic clustering on suicide alley
	Structure of growing networks
	The degree distribution
	Node degree correlations
	Global properties
	Joint in- and out-degree distribution

	Summary
	Acknowledgements
	References


