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Abstract. We study first-passage properties for a particle that diffuses either
inside or outside of generalized paraboloids, defined by y = a(x2

1 + · · ·+ x2
d−1)

p/2

where p > 1, with absorbing boundaries. When the particle is inside the
paraboloid, the survival probability S(t) generically decays as a stretched
exponential, ln S ∼ −t(p−1)/(p+1), independent of the spatial dimension. For a
particle outside the paraboloid, the dimensionality governs the asymptotic decay,
while the exponent p specifying the paraboloid is irrelevant. In two and three
dimensions, S ∼ t−1/4 and S ∼ (ln t)−1, respectively, while in higher dimensions
the particle survives with a finite probability. We also investigate the situation
where the interior of a paraboloid is uniformly filled with non-interacting diffusing
particles and estimate the distance between the closest surviving particle and the
apex of the paraboloid.

Keywords: diffusion

ArXiv ePrint: 1009.2530

c©2010 IOP Publishing Ltd and SISSA 1742-5468/10/P11028+14$30.00

mailto:paulk@bu.edu
mailto:redner@buphy.bu.edu
http://stacks.iop.org/JSTAT/2010/P11028
http://dx.doi.org/10.1088/1742-5468/2010/11/P11028
http://arxiv.org/abs/1009.2530


J.S
tat.M

ech.
(2010)

P
11028

First passage in infinite paraboloidal domains

Contents

1. Introduction 2

2. First passage for diffusion inside a paraboloid 3

3. First passage for diffusion outside a paraboloid 6

4. First-passage time 8

5. The closest particle 9
5.1. Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1.1. Wedge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.2. A circular cone in d dimensions. . . . . . . . . . . . . . . . . . . . . 10

5.2. Paraboloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.1. Particles inside the paraboloid. . . . . . . . . . . . . . . . . . . . . 12
5.2.2. Particles outside the paraboloid. . . . . . . . . . . . . . . . . . . . . 12

6. Discussion 13

Acknowledgments 14

References 14

1. Introduction

Random walks and diffusion are used to model numerous phenomena in physics, chemistry,
and biology [1]–[4]. In many applications, a diffusing particle is confined to a certain
domain and is absorbed if it hits the boundary of this domain. A basic problem
is determining the survival probability of the particle [5]. For finite domains, the
survival probability decays exponentially with time, while richer behaviors may occur for
unbounded domains. Among the possibilities for such infinite domains, cones have been
predominantly studied in the physics [6]–[12] and mathematics [13]–[20] literature, because
of their simplicity and also because of their applications to the survival probabilities of
three or more mutually annihilating random walkers in one dimension [6]–[10], [12].

While the understanding of diffusion inside cones of arbitrary shape is still incomplete,
the first-passage behavior of a diffusing particle inside a circular cone in any dimension is
well understood. It is known that the survival probability decays algebraically with time,
and a good lower bound for the survival exponent is also known [11]. In contrast, little is
known about the behavior of the survival probability in non-conical but still symmetric
infinite domains. An appealing example of this latter class of systems is that of a diffusing
particle inside a paraboloid (figure 1). In the case of a two-dimensional parabola, it
was recently found that the survival probability decays as a stretched exponential in
time [21, 22]. Moreover the exact amplitude in the exponent of this stretched exponential
decay was obtained exactly [22].

In this work, we present a simple extreme statistics argument (sometimes called a
Lifshitz tail argument) that allows one to ‘understand’ this behavior for the survival
probability inside paraboloids. Our goal is to quantify first-passage phenomena for a
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Figure 1. A diffusing particle inside a paraboloid of revolution. The particle
starts along the symmetry axis and is absorbed when it hits the paraboloidal
surface.

diffusing particle that is initially inside or initially outside a paraboloid. In addition,
we determine the temporal behavior of the closest surviving particle to the paraboloid
apex when its interior or exterior is uniformly filled with non-interacting particles that
are absorbed upon hitting the surface of the paraboloid.

The rest of this article is organized as follows. In section 2, we outline an extreme
statistics argument for determining the survival probability of a diffusing particle inside
a parabola and extend it to other infinite domains with convex boundaries. For domains
that asymptotically cover an infinitesimal fraction of space, e.g., for paraboloids, the
survival probability generically exhibits stretched exponential behavior. If the particle
starts outside a paraboloid (section 3), it will survive with a finite probability when the
spatial dimensionality is d ≥ 4, while in three dimensions the survival probability decays
as (ln t)−1. We treat this latter problem using parabolic coordinates and a quasi-static
approach.

In section 4 we compute the average time for a diffusing particle to hit the paraboloid
when it starts inside. (For the particle outside a paraboloid the average hitting time is
infinite.) In section 5, we examine a related problem in which a paraboloidal domain is
initially uniformly filled with non-interacting diffusing particles that are absorbed by the
boundary. Here we study the time dependence of the distance � between the apex and
the particle closest to the apex. We show that this distance is universal and scales as
t1/2 when the interior of the paraboloid is filled by particles; if the particles are outside a
three-dimensional paraboloid, then � ∼ (ln t)1/3.

2. First passage for diffusion inside a paraboloid

We start by considering a diffusing particle that starts at some point3 inside the two-
dimensional parabola

y = ax2. (1)

We seek the survival probability S(t) for this particle having not yet hit the boundary of
the parabola up to time t. This survival probability was shown to asymptotically decay
as a stretched exponential in time [21]:

S ∼ exp[−A t1/3], (2)

3 The precise location of the starting point does not affect the most interesting asymptotic behaviors.
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Figure 2. The survival probability for a diffusing particle inside the parabola is
approximated as the probability of remaining in the shaded rectangle and exiting
along the dashed line.

with specified upper and lower bounds for the amplitude A. This asymptotic form (2)
was recently proved and the amplitude A was determined explicitly [22] (see below).

Let us try to understand the asymptotic (2) heuristically. To this end we construct
an extreme statistics argument akin to that popularized in the physics literature through
its application to the random trapping problem [23, 24] (see [25, 26] for reviews). We make
the assertion that the asymptotic survival probability is controlled by the probability that
the particle wanders within the shaded rectangle of figure 2 and eventually exits this
rectangle only along the dashed boundary. The probability for the particle to remain
inside the interval (−x, x) scales as

exp

[
−π2 Dt

(2x)2

]
.

Similarly, the probability for a particle to have longitudinal coordinate ≥y, with y � √
t,

is governed by the factor

exp

[
− y2

4Dt

]
.

For a particle with longitudinal coordinate ≥ y, it will survive if its transverse coordinate
satisfies |x| < √

y/a. Combining the two factors written above and writing x =
√
y/a,

we may write the survival probability as

S �
∫ ∞

0

dy exp

[
− y2

4Dt
− π2 aDt

4y

]
. (3)

This expression represents an (asymptotic) upper bound to the true survival probability
because the particle may remain inside the rectangle but still leave the parabola.

We now estimate the integral by the Laplace method by finding the maximum of the
integrand. This maximum occurs at y = y∗ which is determined from the condition

2
y∗

4Dt
= π2 aDt

4y2∗
.
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Therefore

S � exp

[
−3

4

(
aπ2

2

)2/3

(Dt)1/3

]
. (4)

This expression has the correct dependence on t, D, a, but the numerical prefactor is
incorrect. According to [22], the amplitude is Aexact = 3

8
π2 when a = 1, D = 1

2
, while (4)

gives A = 3
8
π4/3. Since A < Aexact, this argument gives an upper bound for the survival

probability, consistent with the approximation underlying our argument.
It is straightforward to extend the reasoning above to non-quadratic parabolas that

are defined by y = a|x|p, with p > 1. The counterpart to (3) is now

S ∼
∫

dy exp

[
− y2

4Dt
− π2Dt

4

(
a

y

)2/p
]
,

from which we obtain

S ∼ exp

[
−p+ 1

4

(
π2a2/p

p

)p/(p+1)

(Dt)(p−1)/(p+1)

]
. (5)

The extreme statistics approach also works for other infinite convex domains. For
example, if

y = Le(|x|/�)b

, (6)

then the counterpart of equation (3) is

S ∼
∫

dy exp

[
− y2

4Dt
− π2Dt

4�2

(
ln
y

L

)−2/b
]
,

from which we obtain

S ∼ exp

[
−π

2Dt

4�2

(
ln
Dt

L�

)−2/b
]
.

A natural extension is to higher dimensions. For example, for the non-quadratic
paraboloid in d dimensions defined by

y = aRp, R =
√
x2

1 + · · ·+ x2
d−1, p > 1, (7)

we now obtain

S ∼
∫ ∞

0

dy exp

[
− y2

4Dt
− j2

δDt

R2

]
. (8)

Here jδ is the first positive zero of the Bessel function Jδ, with δ = (d− 3)/(2). This
numerical factor arises from the long-time solution to the diffusion equation inside a
(d − 1)-dimensional sphere of radius a with absorbing boundaries. Finally, we substitute
R = (y/a)1/p into the above estimate and compute the dominant contribution to the
integral by the Laplace method to obtain

S ∼ exp

[
−p+ 1

4

(
4j2

δ a
2/p

p

)p/(p+1)

(Dt)(p−1)/(p+1)

]
. (9)

Once again, the heuristic extreme statistics argument reproduces the correct value of the
exponent σ = (p− 1)/(p+ 1) in the stretched exponential [21, 22], but not the correct
amplitude.
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3. First passage for diffusion outside a paraboloid

Let us now study the complementary situation where a diffusing particle starts outside
a paraboloid. This problem is reminiscent of diffusion in (almost) free space except
for the presence of an excluded half-line. This analogy suggests that there should be
a fundamental difference between two dimensions and higher. In two dimensions, the
survival probability of a diffusing particle in the presence of a semi-infinite absorbing line
decays as t−1/4 [11, 27]. The same time dependence applies for a diffusing particle exterior
to a parabola because the width of the parabola is asymptotically negligible in comparison
with the longitudinal coordinate. On the other hand, when d ≥ 4, a diffusing particle
survives with positive probability in the presence of an excluded semi-infinite ray that has
a non-zero width. The same behavior should also occur when the excluded region is a
paraboloid.

The most interesting behavior occurs in three dimensions. We shall see that
the survival probability of a diffusing particle in the exterior of the three-dimensional
paraboloid decays as

S ∼ [ln(a2Dt)]−1, (10)

Similarly, for generalized three-dimensional paraboloids defined by equation (7), the
survival probability has essentially the same form:

S ∼ [ln(a2/(p−1)Dt)]−1. (11)

To establish (10) and (11), we recall that the survival probability satisfies the diffusion
equation [5]

∂S

∂t
= D∇2S, S|boundary = 0, S|t=0 = 1.

To treat this boundary-value problem we employ the powerful yet simple quasi-static
approximation [28]–[31]. The quasi-static method is based on dropping the time derivative

in the diffusion equation and solving the resulting Laplace equation for distances ≤√
Dt

from the paraboloid and then matching this density to its unperturbed value when the
distance equals

√
Dt. This approach is especially useful for simple geometries, such as

planar or cylindrical absorbing boundaries.
In the case of the paraboloid, the quasi-static approach requires a bit more effort,

as the boundary is not elementary. However, the boundary simplifies in parabolic
coordinates, and the convenience of a simple boundary condition offsets the complication
of dealing with the Laplace equation in parabolic coordinates. The parabolic coordinates
(ξ, η, φ) are related to the Cartesian coordinates through

x1 =
√
ξη cosφ, x2 =

√
ξη sin φ, y = 1

2
(ξ − η). (12)

with ξ ≥ 0, η ≥ 0 and 0 ≤ φ ≤ 2π. Here the families of surfaces ξ = const and η = const
are confocal paraboloids whose common focus is the origin.

In parabolic coordinates, the Laplacian is

∇2 =
4

ξ + η

[
∂

∂ξ

(
ξ
∂

∂ξ

)
+

∂

∂η

(
η
∂

∂η

)]
+

1

ξη

∂2

∂φ2
,
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and we wish to solve the Laplace equation ∇2S = 0 in this coordinate system. The
solution has axial symmetry S = S(ξ, η). On defining the paraboloid in the form ξ = ξ0,
the boundary condition S(ξ0, η) = 0 suggests seeking a solution as a function of ξ alone,
S = S(ξ). For this choice the Laplace equation ∇2S = 0 reduces to

d

dξ

(
ξ

dS

dξ

)
= 0,

whose solution is S = C ln(ξ/ξ0). Matching this solution to the initial density at ξ ∼ √
Dt

fixes the constant, and the full solution is

S =
ln(ξ/ξ0)

ln(
√
Dt/ξ0)

. (13)

(As in other applications of the quasi-static approach, the ‘constant’ C is actually time
dependent.) If the diffusing particle starts not far from the apex of the parabola, ξ ∼ ξ0,
the survival probability (13) becomes S ∼ [ln(Dt/ξ2

0)]
−1, thereby establishing (10).

Alternatively, equation (10) may be inferred from the well-known survival probability
of a diffusing particle exterior to an absorbing circle in two dimensions [3, 5]. As long
as the diffusing particle remains in the half-space y > 0, the absorbing boundary is a
circle that represents the two-dimensional projection of the absorbing parabola. The
radius of the circle is not fixed, but rather varies in time as R ∼ √

y ∼ t1/4. However,
this slower than diffusive variation in the radius does not affect the asymptotics of the
survival probability. This same approach applies to the non-quadratic parabola y = aRp.
The a2/(p−1) dependence in equation (11) is already mandated by dimensional analysis.
In this way we also establish equation (11).

When d > 3, we use the d-dimensional generalization of parabolic coordinates
(ξ, η, φ1, . . . , φd−2) in which the angular coordinates (φ1, . . . , φd−2) are the same as those
for spherical coordinates in d− 1 spatial dimensions. For example, in four dimensions

(x1, x2, x3) =
√
ξη (cosφ1, sinφ1 cosφ2, sinφ1 sinφ2), y = 1

2
(ξ − η).

where again ξ ≥ 0, η ≥ 0 and the angular coordinates vary in the ranges 0 ≤ φ1 ≤ π and
0 ≤ φ2 ≤ 2π.

The Laplacian in d-dimensional parabolic coordinates is

∇2 =
4

ξ + η

[
1

ξδ

∂

∂ξ

(
ξ1+δ ∂

∂ξ

)
+

1

ηδ

∂

∂η

(
η1+δ ∂

∂η

)]
+

L
ξη
,

where L is the angular part of the Laplacian in d− 1 spatial dimensions and we again use
the notation δ = (d− 3)/2. Since the problem is axisymmetric, the solution is independent
of the angular coordinates and additionally the survival probability depends only on ξ.
In this case, the Laplace equation ∇2S = 0 reduces to

d

dξ

(
ξ1+δ dS

dξ

)
= 0,

whose solution is

S = 1 −
(
ξ0
ξ

)δ

. (14)

Therefore instead of decaying to zero, the survival probability remains finite.

doi:10.1088/1742-5468/2010/11/P11028 7
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Summarizing, we have

S ∼

⎧⎪⎨
⎪⎩
t−1/4 d = 2,

(ln t)−1 d = 3,

finite d ≥ 4.

(15)

The qualitative behavior (15) clearly continues to hold for the generalized paraboloids (7).

4. First-passage time

For a finite domain, and for various infinite domains such as paraboloids, a diffusing
particle is certain to reach the boundary, and its average hitting time is finite. For a
diffusing particle inside such a domain, the hitting time t = t(x, y) is a random variable;
here (x, y) denotes the starting position of the particle. The hitting time T (x, y) = 〈t(x, y)〉
averaged over all trajectories that start from (x, y) satisfies the Poisson equation [5, 26]

D∇2T = −1, T |boundary = 0. (16)

Let us first determine the exit time for a diffusing particle inside the parabola y = ax2.
Setting a = 1 we must solve D∇2T = −1 subject to the boundary condition T = 0
when y = x2. It is natural to choose C(y − x2) as a trial solution, as this function
automatically obeys the adsorbing boundary condition and is positive (when C > 0)
inside the parabola. Substituting this trial function into (16) we find that it represents a
solution when C = (2D)−1. Therefore

DT = 1
2
(y − x2). (17)

This Laplacian formalism can be straightforwardly extended to determine the higher
moments of the hitting time. For example, to determine the second moment T2 = 〈t(x, y)2〉
we must solve the boundary-value problem [5]

D∇2T2 = −2T ; T2 = 0 when y = x2 (18)

The form of the solution (17) for the first moment suggests trying a polynomial solution
that is divisible by y − x2. By trial and error, we find that the appropriate form of T2 is

T2 = A(y − x2)2 +By(y − x2) + C(y − x2).

Substituting this ansatz into (18) fixes the constants A,B,C and we obtain

DT2 = 1
12

(y − x2)2 + 1
3
y(y − x2) + 5

12
(y − x2). (19)

As might be expected, the second moment of the hitting time scales as the square of the
first moment.

For the d-dimensional paraboloid defined by the equation y = R2 ≡ x2
1 + · · · + x2

d−1,
the corresponding results for the average hitting time and the second moment are

T =
y − R2

2(d− 1)D
,

T2 =
y −R2

D(d2 − 1)

[(
3

4
+

1

d

)
y − 1

4
R2 +

3d+ 4

2d2

]
.

(20)
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Figure 3. Definition of the closest distances � and b for an initially constant
density of diffusing particles inside an absorbing parabola.

5. The closest particle

Suppose that an infinite absorbing paraboloidal domain initially contains a constant
density ρ of non-interacting diffusing particles. As the particles diffuse, the density near
the boundary of the paraboloid is depleted. For particles that have not yet been absorbed,
a natural way to characterize their spatial distribution is by the distance between the
paraboloid and the closest particle. For the paraboloidal geometry, there are two natural
(and distinct) definitions of the closest particle (figure 3):

• the particle closest to the apex of the paraboloid, with corresponding distance �;

• far from the apex, the particle closest to the side of the paraboloid (distance b in
figure 3), which is a natural measure of the depletion of the density.

To provide a context for these quantities, let us recall basic features of the
corresponding problem for the simplest geometry of a constant density of diffusing
particles, with an absorbing spherical trap of finite radius a at the origin. For this system,
the distance � to the closest diffusing particle has the following time dependences [30, 32]:

� ∼

⎧⎪⎨
⎪⎩

(Dt/ρ2)1/4 d = 1,√
ln(Dt/a2)/(2πρ) d = 2,

const. d > 2.

(21)

Strikingly, the interaction between diffusion and absorption leads to a new length scale �
that has a non-trivial time dependence and different behaviors as a function of the spatial
dimension. Here we compute the corresponding properties for diffusing particles inside a
paraboloidal absorbing boundary.

5.1. Cones

For circular cones, the asymptotics of the density distribution are known, so the closest
particle problem admits an analytical solution.

doi:10.1088/1742-5468/2010/11/P11028 9
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5.1.1. Wedge. In two dimensions, the circular cone reduces to the wedge. Let α be the
angle between the axis of the wedge and its surface. Part of the reason for first studying
this system is that the limits of a narrow and a wide wedge provide the asymptotics for
the distance between the closest particle and the apex of the parabola, when the particle
is inside or outside the parabola.

Asymptotically, the density of surviving particles is given by [11, 33]

ρ

(
r2

Dt

)β

ψ(θ), (22)

where (r, θ) are polar coordinates with the origin at the apex and with θ = 0 corresponding
to the symmetry axis of the wedge. The angular dependence of the density is ψ(θ) =
cos(πθ/2α) and the survival probability decays as S ∼ t−β , with exponent β = π/4α.

To estimate the distance � from the apex of the wedge to the closest surviving particle
we use the extreme statistics criterion [26]∫ �

0

r dr

∫ α

−α

dθ ρ

(
r2

Dt

)β

ψ(θ) ∼ 1. (23)

Namely, there should be a single particle inside a pie-shaped sector of length � whose
center is at the wedge apex. Computing the integral we obtain

� ∼ (Dt)π/(2π+8α) ρ−2α/(π+4α). (24)

Some interesting special cases are

� ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Dt)1/2 α ↓ 0,

(Dt)1/4 ρ−1/4 α = π/4,

(Dt)1/6 ρ−1/3 α = π/2,

(Dt)1/10 ρ−2/5 α = π.

(25)

As the wedge becomes more open, it presents less of a ‘hazard’ to diffusing particles near
the apex. Thus the time dependence of � becomes progressively weaker as α→ π.

5.1.2. A circular cone in d dimensions. For the d-dimensional circular cone, the density
is still given by equation (22), but the angular part of the density is now an associated
Legendre function (see, e.g., [11]). The criterion (23) generalizes to∫ �

0

rd−1 dr

∫ α

0

(sin θ)d−2 dθ ρ

(
r2

Dt

)β

ψ(θ) ∼ 1, (26)

from which we obtain

� ∼ (Dt)β/(2β+d) ρ−(1/(2β+d)). (27)

Here, the exponent β and the opening angle of the cone α are related by [11]

P δ
2β+δ(cosα) = 0 d odd, Qδ

2β+δ(cosα) = 0 d even. (28)

where P δ
2β+δ(μ) and Qδ

2β+δ(μ) are the associated Legendre functions of degree 2β + δ and
order δ. Thus in general dimensions, the exponent β is the root of a transcendental

doi:10.1088/1742-5468/2010/11/P11028 10
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equation (28) that involves the associated Legendre functions. We must choose the
smallest such root to ensure ψ(θ) > 0 for all θ < α.

In addition to two dimensions (the wedge), simple results arise in four dimensions
where

ψ4(θ) =
sin [(2β + 1)θ]

sin θ
,

and the boundary condition ψ(α) = 0 gives [11]

β4(α) =
π − α

2α
. (29)

In four dimensions, equation (27) thus reduces to

� ∼ (Dt)(π−α)/(2π+6α) ρ−α/(π+3α). (30)

Some interesting special cases are

� ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Dt)1/2 α ↓ 0,

(Dt)3/14 ρ−1/7 α = π/4,

(Dt)1/10 ρ−1/5 α = π/2,

ρ−1/4 α = π.

(31)

For general spatial dimension, the corresponding results are

� ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Dt)1/2 α ↓ 0,

(Dt/ρ)1/(2+d) α = cos−1(1/
√
d),

(Dt/ρ2)1/(2+2d) α = π/2,

ρ−1/d α = π (d ≥ 3).

(32)

Each of these cases has an interesting interpretation. For a very narrow cone (α ↓ 0), the
distance to the closest particle grows diffusively, as t1/2. However, density dependence
(equations (27) and (30)) leads to a divergent prefactor as α ↓ 0. The case α =

cos−1(1/
√
d) corresponds to the survival exponent β = 1 [11], that separates the regimes

where the average survival time is either finite (for α < cos−1(1/
√
d)) or divergent. The

case α = π/2 corresponds to an absorbing plane, and the behavior of � can be simply
inferred from the criterion that there should be a single particle within a hemispherical
domain of radius � about a point on the boundary. Since the density profile is a linear
function of distance to the boundary, this calculation is trivial. Finally, when the cone
becomes the half-line (α = π), there is a non-zero survival probability and the distance
between the closest particle and the apex merely reduces to the average distance between
particles.

5.2. Paraboloids

Let us now analyze the distance between the closest surviving diffusing particle and the
origin of a d-dimensional paraboloid.
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5.2.1. Particles inside the paraboloid. Using the results for the circular cones, and taking
the α → 0 limit, gives the universal growth law

� ∼
√
Dt. (33)

This prediction is valid in arbitrary dimension for all paraboloids, both quadratic and
higher order, as in (7).

5.2.2. Particles outside the paraboloid. For the complementary situation where particles are
uniformly distributed outside an absorbing paraboloid, it is natural to adopt the results
for the circular cones in the α → π limit. This gives

� ∼
{

(Dt)1/10 ρ−2/5 d = 2,

ρ−1/d d ≥ 3.
(34)

In two dimensions, � slowly increases with time, a result that continues to hold even
for generalized parabolas (7). In three dimensions, however, the behavior is more subtle
because of the ultra-slow logarithmic decay of the survival probability with time (see
equations (10) and (11)). To investigate this case, we use the quasi-static result (13) for
the density,

ρ
ln(ξ/ξ0)

ln(
√
Dt/ξ0)

,

and estimate the closest particle distance � from the extreme statistics criterion∫ �

ξ0

dξ

∫ �

0

dη

∫ 2π

0

dφ
ξ + η

4
ρ

ln(ξ/ξ0)

ln(
√
Dt/ξ0)

∼ 1,

where 1
4
(ξ + η) dξ dη dφ is the volume element in parabolic coordinates. Computing the

integral we find

ρ�3 ln(�/ξ0)

ln τ
∼ 1, τ =

Dt

ξ2
0

.

Hence the leading asymptotic is

� ∼
[

ρ−1 ln τ

ln(ρ−1ξ−3
0 ln τ)

]1/3

. (35)

When d ≥ 4, the density remains finite and essentially uniform, as particle depletion
occurs only over distances of the order of ξ0 (see equation (14)). Thus if the initial density
is low, ρξd

0 
 1, the distance between the closest particle and the apex remains of the
order of ρ−1/d, in agreement with the naive prediction of equation (34). Summarizing,

� ∼

⎧⎪⎨
⎪⎩

(Dt)1/10 ρ−2/5 d = 2,

(ln τ)1/3 [ρ ln(ρ−1ξ−3
0 ln τ)]−1/3 d = 3,

ρ−1/d d ≥ 4.

(36)

As indicated by figure 3, there are two natural measures of the closest distance, both of
which are needed to characterize the outer envelope of the spatial distribution of surviving
particles. Very far away from the apex of the absorbing paraboloid, namely, for distances
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much greater than �, the paraboloid is locally planar. In this limit, the distance to the
closest particle, defined as b in figure 3, is given by the third line of equation (32). Thus
for the specific case of the parabola (d = 2), we have

� ∼ (Dt/ρ4)1/10, b ∼ (Dt/ρ2)1/6.

These two distances help characterize the spatial distribution of surviving particles
without requiring the full solution of the diffusion equation.

6. Discussion

The first-passage properties of a diffusing particle inside an absorbing paraboloid represent
a natural and phenomenologically rich extension to the first-passage properties inside an
absorbing cone. For the conical system, the survival probability S(t) generally decays
as a non-universal power law in time and a basic question, now largely settled [11], has
been that of how to compute the exponent of this power law as a function of the cone
angle and spatial dimension. An intuitive way to understand why there should be a
non-universal power-law decay is to decompose the diffusive motion longitudinally and
transversely. Longitudinally, a diffusing particle wanders a distance y ∼ √

t in a time
t. At this elevation, the transverse distance to the boundaries is x = y cotα which is
also growing as

√
t. This physical picture of diffusion inside an absorbing interval whose

length grows as
√
t leads to a survival probability that has a non-universal power-law time

dependence [9].
For the paraboloid defined by y = aRp, where R is the transverse radius

(equation (7)), the same decomposition of the motion into longitudinal and transverse
components shows that the range of the transverse interval now grows more slowly than√
t. The feature leads to a decay of the survival probability that is more rapid than power-

law as a function of time. Making use of this decomposition, we constructed an extreme
statistics argument that predicted lnS ∼ −t(p−1)/(p+1). The exponent value agrees with
rigorous bounds and calculations [21, 22]; we explained how to deduce this result with
little effort.

We also studied the mean time to trapping inside the paraboloid y = aR2. This mean
time and all higher moments are finite, in distinction to the corresponding behavior inside
an absorbing cone. As is naturally expected, the trapping time for a diffusing particle
that starts at a given point inside the paraboloid increases as the square of the distance
to the closest point on the paraboloidal surface. There are two natural extensions of this
computation that have not yet been done: calculating the mean time to trapping inside
non-quadratic paraboloids and determining the full distribution of trapping times. To the
best of our knowledge this distribution has not been computed even for circular cones.

Finally, we investigated the time dependence of the distance � between the apex of
an absorbing cone and the closest particle for an initially uniform particle distribution.
We found that � increases as a power law in time, with an exponent that depends on the
wedge opening angle. The increase in this minimum distance becomes extremely slow as
the wedge opens up into an excluded half-line in two dimensions. In contrast, in three
dimensions, the closest distance to an excluded half-line increases only logarithmically with
time. These latter behaviors were exploited to determine the closest distance between the
apex of an absorbing paraboloid and surviving diffusing particles.
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[19] Bañuelos R and DeBlassie R D, 2006 Stoch. Proc. Appl. 116 36
[20] Varopoulos N Th, 1999 Math. Proc. Camb. Phil. Soc. 125 335

Varopoulos N Th, 1999 Math. Proc. Camb. Phil. Soc. 129 301
[21] Bañuelos R, DeBlassie R D and Smiths R G, 2001 Ann. Probab. 29 882
[22] Lifshits M and Shi Z, 2002 Bernoulli 8 745
[23] Balagurov B Ya and Vaks V G, 1974 Sov. Phys. JETP 38 968
[24] Grassberger P and Procaccia I, 1982 J. Chem. Phys. 77 6281
[25] Lifshits M, Gredeskul S A and Pastur L A, 1988 Introduction to the Theory of Disordered Systems

(New York: Wiley)
[26] Krapivsky P L, Redner S and Ben-Naim E, 2010 A Kinetic View of Statistical Physics (Cambridge:

Cambridge University Press)
[27] Considine D and Redner S, 1989 J. Phys. A: Math. Gen. 22 1621
[28] Crank J, 1987 Free and Moving Boundary Problems (New York: Oxford University Press)
[29] Reiss H, Patel J R and Jackson K A, 1977 J. Appl. Phys. 48 5274
[30] Redner S and ben-Avraham D, 1990 J. Phys. A: Math. Gen. 23 L1169
[31] Krapivsky P L, 1993 Phys. Rev. E 47 1199
[32] Weiss G H, Havlin S and Kopelman R, 1989 Phys. Rev. A 39 466

ben-Avraham D and Weiss G H, 1989 Phys. Rev. A 39 6436
[33] Carslaw H S and Jaeger J C, 1959 Conduction of Heat in Solids (Oxford: Oxford University Press)

doi:10.1088/1742-5468/2010/11/P11028 14

http://dx.doi.org/10.1007/BF01009436
http://dx.doi.org/10.1103/PhysRevB.29.239
http://dx.doi.org/10.1063/1.454174
http://dx.doi.org/10.1007/BF01011551
http://dx.doi.org/10.1088/0305-4470/29/17/011
http://dx.doi.org/10.1119/1.19115
http://dx.doi.org/10.1088/0305-4470/36/7/301
http://dx.doi.org/10.1088/0305-4470/36/3/302
http://arxiv.org/abs/1009.0238
http://arxiv.org/abs/1009.0239
http://dx.doi.org/10.1007/BF01845637
http://dx.doi.org/10.1007/BF00319106
http://dx.doi.org/10.1007/s004400050111
http://dx.doi.org/10.1016/S0246-0203(99)80010-7
http://dx.doi.org/10.1016/j.spa.2005.07.003
http://dx.doi.org/10.1017/S0305004198002771
http://dx.doi.org/10.1017/S0305004100004503
http://dx.doi.org/10.1214/aop/1008956696
http://dx.doi.org/10.1063/1.443832
http://dx.doi.org/10.1088/0305-4470/22/10/017
http://dx.doi.org/10.1063/1.323557
http://dx.doi.org/10.1088/0305-4470/23/22/003
http://dx.doi.org/10.1103/PhysRevE.47.1199
http://dx.doi.org/10.1103/PhysRevA.39.466
http://dx.doi.org/10.1103/PhysRevA.39.6436
http://dx.doi.org/10.1088/1742-5468/2010/11/P11028

	1. Introduction
	2. First passage for diffusion inside a paraboloid
	3. First passage for diffusion outside a paraboloid
	4. First-passage time
	5. The closest particle
	5.1. Cones
	5.1.1. Wedge.
	5.1.2. A circular cone in d  dimensions.

	5.2. Paraboloids
	5.2.1. Particles inside the paraboloid.
	5.2.2. Particles outside the paraboloid.


	6. Discussion
	Acknowledgments
	References

