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Abstract
We study opinion formation in a population of leftists, centrists and rightist. In
an interaction between neighbouring agents, a centrist and a leftist can become
both centrists or leftists (and similarly for a centrist and a rightist), while leftists
and rightists do not affect each other. The evolution is controlled by the initial
density of centrists ρ0. For any spatial dimension the system reaches a centrist
consensus with probability ρ0, while with probability 1 − ρ0 the final state is
either an extremist consensus, or a frozen population of leftists and rightists. In
one dimension, we determine the opinion evolution by mapping the system onto
a spin-1 Ising model with zero-temperature Glauber kinetics. The approach to
the final state is governed by a t−ψ long-time tail, with ψ → 2ρ0/π as ρ0 → 0.
In the one-dimensional frozen state, the length distribution of single-opinion
domains has an algebraic small-size tail x−2(1−ψ) and the average domain length
is L2ψ , where L is the length of the system.

PACS numbers: 64.60.My, 05.40.−a, 05.50.+q, 75.40.Gb

One of the basic issues in opinion dynamics is to understand the conditions under which
consensus or diversity is reached from an initial population of individuals (agents) with
different opinions. Models for such evolution are typically based on each agent freely
adopting a new state in response to the opinions in a local neighbourhood [1]. The attribute
of incompatibility—in which agents with sufficiently disparate opinions do not interact—
has recently been found to prevent ultimate consensus from being reached [2, 3]. Related
phenomenology arises in the Axelrod model [4, 5], a simple model that accounts for the
formation and evolution of cultural domains. The goal of the present letter is to investigate
the role of the incompatibility constraint on opinion formation within a minimal model for
which quantitative results can be obtained. We find that the incompatibility restriction has a
profound effect on the dynamics and on the nature of the final state.

0305-4470/03/030061+08$30.00 © 2003 IOP Publishing Ltd Printed in the UK L61

http://stacks.iop.org/ja/36/L61


L62 Letter to the Editor

Figure 1. Typical frozen final state in our opinion dynamics model on a 100 × 100 square lattice
for ρ0 = 0.1. The two extreme opinions are represented by black and white squares.

We consider a ternary system in which each agent can adopt the opinions of leftist, centrist
and rightist. The agents populate a lattice and in a single microscopic event an agent adopts the
opinion of a randomly-chosen neighbour, but with the crucial proviso that leftists and rightists
are considered to be so incompatible that they do not interact. Note that while a leftist cannot
directly become a rightist (and vice versa) in a single step, the evolution leftist ⇒ centrist ⇒
rightist is possible. Our model is similar to the classical voter model [6] and also turns out
to be isomorphic to the two-trait two-state Axelrod model [4, 5]. Due to the incompatibility
constraint in our model, the final opinion outcome can be either consensus or a frozen mixture
of extremists with no centrists. Figure 1 shows a typical frozen state on the square lattice (with
periodic boundary conditions). Note the existence of nested enclaves of opposite opinions and
the clearly visible clustering.

We can exploit the connection between the voter model and our opinion dynamics model
to infer the final state of the latter for any spatial dimension. If we temporarily disregard the
difference between leftists and rightists, the resulting binary system of centrists and extremists
reduces to the voter model for which one of the two absorbing states of all centrists or all
extremists is eventually reached. In the context of the ternary opinion system, the latter case
can mean either a consensus of extremists or a frozen mixed state of leftists and rightists as
depicted in figure 1.

Because of the underlying voter model dynamics, the average density of each species is
globally conserved in any spatial dimension. That is, 〈ρi(t)〉 = ρi(t = 0), where i refers to
one of the states (+, 0,−) and the angle brackets denote an average over all realizations of
the dynamics and over all initial states that are compatible with the specified density. Thus
with probability P0 = ρ0 the final state consists of all centrists, while with probability 1 − ρ0

the final state consists of no centrists. In the latter case, there can be either a consensus of
+ (this occurs with probability P+), consensus of − (probability P−), or a frozen mixed state
(probability P+−). Figure 2 shows these final-state probabilities as a function of the initial
densities. Because of the conservation of the global density in the model, this behaviour is
valid for any spatial dimension. In principle, the final-state probabilities could depend on the
system size, but this dependence turns out to be extremely weak.

To understand the approach to the final state, we now focus on the case of one dimension.
Here our opinion dynamics model is equivalent to a constrained spin-1 Ising chain that is
endowed with single-spin flip zero-temperature Glauber kinetics [7], with leftist, centrist and
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Figure 2. Probability for the occurrence of a given final state as a function of ρ0 for ρ+ = ρ−.
Here P+ is the probability that + consensus is reached and P+− is the probability that the final state
is a frozen mixture of + and −.
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Figure 3. Space–time representation of the domain wall dynamics. Time runs vertically downward.
The spin state of the domains and the identity of each domain wall are indicated.

rightist opinions equivalent to the spin states −, 0 and +. The incompatibility constraint is
simply that neighbouring + and − spins do not interact.

This Ising model picture suggests that the best way to analyse the dynamics in one
dimension is to reformulate the system in terms of domain walls. There are three types of
domain walls: freely diffusing mobile domain walls between +0 and −0, denoted by M+ and
M−, respectively, and stationary domain walls S between +−. The mobile walls evolve by

M± + M± → ∅ M± + M∓ → S. (1)

When a mobile wall hits a stationary wall, the former changes its sign while the latter is
eliminated via the reaction

M± + S → M∓. (2)

Thus stationary domain walls are dynamically invisible; their only effect is that the sign of
a mobile wall changes whenever it meets a stationary wall, after which the latter disappears
(figure 3). The inertness of the stationary walls is reminiscent of kinetic constraints in models
of glassy relaxation. These constraints typically lead to extremely slow kinetics [8–11]; this
feature also occurs in our opinion dynamics model.
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The rate equations corresponding to the processes in equations (1) and (2) are

Ṁ = −2M2 Ṡ = −MS + M2. (3)

These give the asymptotic behaviours M ∼ (2t)−1 and S ∝ t−1/2. Thus in the mean-field
limit, stationary domain walls decay much slower than mobile walls. This distinction between
stationary and mobile domain walls turns out to be even more pronounced in one dimension.

An important subtlety in the arrangement of domain walls is that an arbitrary initial opinion
state necessarily leads to an even number of mobile walls between each pair of stationary walls.
It is also easy to verify that domain wall sequences of the form . . .M+M−M+ . . . cannot arise
from an underlying opinion state. These topological constraints play a crucial role in the
kinetics.

The exact density of mobile walls can be obtained by mapping the constrained spin-1
system onto a spin-1/2 system; this is equivalent to the voter model. In this mapping,
we consider both + and − spins as comprising the same (non-zero) spin state, while the
zero spins comprise the other state. With this identification, the reduced model is just the
spin-1/2 ferromagnetic Ising chain with zero-temperature Glauber dynamics and no kinetic
constraint. In the reduced model, domain walls M+ and M− are indistinguishable. These
mobile walls undergo diffusion and annihilate upon colliding. Then the density of mobile
walls M(t) = M+(t)+M−(t) is known exactly for arbitrary initial conditions from the original
Glauber solution [7]. For initially uncorrelated opinions and if the magnetization of the spin-
1/2 system—here the difference between the density of non-zero and zero spins—equals m0,
then [12]

M(t) = 1 − m2
0

2
e−2t [I0(2t) + I1(2t)] (4)

where Ik is the modified Bessel function of index k.
In our original spin-1 system, m0 = ρ+ + ρ− − ρ0, or m0 = 1 − 2ρ0 due to normalization.

If the initial densities of + and − opinions are equal, then M+(t) = M−(t) and the densities of
mobile domain walls are

M±(t) = ρ0(1 − ρ0) e−2t [I0(2t) + I1(2t)]

∼ ρ0(1 − ρ0)(πt)−1/2. (5)

As expected, the mobile wall density decays asymptotically as t−1/2 because of the underlying
diffusive dynamics. However, we find that the density of stationary domain walls S(t) decays
algebraically,

S(t) ∝ t−ψ(ρ0) (6)

with a non-universal exponent that goes to zero as ρ0 → 0 (figure 4).
To help understand the mechanism for the extremely slow decay of the stationary domain

wall density, we also simulated a test system with spatially uncorrelated domain walls. While
such a domain wall state cannot arise from any initial set of opinions, we can prepare directly an
uncorrelated arrangement of domain walls with prescribed densities. For any initial condition
in this test system, the stationary wall density decays as t−3/8 (inset to figure 4), consistent
with known results on persistence [13–15]. Here persistence refers to the probability that
a given lattice site is not hit by any diffusing domain wall. For the kinetic spin-1/2 Ising
model, this persistence probability decays as t−θ , with θ = 3/8 [16], independent of the
initial domain wall density, when the walls are initially uncorrelated. Thus the topological
constraints imposed on the domain wall arrangement by the initial opinion state appear to
control the dynamics.
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Figure 4. Density of stationary domain walls versus time on a double logarithmic scale for the
initial conditions ρ0 = 0.02, 0.04, 0.10, 0.20 and 0.40 (top to bottom). The respective exponent
estimates are 0.013, 0.026, 0.065, 0.13 and 0.20. Data are based on 100 realizations of a chain
with 5 × 105 sites. Inset: stationary domain wall density for initially uncorrelated walls for the
same number of data. Shown are the cases ρ0 = 0.02, 0.10 and 0.40 (top to bottom). The solid
line has slope −3/8.

These topological constraints lead to a strong initial-condition dependence of the
amplitude in the mobile wall density (equation (5)). This dependence arises because of
the pairing of mobile domain walls in the initial state when ρ0 is small. For ρ0 → 0, each
pair becomes independent and their survival probability is proportional to their initial (unit)
separation [17]. In contrast, the amplitude is independent of ρ0 for randomly distributed
walls. We now exploit this observation to estimate the density of stationary walls as ρ0 → 0.
In this limit, the system initially consists of long strings of stationary domain walls that are
interspersed by a pair of mobile domain walls. According to equation (5), the asymptotic
density of mobile domain walls is M ∼ 2ρ0/

√
πt . Within a rate-equation approximation, the

density of stationary domain walls decays according to

Ṡ = −kMS. (7)

While such a rate equation is generally inapplicable in low spatial dimension, we can adapt it
to one dimension by employing an effective time-dependent reaction rate k ∼ √

2/πt [14, 17].
This is just the time-dependent flux to an absorbing point due to a uniform initial background of
diffusing particles; such a rate phenomenologically accounts for effects of spatial fluctuations
in one dimension. Substituting the asymptotic expression for M(t) from equation (4) and the
reaction rate k ∼ √

2/πt into this rate equation, we obtain the striking result that the density of
stationary walls decays as t−ψ with ψ(ρ0) = √

8ρ0/π as ρ0 → 0. This qualitative argument
shows how the amplitude in the density of mobile domain walls ultimately causes the slow
decay in the stationary wall density.

A more compelling way to determine ψ(ρ0) is through a relation with persistence in
the q-state Potts model. Because the initial magnetization in the reduced spin-1/2 system is
m0 = 1 − 2ρ0, it has been argued (see [18]) that this system should be identified with the
q-state Potts model with m0 = 2/q − 1, or q = (1 − ρ0)

−1. Using the exact persistence
exponent for the q-state Potts model with Glauber kinetics [16], and identifying ψ with this
persistence exponent, we obtain
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Figure 5. Comparison of the exponent ψ from equation (8) and from the simulation data of figure 4
(circles).

ψ(ρ0) = −1

8
+

2

π2

[
cos−1

(
1 − 2ρ0√

2

)]2

(8)

with the limiting behaviour ψ(ρ0) → 2ρ0/π as ρ0 → 0. This asymptotics agrees with
our numerical results for ρ0 � 0.4 (figure 5), but then deviates for larger ρ0, where ψ(ρ0)

must monotonically approach 1/2 as ρ0 → 1. It should be noted that in this identification
with persistence, we have ignored the creation of new stationary interfaces due to the
meeting of mobile domain walls M+ and M−. This creation process occurs with a rate
(−dS/dt)gain ∝ t−3/2. For ψ < 1/2, this creation term is subdominant and can be ignored
[19].

An important characteristic of the system is the spatial arrangement of domain walls.
From our simulations, the mean distances between nearest-neighbour MM and MS pairs
both appear to increase as t1/2 due to the diffusive motion of mobile domain walls. The
distributions of these two distances both obey scaling, with scaling function of the form
z e−z2

, where z = x(t)/〈x(t)〉 is the scaled distance. In contrast, the distances between
neighbouring stationary walls xS appear to be characterized by two length scales. There are
large gaps of length of the order of t1/2 that are cleared out by mobile domain walls before
they annihilate, but there are also many very short distances remaining from the initial state
(figure 3). The corresponding moments

〈
xk

S(t)
〉1/k

reflect this multiplicity of scales, with〈
xk

S(t)
〉1/k

approaching a t1/2 growth law as k → ∞, and growing extremely slowly in time
for k → 0.

Finally, we can quantify the frozen final state by the magnetization distribution P(m),
namely, the density difference between + and − spins. This distribution becomes broader as
ρ0 increases (figure 6), reflecting the fact that there is progressively more evolution before the
system ultimately freezes. For small ρ0, P (m) has a m−2 tail. To explain this result, consider
the evolution of a single pair of mobile walls. This pair annihilates at time t with probability
density �(t) ∝ t−3/2. The total magnetization of the resulting frozen state scales as t1/2 since
the domain wall pair annihilates at a distance x ∝ t1/2 from its starting point. Then from
P(m) dm = �(t) dt , together with �(t) ∝ t−3/2 and m ∝ ρ0t

1/2, we obtain P(m) ∝ ρ0m
−2.

While this argument has been formulated in one dimension, we expect the result to apply in
all spatial dimensions because the final state probabilities are dimension independent.
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Figure 6. Magnetization distribution P (m), with m = ρ+ − ρ−, in the frozen final state for the
cases ρ0 = 0.02 (105 realizations), 0.04, 0.1 and 0.2 (104 realizations) on a 5000 site linear chain.
Inset: P (m) for ρ0 = 0.02 on a double logarithmic scale to illustrate the m−2 tail. The straight
line has slope −2.
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Figure 7. Domain length distribution F(x) in the frozen final state for the same parameters and
number of realizations as in figure 6. The data have been binned over a small logarithmic range to
reduce fluctuations. Tabulated are the slopes from each data set and the expected value 2(1 − ψ)

(parentheses) from our simulation result for ψ .

The frozen state is reached when t = Tf ∝ L2; this is the time needed for mobile walls to
diffuse throughout the system and thus be eliminated. At this time, the density of stationary
walls is of the order of S ∝ T

−ψ

f ∝ L−2ψ . Thus the average length of single-opinion domains
is 〈x〉 ∝ L2ψ . Numerically, we find that the domain length distribution has a power-law tail,
F(x) ∝ x−µ, with 1 < µ < 2 also dependent on ρ0. The lower bound ensures normalizability
while the upper bound implies that 〈x〉 diverges as L → ∞. From the above power-law
form, 〈x〉 = ∫

dxxF(x) ∝ L2−µ. This matches our previous estimate of 〈x〉 ∼ L2ψ when
µ = 2(1 − ψ). Figure 7 shows the length distribution of single-opinion domains in the
frozen state. Direct estimates of the exponent µ from this plot are in good agreement with the
exponent relation µ = 2(1 − ψ), with ψ obtained from the time dependence of the mobile
wall density in figure 4.
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In summary, the constraint that extremists with opposite opinions cannot influence each
other leads to an extremely slow opinion dynamics and a rich behaviour for the selection of the
final state. In one dimension, the density of stationary interfaces between neighbouring + and
− spins decays as t−ψ , with ψ(ρ0) ∼ 2ρ0/π as ρ0 → 0. This slow dynamics is a consequence
of the subtle topological constraints on the arrangement of domain walls, together with the
incompatibility constraint that neighbouring + and − spins do not interact. In the mean-field
limit, the densities of mobile and stationary domains decay as t−1 and t−1/2, respectively. We
expect that these predictions should also apply in two dimensions.

The composition of the final state also has a non-trivial dependence on the initial densities
of the leftist, rightist and centrist opinion states. With probability ρ0 the final population
consists of only centrists, while with probability 1 − ρ0 the final population does not contain
any centrists. In this latter case, there can be either a consensus of extremists or the final state
can consist of a frozen mixture of extremist enclaves. If there is a bias in the initial state, that
is, ρ+/ρ− > 1, then it becomes more likely that consensus of + will be achieved. However,
there is still a substantial probability that the system still ends up as a frozen mixture of
+ and −. Finally, a frozen mixture final state would not exist if there is a non-zero rate
(however small) for opposite extremists to influence each other directly. Perhaps this lack
of direct influence can account for the sad phenomenon of the proximity of incompatible
populations in too many locations around the world.
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