
PHYSICAL REVIEW E, VOLUME 64, 041906
Steady state of an inhibitory neural network

P. L. Krapivsky and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, MA, 02215

~Received 29 May 2001; published 20 September 2001!

We investigate the dynamics of a neural network where each neuron evolves according to the combined
effects of deterministic integrate-and-fire dynamics and purely inhibitory coupling withK randomly chosen
‘‘neighbors.’’ The inhibition reduces the voltage of a given neuron by an amountD when one of its neighbors
fires. The interplay between the integration and inhibition leads to a steady state that is determined by solving
the rate equations for the neuronal voltage distribution. We also study the evolution of a single neuron and find
that the mean lifetime between firing events equals 11KD and that the probability that a neuron has not yet
fired decays exponentially with time.
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I. INTRODUCTION

Networks of neurons that undergo ‘‘spiky’’ dynamic
have been thoroughly investigated~see, e.g.,@1,2# and refer-
ences therein!. Nevertheless, a theory that describes the
namics of randomly interconnected excitatory and inhibito
spiking neurons is still lacking. Even a system compos
exclusively of inhibitory neurons@3–7# appears too compli-
cated for analytical approaches. Part of the reason for th
that the dynamics of a single neuron involves many phy
ological features across a wide range of time scales tha
difficult to incorporate into an analytical theory. Our goal
this work is to describe some of the dynamical features o
purely inhibitory neural network within the framework of
minimalist model. While we sacrifice realism by this a
proach, our model is analytically tractable. This feature
fers the possibility that more realistic networks may
treated by natural extensions of our general framework.

We specifically investigate an integrate-and-fire neu
network, in which the integration step is purely linear
time, and in which there exists only inhibitory and instan
neous coupling between interacting neurons. We thus ign
potentially important features such as voltage leakage du
the integration, as well as heterogeneity in the external d
and in the network couplings. However, we donot assume
all-to-all coupling, an unrealistic construction that is oft
invoked as a simplifying assumption. Instead, the~average!
number of ‘‘neighbors’’ is a basic parameter of our mod
Analytically, we considerannealed coupling, where the
neighbors of a neuron are reassigned after each neuron fi
event. However, our simulations indicate that the model w
quenchedcoupling, where the neighbors of each neuron
fixed for all time, gives nearly identical results.

Each integrate-and-fire neuron is represented by a si
variable–the polarization level, or voltageV. Our model has
two fundamental ingredients:~i! the dynamics of individual
neurons, and~ii ! the interaction between them. For th
former, we employ deterministic integrate-and-fire dyna
ics, in which the voltage on a single neuron increases line
with time until a specified threshold is reached@8#. At this
point the neuron suddenly fires by emitting an action pot
tial and the neuronal voltage quickly returns to a refere
level ~Fig. 1!. For concreteness and without loss of gener
ity, we assume the rate of voltage increase and the thres
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voltage are both equal to 1. We also assume thatV is instan-
taneously set to zero after firing, i.e., we neglect delays
signal transmission between neurons@9#.

The meaning of the inhibition is illustrated in Fig. 1
When a given neuron fires, it instantaneously transmits
inhibitory action potential toK randomly chosen neighbor
whose voltages are each reduced by an amountD. This in-
hibition delays the time until these inhibited neurons c
reach threshold and ultimately fire themselves. The nei
bors of a given neuron are selected at random from am
all the neurons in the network and they are chosen an
every time any neuron fires. Thus the coupling in the n
work is annealed. While a network with fixed quenched co
pling is biologically much more realistic, annealed coupli
means that a rate equation provides the exact descriptio
the dynamics. Fortunately, the annealed and quenched
tems appear to be statistically identical when the numbe
inhibitory-coupled neurons is sufficiently large. We sh
consider only this limit in what follows.

Within the rate equation approach, the distribution of ne
ronal voltages in our inhibitory network is described by li
ear dynamics except at the isolated times when a neu
fires. The underlying rate equation admits a steady state v
age distribution whose basic properties are established
lytically in Sec. II. In general, although the network has
steady response, the dynamics of an individual neuron ha

FIG. 1. Illustration of the model dynamics. A single neuroni
undergoes deterministic integrate-and-fire dynamics~upper right!.
When this neuron fires, its voltageVi is set to zero, while simulta-
neously the voltages on all its inhibitory-coupled neighbors are
duced byD ~lower right!.
©2001 The American Physical Society06-1



ar
e
ty
nd
or
he
i
p

um
h
s

e
is
fo

th

e

re
g

a

.

has

rm
tial

nte
y-
n
d
as
itial
dy
the

ther
dis-

on

et
pe-

gi-
er-
the
ady-
ases

nal
led

P. L. KRAPIVSKY AND S. REDNER PHYSICAL REVIEW E64 041906
interesting history between firing events. We study, in p
ticular, the probability that a neuron ‘‘survives’’ up to a tim
t after its last firing event in Sec. III. The survival probabili
decays exponentially in time with a decay rate that depe
on the competition between the integration and the inhibit
coupling. This provides a relatively complete picture of t
dynamics of a single neuron in the network. A summary
given in Sec. IV and some identities are proven in the A
pendix.

II. RATE EQUATIONS AND THE STEADY STATE

For the rate equation description we assume that the n
ber of neurons is large and thus a continuum approac
appropriate. We defineP(V,t)dV as the fraction of neuron
whose voltage lies in the interval (V,V1dV). Then the
probability densityP(V,t) obeys the master equation,

S ]

]t
1

]

]VD P~V,t !5P1~ t !d~V!1KP1~ t !

3@P~V1D,t !2P~V,t !#, ~1!

whereP1(t)[P(V51,t). The second term on left-hand sid
accounts for the voltage increase because of the determin
integration. The first term on the right-hand side accounts
the increase of zero-voltage neurons due to the firing of o
neurons that have reached the threshold valueVmax51. The
second set of terms accounts for the change inP(V) due to
the processes whereV1D→V and V→V2D ~we assume
D.0 since inhibitory neurons are being considered!.

In the steady state, Eq.~1! simplifies to

dP~V!

dV
5P1d~V!1KP1@P~V1D!2P~V!#. ~2!

Equation ~2! may be easily solved by introducing th
Laplace transform,

P~s!5E
2`

1

dV P~V!esV, ~3!

to give, after some straightforward steps,

P~s!5
es21

K~e2sD21!1s/P1

. ~4!

The unconventional definition of the Laplace transform
flects the fact that the voltage is restricted to lie in the ran
@2`,1#.

To solve for the Laplace transform, we first note th
P(0)51 due to normalization. Combining this with Eq.~4!,
we obtain P15(11KD)21 thus completing the solution
The final result is

P~s!5
es21

K~e2sD21!1s~11KD!
. ~5!
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It may be verified by elementary means that this function
a simple pole ats52l, that is, P(s)5A/(s1l)1•••,
wherel is the root of

K~elD21!2l~11KD!50, ~6!

andA5(12e2l)/@D(11KD)l21#.
The existence of a simple pole in the Laplace transfo

implies that the voltage distribution itself has an exponen
asymptotic tail asV→2`,

P~V!→AelV. ~7!

The limiting behaviors of the decay constantl may also be
found from Eq.~6! and give

l→H D21 ln@~KD21!# whenD→0,

2~KD2!21 whenD→`.
~8!

To visualize these results, we have performed Mo
Carlo simulations of an inhibitory neural network whose d
namics is defined by Eq.~1!. A representative result is show
in Fig. 2 for the case of initial voltages uniformly distribute
in @0,1#. After approximately one time unit, the system h
reached the steady state shown in the figure. Other in
conditions merely have different time delays until the stea
state is reached. In addition to the exponential decay of
distribution for the smallest voltages, there are several o
noteworthy features. First, there is a linear decay of the
tribution to its limiting valueP15(11KD)21 asV→1 from
below; this is reflective of the absorbing boundary conditi
at V51. There is also a sharp peak atV50, corresponding
to the continuous input of reset neurons. For smallD, almost
all voltages lie within the range@0,1#. This feature is remi-
niscent of the Bak-Sneppen evolution model@10# in which
the ‘‘fitnesses’’ of most species lie within a finite targ
range, together with a small population of subthreshold s
cies.

Essentially identical results are obtained for the biolo
cally more realistic case of a network with quenched int
neuron couplings, but with all other system parameters
same as those in the annealed case. In particular, the ste
state voltage distribution of the quenched and annealed c

FIG. 2. Typical simulation results for the steady state neuro
voltage distribution for a network of 25 000 neurons, with annea
coupling toK550 other neurons andD51/50. The distribution is
shown at 10 timesteps.
6-2
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STEADY STATE OF AN INHIBITORY NEURAL NETWORK PHYSICAL REVIEW E64 041906
coincide forV very close to one in the vicinity of the peak
V50, while the two distributions are equal up to statistic
fluctuations in the range whereP(V) is constant.

Finally we note that Eq.~1! applies even when the num
ber of neighbors for a given neuron is not fixed. In this ca
K may be interpreted as just theaveragenumber of interact-
ing neighbors of a given neuron. ThereforeK can be any
positive real number. The voltage offsetD can also be het-
erogeneous, e.g., distributed in a finite range with some d
sity r(D). With this generalization, the termP(V1D) in Eq.
~2! should be replaced by*dD r(D)P(V1D). The resulting
equation is still solvable by the same Laplace transfo
technique as in the homogeneous network and we n
obtain a similar solution to that in Eq.~5! but with
P15(11K^D&)21, where^D&5*dD r(D)D.

III. EVOLUTION OF A SINGLE NEURON

In addition to the steady-state voltage distributionP(V),
we study the time dependence of an individual ‘‘tagge
neuron in the steady state. Consider, for example, a ne
that last fired at timeT0 that we set to 0 for simplicity. The
fate of this neuron may be generally characterized by
survival probabilityS(t), defined as the probability that thi
neuron has not yet fired again during the time inter
(T0 ,T01t), irrespective of how many inhibitory inputs
may have received~Fig. 3!. A more comprehensive descrip
tion is provided byQk(t), the probability that the tagge
neuron has not yet fired and that it receivedk inhibitory
inputs during (0,t). Clearly, S(t)5(k>0Qk(t). As we now
show, the survival probability andQk(t) exhibit nontrivial
first-passage characteristics.

Before discussing the survival probability in detail, let
first understand why a tagged neuron must eventually
and why the survival probability decays exponentially
long times. In the absence of interactions, the voltage o
neuron increases deterministically with rate 1. On the ot
hand, inhibitory spikes, each of which reduce the voltage
D, occur stochastically with rater 5KP15K/(11KD). This
gives rD5KD/(11KD),1 for the rate at which the volt
age decreases due to inhibition. Thus, on average the vo
increases at anet rate 12rD5(11KD)21. Consequently
the voltage of a tagged neuron must eventually reach
threshold and fire.

From the above argument, the mean lifetime^t& of a neu-

FIG. 3. Voltage trajectory of a typical neuron following a vol
age reset. Because each inhibitory spike reduces the voltage byD, a
neuron that receivesk inputs fires exactly at timet511kD. The
horizontal tick marks are att51, 11D, 112D, and 113D.
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ron between firing events is just the inverse of this rate. T

^t&511KD. ~9!

Notice that the density of neurons that are firing,P1, equals
the inverse lifetime, as expected naively. Since the evolu
of the neuronal voltage is a random-walk-like process tha
biased towards an absorbing boundary in a semi-infinite
ometry, the neuron survival probability must decay expon
tially with time @11#,

S~ t !}e2t/t when t→`. ~10!

To understand the asymptotic behavior ofS(t), it is help-
ful to consider first the voltage evolution of a single neur
that has experienced 0,1,2, . . . inhibitory spikes. It is impor-
tant to appreciate that a neuron that receives exactlyk spikes
necessarily fires exactly at time 11kD ~Fig. 3!. Thus the
survival probability is a piecewise constant function th
changes discontinuously attk511kD, k50,1,2, . . . .

We now determine the value ofS(t) at each of these
plateaux. Whent,1, the tagged neuron has no possibility
firing and S(t)[S051. To survive until timet511D, the
neuron must receive at least one spike in the time inte
@0,1#. Since neurons experience spikes at constant
r 5KP1, the probability of the neuron receiving no spikes
@0,1# is e2r . The survival probability for 1,t,11D thus
equalsS(t)[S1512e2r ~Fig. 4!. Similarly, to survive until
time 112D, the neuron must receive one spike beforet
51 and a second spike beforet511D. By writing the prob-
abilities for each of these events, we find, after straightf
ward steps,

S2512e2r2re2r (11D), 11D,t,112D. ~11!

This direct approach becomes increasingly unwieldy
large times, however, and we now present a more system
approach.

To this end, we first solve forQk(t), the probability that
the tagged neuron has experiencedk inhibitory inputs but has
not yet fired. For a constant rater of inhibitory spikes, the
probability that the tagged neuron has been spiked exack
times, with each spike occurring in the time interva
@ t j ,t j1dtj #, j 51,2, . . . ,k, equalse2rt)1< j <kr dt j . There-
fore,

Qk~ t !5r ke2rtu~11kD2t !E )
j 51

k

dtj . ~12!

FIG. 4. Behavior of the survival probability as a function
time. This function is constant within each interval@11(k
21)D,11kD# but exhibits an overall exponential decay in time.
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Here the step functionu(11kD2t) guarantees that the volt
age of the tagged neuron is below the threshold at timet. We
must also ensure that the voltage is less than one throug
the entire time interval (0,t). The necessary and sufficien
condition for this to occur is that the voltage is below thres
old at each spike event. This determines the integration ra
in Eq. ~12! to be

t j 21,t j,min@ t,11~ j 21!D# ~13!

for j 51, . . . ,k ~we sett0[0).
We now evaluateQk(t) successively for each tim

window @11( j 21)D,11 j D#. Consider first the range
1,t,11D. Here a tagged neuron that has not fired m
have received at least one spike. ConsequentlyQ0(t)50.
Similarly, if a neuron receives a single spike and surviv
until t511D, the spike must have occurred in the tim
range@0,1#. HenceQ15re2rt . Fork>2, the first spike must
occur within @0,1#, while the remaining~time ordered! k
21 spikes can occur anywhere within@ t1 ,t#. To evaluate the
integral in Eq.~12!, we may first integrate overt2 , . . . ,tk .
This integral is

E
t1

t

dt2E
t2

t

dt3•••E
tk21

t

dtk . ~14!

The domain of the integral is a simplex of sizet2t1 and the
integral is just (t2t1)k21/(k21)!. Finally, we integrate over
the region 0,t1,1 to obtain

Qk~ t !5
~rt !k2~rt 2r !k

k!
e2rt . ~15!

This expression actually holds for allk>0. From
Eq. ~15!, we then find thatS1512e2r in the time range
1,t,11D.

Generally in the time range 11(m21)D,t,11mD, a
tagged neuron that has not fired must have experience
leastm spikes; thereforeQk50 for k,m. To determine the
nonzeroQk’s—those withk>m—note that the firstm spikes
must obey the constraint of Eq.~13!, while each of the re-
maining k2m spikes may lie anywhere within the tim
interval tm and t. The latter condition again defines
simplex of size t2tm . This gives the contribution
(t2tm)k2m/(k2m)! for the integral over these variables. B
this reduction, thek-fold integral in Eq.~12! collapses to the
m-fold integral

Qk~ t !5r ke2rtE ~ t2tm!k2m

~k2m!! )
j 51

m

dtj . ~16!

In particular, for k5m, we may write Qm(t) as
r me2rtTm(D), where

Tm~D!5E
0

1

dt1E
t1

11D

dt2•••E
tm21

11(m21)D

dtm . ~17!

Remarkably, this expression has the simple closed-form
resentation~see Appendix!
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Tm~D!5
~11mD!m21

m!
, ~18!

so that

Qm~ t !5
r m~11mD!m21

m!
e2rt . ~19!

For largem and also fork.m, the explicit expressions fo
Qk become quite cumbersome; however, they are not nee
to determine the asymptotics of the survival probability.

We now use our result forQk to determine the surviva
probability. For the time range@11(m21)D,11mD#, we
substitute Eq.~16! in S(t)5(k>mQk(t) and perform the sum
over k to give

Sm5r mE e2rt m )
j 51

m

dtj . ~20!

This neat expression formally shows that the survival pr
ability is constant butm dependent inside the time interva
@11(m21)D,11mD#. These properties justify the notatio
in Eq. ~20!.

The integral on the right-hand side of Eq.~20! can be
simplified by integrating overtm to give

Sm5Sm212r m21Tm21e2r [11(m21)D] . ~21!

This recursion relation allows us to express the survi
probability in terms of theTn’s with n,m:

Sm512 (
n50

m21

r nTne2r (11nD).

SinceS`50, we rewrite this as

Sm5 (
n5m

`

r nTne2r (11nD), ~22!

which is more convenient for determining asympto
behavior.

Let us first use this survival probability to compute th
average time interval̂t& between consecutive firings of th
same neuron. This is

^t&5E
0

`

tS 2
dS

dt Ddt

5E
0

`

S~ t !dt

511D (
m>1

Sm

511D (
n>1

nrnTne2r (11nD). ~23!

In the first line, we use the fact that2Ṡ is just the probability
that the neuron fires at a timet after its previous firing, and
6-4
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STEADY STATE OF AN INHIBITORY NEURAL NETWORK PHYSICAL REVIEW E64 041906
the last line was derived by employing Eq.~22!. As dis-
cussed previously, the average time between firings of
same neuron iŝt&511KD. Equation~23! agrees with this
iff the identity

(
n>0

nTnzn5
r er

12rD
with z[r e2rD ~24!

holds. This is also verified in the Appendix.
Let us now interpret our results in the context of biolog

cal applications. Typically, the number of neighboring ne
ronsK is large while the spike-induced voltage decremenD
of a neuron is small, so that the total voltage decreaseKD is
of order one. In other words, the limit

K→`, D→0, KD5O~1!

appears biologically relevant. In this limit and when the tim
t511mD is large, the series forSm in Eq. ~22! is geometric.
Hence, apart from a prefactor, the survival probability
given by the first term in this series:

Sm}r mTme2r (11mD). ~25!

Using Eqs.~25!, ~18!, and Stirling’s formula, we deduce tha
S(t) decays exponentially with time, with the relaxation tim
in Eq. ~10! given by

t52
D

P11 ln~12P1!
. ~26!

The different behavior of the two basic time scales,t and
^t&51/P1, is characteristic of biased diffusion near an a
sorbing boundary in one dimension@11#. Here, the mean
survival time is simply the distance from the particle to t
absorbing boundary divided by the mean velocityv. In con-
trast, the survival probability asymptotically decays
exp(2v2t/D), so that t5D/v2, independent of initial dis-
tance.

It is instructive to interpret these results for our neu
network, where a single neuron can be viewed as underg
a random walk in voltage, with a step to smaller voltage
magnitudeD occurring with probabilityr dt in a time inter-
val dt and a step to larger voltage of magnitudedt occurring
with probability 12r dt. For this random walk, the bias ve
locity is v512rD5(11KD)215P1. This then reproduces
^t&51/v511KD51/P1. Moreover, the diffusion coeffi-
cient of this random walk is simplyD}rD2. This random
walk description should be valid whenKD'1/P1@1 or
rD→1, so that a tagged neuron experiences many sp
between firing events. This then leads tot5D/v2}K2D3. In
this diffusive limit of P1→0, the limiting behavior of Eq.
~26! agrees with this expression fort.

IV. SUMMARY

We have determined the dynamical behavior of
integrate-and-fire neural network in which there is pur
inhibitory annealed coupling between neighboring neuro
The same behavior is also exhibited by a model w
quenched coupling. Our model should be regarded a
‘‘toy,’’ since so many realistic physiological features ha
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been neglected. However, this toy model has the advan
of being analytically tractable. We have determined both
steady state properties of the network, as well as the c
plete time-dependent behavior of a single neuron. The la
gives rise to an appealing first-passage problem for the p
ability for a neuron to survive a timet after its last firing.
This survival probability is piecewise constant but with
overall exponential decay in time.

Given the simplicity of the model, it should be possible
incorporate some of the more important features of real
hibitory neural networks, such as neurons with leaky vo
ages and finite propagation velocity for inhibitory signa
into the rate equation description. These generalizations
provide a tractable starting point to investigate more co
plex dynamical behavior that are often the focus of neu
network studies, such as large-scale oscillations and ma
scopic synchronization.
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APPENDIX: BASIC IDENTITIES

We use Eq.~22! to derive the identity~18!. First, we note
that S051. By substituting this into Eq.~22! we obtain

(
n>0

Tnzn5er with z[r e2rD. ~A1!

The requirement that Eq.~A1! holds for arbitraryr and D
leads to unique set ofTn’s. To determine theseTn’s, let us
treat z as a complex variable. Then employing the Cauc
formula yields

Tn5
1

2p i R er

zn11
dz5

1

2p i R erz8~r !

@z~r !#n11
dr

5
1

2p i R ~12rD!er (11nD)

r n11
dr

5
~11nD!n

n!
2D

~11nD!n21

~n21!!

5
~11nD!n21

n!
.

Next we verify Eq.~24! by repeating the procedure tha
has just been used to check Eq.~A1!. As above, the quantity
nTn may be written in the integral representation

nTn5
1

2p i R r er

12rD

dz

zn11
5

1

2p i R r erz8~r !

~12rD!@z~r !#n11
dr

5
1

2p i R er (11nD)

r n
dr5

~11nD!n21

~n21!!
.
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