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Steady state of an inhibitory neural network
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We investigate the dynamics of a neural network where each neuron evolves according to the combined
effects of deterministic integrate-and-fire dynamics and purely inhibitory coupling Kvitandomly chosen
“neighbors.” The inhibition reduces the voltage of a given neuron by an amédumhen one of its neighbors
fires. The interplay between the integration and inhibition leads to a steady state that is determined by solving
the rate equations for the neuronal voltage distribution. We also study the evolution of a single neuron and find
that the mean lifetime between firing events equatsKiA and that the probability that a neuron has not yet
fired decays exponentially with time.
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[. INTRODUCTION voltage are both equal to 1. We also assume Vhigtinstan-
taneously set to zero after firing, i.e., we neglect delays in
Networks of neurons that undergo “spiky” dynamics signal transmission between neurd8%
have been thoroughly investigatéske, e.g.[1,2] and refer- The meaning of the inhibition is illustrated in Fig. 1.
ences therein Nevertheless, a theory that describes the dy¥When a given neuron fires, it instantaneously transmits an
namics of randomly interconnected excitatory and inhibitoryinhibitory action potential td< randomly chosen neighbors
spiking neurons is still lacking. Even a system composedvhose voltages are each reduced by an amaunthis in-
exclusively of inhibitory neuron§3—7] appears too compli- hibition delays the time until thgse inhibited neurons can
cated for analytical approaches. Part of the reason for this &&ach threshold and ultimately fire themselves. The neigh-
that the dynamics of a single neuron involves many physibors of a given neuron are selected at random from among
ological features across a wide range of time scales that a@ll the neurons in the network and they are chosen anew
difficult to incorporate into an analytical theory. Our goal in €Very time any neuron fires. Thus the coupling in the net-
this work is to describe some of the dynamical features of Vork is annealed. While a network with fixed quenched cou-
purely inhibitory neural network within the framework of a Pling is biologically much more realistic, annealed coupling
minimalist model. While we sacrifice realism by this ap- means thaF a rate equation provides the exact description of
proach, our model is analytically tractable. This feature of-the dynamics. Fortunately, the annealed and quenched sys-
fers the possibility that more realistic networks may bel®MSs appear to be statistically identical when the number of
treated by natural extensions of our general framework.  inhibitory-coupled neurons is sufficiently large. We shall
We specifically investigate an integrate-and-fire neurafonsider only this limit in what follows.
network, in which the integration step is purely linear in  Within the rate equation approach, the distribution of neu-
time, and in which there exists only inhibitory and instanta-ronal voltages in our |nh|b|tory network_ls described by lin-
neous coupling between interacting neurons. We thus ignor@ar dynamics except at the isolated times when a neuron
potentially important features such as voltage leakage durinfres. The underlying rate equation admits a steady state volt-
the integration, as well as heterogeneity in the external drivége distribution whose basic properties are established ana-
and in the network couplings. However, we dot assume lytically in Sec. Il In genera}l, although _the network has a
all-to-all coupling, an unrealistic construction that is often Steady response, the dynamics of an individual neuron has an
invoked as a simplifying assumption. Instead, theerage
number of “neighbors” is a basic parameter of our model. Y
Analytically, we considerannealed coupling, where the
neighbors of a neuron are reassigned after each neuron firing
event. However, our simulations indicate that the model with
guenchectoupling, where the neighbors of each neuron are
fixed for all time, gives nearly identical results. V. ; t
Each integrate-and-fire neuron is represented by a single I '
variable—the polarization level, or voltaye Our model has —
two fundamental ingredientsi) the dynamics of individual A
neurons, and(ii) the interaction between them. For the )
former, we employ deterministic integrate-and-fire dynam-
ics, in which the voltage on a single neuron increases linearly t

with time until a specified threshold is reachi]. At this FIG. 1. lllustration of the model dynamics. A single neurion
point the neuron suddenly fires by emitting an action potenundergoes deterministic integrate-and-fire dynantigsper righ}.

tial and the neuronal voltage quickly returns to a referencevhen this neuron fires, its voltagé is set to zero, while simulta-
level (Fig. 1). For concreteness and without loss of generalneously the voltages on all its inhibitory-coupled neighbors are re-
ity, we assume the rate of voltage increase and the threshottliced byA (lower right.
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interesting history between firing events. We study, in par- 15
ticular, the probability that a neuron “survives” up to a time
t after its last firing event in Sec. Ill. The survival probability
decays exponentially in time with a decay rate that depends 10t

on the competition between the integration and the inhibitory S
coupling. This provides a relatively complete picture of the &
dynamics of a single neuron in the network. A summary is 05 |
given in Sec. IV and some identities are proven in the Ap-
pendix.
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Il. RATE EQUATIONS AND THE STEADY STATE v

For the rate equation description we assume that the nUM- £ > Typical simulation results for the steady state neuronal

ber of neurons is large and thus a continuum approach igy|tage distribution for a network of 25 000 neurons, with annealed
appropriate. We definB(V,t)dV as the fraction of neurons  coypling tok =50 other neurons and=1/50. The distribution is
whose voltage lies in the intervalV(V+dV). Then the  shown at 10 timesteps.

probability densityP(V,t) obeys the master equation,

It may be verified by elementary means that this function has
a simple pole ats=-—\, that is, P(s)=A/(S+N\)+---,
where\ is the root of

J’__
at oV

P(V,1)=P1(t) (V) +KP4(t)

X[P(V+A,t)-P(V,1)], (D) K(eM—1)—\(1+KA)=0, (6)

whereP,(t)=P(V=1t). The second term on left-hand side andA=(1—e *)/[A(1+KA)\—1].

accounts for the voltage increase because of the deterministic The existence of a simple pole in the Laplace transform
integration. The first term on the right-hand side accounts foimplies that the voltage distribution itself has an exponential
the increase of zero-voltage neurons due to the firing of otheasymptotic tail as/— —oe,

neurons that have reached the threshold valyg=1. The

second set of terms accounts for the changB(W) due to P(V)—Ae". (7)
the processes whe+A—V andV—V—A (we assume o )
In the steady state, Eql) simplifies to found from Eq.(6) and give
dP(V) A~tIn[(KA™H] whenA—0,
—qy_~P18(V)+KPP(V+A)=P(V)]. (2 A 2(KA?)~t whenA — oo, ®

To visualize these results, we have performed Monte
Equation (2) may be easily solved by introducing the Carlo simulations of an inhibitory neural network whose dy-
Laplace transform, namics is defined by Eql). A representative result is shown
in Fig. 2 for the case of initial voltages uniformly distributed
1 in [0,1]. After approximately one time unit, the system has
P(s)= f v P(V)e, (3 reached the steady state shown in the figure. Other initial
conditions merely have different time delays until the steady
state is reached. In addition to the exponential decay of the
distribution for the smallest voltages, there are several other
. noteworthy features. First, there is a linear decay of the dis-
P(s) = e—1 _ 4) tribution to its limiting valueP,;=(1+KA) ' asV—1 from
K(e $*—1)+s/P, below; this is reflective of the absorbing boundary condition
atV=1. There is also a sharp peak\a+0, corresponding

The unconventional definition of the Laplace transform re-to the continuous input of reset neurons. For smalalmost
flects the fact that the voltage is restricted to lie in the rangéll voltages lie within the rangg0,1]. This feature is remi-
[—o,1]. niscent of the Bak-Sneppen evolution mofi&d] in which

To solve for the Laplace transform, we first note thatthe “fitnesses™ of most species lie within a finite target
P(0)=1 due to normalization. Combining this with Egl),  ange, together with a small population of subthreshold spe-

we obtain P;=(1+KA) ! thus completing the solution. Ci€S- S ) ) S
The final result is Essentially identical results are obtained for the biologi-

cally more realistic case of a network with quenched inter-
s neuron couplings, but with all other system parameters the
ee—1 - .

] (5)  same as those in the annealed case. In particular, the steady-
(™32 —1)+s(1+KA) state voltage distribution of the quenched and annealed cases

to give, after some straightforward steps,

P(s)= ”
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FIG. 4. Behavior of the survival probability as a function of
time. This function is constant within each interval + (k

FIG. 3. Voltage trajectory of a typical neuron following a volt- —1)A.1+kA] but exhibits an overall exponential decay in time.

age reset. Because each inhibitory spike reduces the voltayye dy . o . .
neuron that receivek inputs fires exactly at time=1+kA. The  on between firing events is just the inverse of this rate. Thus

horizontal tick marks are dt=1, 1+ A, 1+2A, and 1+ 3A.
(t) =1+KA. (9

coincide forV very close to one in the vicinity of the peak at

V=0, while the two distributions are equal up to statistica ) o ; . .
fluctuations in the range wheR(V) is constant the inverse lifetime, as expected naively. Since the evolution
: of the neuronal voltage is a random-walk-like process that is

Finally we note that Eq(1l) applies even when the num- ~. ; ) SO
ber of neighbors for a given neuron is not fixed. In this case,b'ased towards an absorbing boundary in a semi-infinite ge-

K may be interpreted as just tla@eragenumber of interact- qmetry_, thg neuron survival probability must decay exponen-
ing neighbors of a given neuron. Therefdfecan be any tally with time [11],

positive real number. The voltage offs&étcan also be het-
erogeneous, e.g., distributed in a finite range with some den-
sity p(A). With this generalization, the ter@(V+A) in Eq.

(2) should be replaced bjdA p(A)P(V+A). The resulting ful to consider first the voltage evolution of a single neuron

equat_ion Is Sti.” solvable by the same Laplace transform[hat has experienced 0,1,2 . inhibitory spikes. It is impor-
tebchnlque as 'Im thel h_omogene;ous. neltzwork snd V\.’eh NO¥hnt to appreciate that a neuron that receives exacjyikes
° tf“n a simi ?rl solution tci that in Eq(5) but wit necessarily fires exactly at time+kA (Fig. 3. Thus the
P1=(1+K(a))"", where(A)=JdA p(A)A. survival probability is a piecewise constant function that
changes discontinuously gt=1+kA, k=0,1,2 .. ..
IIl. EVOLUTION OF A SINGLE NEURON We now determine the value &(t) at each of these

In addition to the steady-state voltage distributiegv), ~ Plateaux. When<1, the tagged neuron has no possibility of
we study the time dependence of an individual “tagged” fiing and S(t)=Sy=1. To survive until imet=1+A, the
neuron in the steady state. Consider, for example, a neurdfuUron must receive at least one spike in the time interval
that last fired at tim@, that we set to 0 for simplicity. The [0:1]. Since neurons experience spikes at constant rate
fate of this neuron may be generally characterized by it§ =KP1, the probability of the neuron receiving no spikes in
survival probabilityS(t), defined as the probability that this [0.1] is € ". The survival probability for &t<1+A thus
neuron has not yet fired again during the time interval€qualsS(t)=S,=1-e"" (Fig. 4). Similarly, to survive until
(To,To+1), irrespective of how many inhibitory inputs it time 1+2A, the neuron must receive one spike before
may have receive(Fig. 3. A more comprehensive descrip- =1 and a second spike befdre 1+ A. By writing the prob-
tion is provided byQ,(t), the probability that the tagged abilities for each of these events, we find, after straightfor-
neuron has not yet fired and that it receiviednhibitory ~ Ward steps,
inputs during (@). Clearly, S(t) === (Q(t). As we now ~
show, the survival probability an®,(t) exhibit nontrivial S;=1-e
first-passage characteristics.

Before discussing the survival probability in detail, let us
first understand why a tagged neuron must eventually fir
and why the survival probability decays exponentially at?
long times. In the absence of interactions, the voltage of . A .
neuron increases deterministically with rate 1. On the othe e tagged neuron has experiengedhibitory inputs but has

hand, inhibitory spikes, each of which reduce the voltage b)POt yet. fired. For a constant rateof inhibitory spikes, the
A, occur stochastically with rate= K P, =K/(1+KA). This probability that the tagged neuron has been spiked exkctly

givesrA=KA/(1+KA)<1 for the rate at which the volt- “m‘ﬁ&"t’“h .e_afhz spike °°°“I”i”,%tﬁ” the ;i{"eTir:“e“’a's
age decreases due to inhibition. Thus, on average the voIta#E ' il 1=1.2,... k equalse 1=j=kl dtj. There-
increases at aet rate 1-rA=(1+KA) 1. Consequently ore,

{Notice that the density of neurons that are firiflg, equals

S(t)xce Y when t—oo. (10)

To understand the asymptotic behaviorSgf), it is help-

—re "AFA) 14+ A<t<1+2A. (11

This direct approach becomes increasingly unwieldy for
éarge times, however, and we now present a more systematic
pproach.

To this end, we first solve foQ,(t), the probability that

the voltage of a tagged neuron must eventually reach the K
threshold and fire. — kot
t)=r‘e "O(1+kA—t dt; . 12
From the above argument, the mean lifetitbeof a neu- Qut) ( ) jﬂl ) 12
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Here the step functiod(1+ kA —t) guarantees that the volt- (1+mA)m-1t

age of the tagged neuron is below the threshold at tirkée Tn(A)=—1 (18

must also ensure that the voltage is less than one throughout '

the entire time interval (0). The necessary and sufficient gg that

condition for this to occur is that the voltage is below thresh-

old at each spike event. This determines the integration range rM(1+ma)mt

in Eq. (12) to be Qui)=—"—y— ¢ " (19)
tj_a<t;<min[t,1+(j—1)A] (13 For largem and also fork>m, the explicit expressions for

Qy become quite cumbersome; however, they are not needed
) , to determine the asymptotics of the survival probability.

‘We now evaluateQ(t) successively for each time — \ye now use our result fo®, to determine the survival
window [1+(j—1)A,1+jA]. Consider first the range robability. For the time ranggl+ (m—1)A,1+mA], we

1<t<1+4. Here a tagged neuron that has not fired musk,psiitute Eq(16) in S(t) =3 »Q«(t) and perform the sum
have received at least one spike. ConsequeQift)=0.  verk to give

Similarly, if a neuron receives a single spike and survives

until t=1+A, the spike must have occurred in the time m

range[ 0,1]. HenceQ,=re~". Fork=2, the first spike must Sm=rmf e’”mH dt;. (20
occur within [0,1], while the remaining(time ordered k =1
—1 spikes can occur anywhere withif ,t]. To evaluate the
integral in Eq.(12), we may first integrate ovep, . .. t.
This integral is

forj=1,... k (we setty=0).

This neat expression formally shows that the survival prob-
ability is constant bum dependent inside the time interval
[1+(m—1)A,1+mA]. These properties justify the notation

¢ ¢ ¢ in Eq. (20).
J dtzf dts- - f dt,. (14) The integral on the right-hand side of E0) can be
ty tp t-1 simplified by integrating ovet,, to give
The domain of the integral is a simplex of sizet; and the S, =S~ ™ T, e rHm=DAL (21
integral is just {—t;)*"/(k—1)!. Finally, we integrate over
the region 6<t;<1 to obtain This recursion relation allows us to express the survival

probability in terms of thel,'s with n<m:
(r*=(rt=n)k
Q)= ————e " (15 m-1
k! szl_ z rnTnefr(lJrnA)'
=0
This expression actually holds for alk=0. From "
Eqg. (15, we then find thatS;=1—e ™" in the time range SinceS,=0, we rewrite this as

1<t<1+A.
Generally in the time rangei(m—1)A<t<1+mA, a - A
tagged neuron that has not fired must have experienced at Sm=an T e r+nd), (22)

leastm spikes; therefor®, =0 for k<m. To determine the

nonzeroQ,'s—those withk=m-—note that the firstnspikes  which is more convenient for determining asymptotic
must obey the constraint of E¢L3), while each of the re- pehavior.

maining k—m spikes may lie anywhere within the time  |et us first use this survival probability to compute the
interval t,, and t. The latter condition again defines a average time intervalt) between consecutive firings of the
simplex of size t—t,,. This gives the contribution same neuron. This is

(t—t,)“ ™ (k—m)! for the integral over these variables. By

this reduction, theé-fold integral in Eq.(12) collapses to the °° ds

m-fold integral (= JO t( - a)dt

(t—t* " -
— rka—rt ) = | S(t)dt
Qu(t)=rke i j]]l dy;. (16) JO (t)
In particular, for k=m, we may write Qn(t) as —14A S
rMe~"T,.(A), where m§2:1 m
1 1+A 1+(m—-1)A B
Tm(A)=f dtlf dtz.--f dty,.  (17) =1+An§)l nriT,e Y, (29
0 t tm-1 =

Remarkably, this expression has the simple closed-form reghn the first line, we use the fact thatS is just the probability
resentatior(see Appendix that the neuron fires at a timeafter its previous firing, and
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the last line was derived by employing E(R2). As dis- been neglected. However, this toy model has the advantage
cussed previously, the average time between firings of thef being analytically tractable. We have determined both the
same neuron igt) =1+ KA. Equation(23) agrees with this steady state properties of the network, as well as the com-

iff the identity plete time-dependent behavior of a single neuron. The latter
ref gives rise to an appealing first-passage problem for the prob-
> nTnz“=1_ A with z=re " (24)  ability for a neuron to survive a time after its last firing.
n=0 ' This survival probability is piecewise constant but with an
holds. This is also verified in the Appendix. overall exponential decay in time.

Let us now interpret our results in the context of biologi-  Given the simplicity of the model, it should be possible to
cal applications. Typically, the number of neighboring neu-incorporate some of the more important features of real in-
ronsK is large while the spike-induced voltage decrem®nt hibitory neural networks, such as neurons with leaky volt-
of a neuron is small, so that the total voltage decré@dds  ages and finite propagation velocity for inhibitory signals,
of order one. In other words, the limit into the rate equation description. These generalizations may

provide a tractable starting point to investigate more com-
K—e, A—0, KA=0(1) plex dynamical behavior that are often the focus of neural

appears biologically relevant. In this limit and when the timeN€tWOrk studies, such as large-scale oscillations and macro-
t=1+mA is large, the series f@,, in Eq.(22) is geometric.  SCOPIC synchronization.

Hence, apart from a prefactor, the survival probability is

given by the first term in this series: ACKNOWLEDGMENTS
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S(t) decays exponentially with time, with the relaxation time

in Eq. (10) given by APPENDIX: BASIC IDENTITIES
o A 26 We use Eq(22) to derive the identity18). First, we note
— P,+In(1-Py)° (26) that Sy=1. By substituting this into Eq.22) we obtain

The different behavior of the two basic time scalesnd E n ot ) L
(ty=1/P,, is characteristic of biased diffusion near an ab- = Toz'=e" with z=re "% (A1)
sorbing boundary in one dimensiddl]. Here, the mean
survival time is simply the distance from the particle to theThe requirement that EqA1) holds for arbitraryr and A
absorbing boundary divided by the mean veloaityn con-  |eads to unique set 6F,'s. To determine thes&,’s, let us

exp(—vt/D), so that7=D/v?, independent of initial dis- formula yields

tance.

It is instructive to interpret these results for our neural 1 e’ 1 e'7'(r)
network, where a single neuron can be viewed as undergoing Tn:f 3[) dzm o é —
a random walk in voltage, with a step to smaller voltage of m )z ™ J [z(r)]

magnitudeA occurring with probabilityr dt in a time inter- 1 (1—rA)er@+nd)

val dt and a step to larger voltage of magnitutteoccurring -~ ¢p— =7 4
with probability 1—r dt. For this random walk, the bias ve- 2 pntl
locity isv=1—rA=(1+KA) 1=P;. This then reproduces n no1
(t)=1l=1+KA=1/P,. Moreover, the diffusion coeffi- _@+nd)"  (1+na)
cient of this random walk is simpl{pcr A%, This random n! (n—1)!
walk description should be valid whelKA~1/P;>1 or (14+nA)n-1
rA—1, so that a tagged neuron experiences many spikes - =
between firing events. This then leadsrte D/v2<K2A3, In n!
this diffusive limit of P;—0, the limiting behavior of Eq. . )
(26) agrees with this expression far Ngxt we verify Eq.(24) by repeating the procedure t_hat
has just been used to check E41). As above, the quantity
IV. SUMMARY nT, may be written in the integral representation
We have determined the dynamical behavior of an 1 re’ dz 1 re'z'(r)
integrate-and-fire neural network in which there is purely nTn_ﬁ fﬁ 1-rA 11 20 (1—rA)[z(r)]”+1dr

inhibitory annealed coupling between neighboring neurons.
The same behavior is also exhibited by a model with 1 or(1+n4) (1+nA)"2
guenched coupling. Our model should be regarded as a =_"—_ r=

“toy,” since so many realistic physiological features have 2mi r" (n—1!
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