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Abstract. We investigate choice-driven network growth. In this model, nodes
are added one by one according to the following procedure: for each addition
event a set of target nodes is selected, each according to linear preferential
attachment, and a new node attaches to the target with the highest degree.
Depending on precise details of the attachment rule, the resulting networks have
three possible outcomes: (i) a non-universal power-law degree distribution; (ii) a
single macroscopic hub (a node whose degree is of the order of N , the number of
network nodes), while the remainder of the nodes comprise a non-universal power-
law degree distribution; (iii) a degree distribution that decays as (k ln k)−2 at the
transition between cases (i) and (ii). These properties are robust when attachment
occurs to the highest degree node from at least two targets. When attachment is
made to a target whose degree is not the highest, the degree distribution has the
ultra-narrow double-exponential form exp(−const.× ek), from which the largest
degree grows only as ln lnN .
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1. Introduction

Choice plays an essential role in queuing and optimization theory [1]–[5], in the
structure of random recursive trees [6] and evolving random graphs [7]–[9], in explosive
percolation [10]–[18], and in the control of avalanches in self-organized criticality [19].
We are all familiar with choices at grocery checkouts and in customs and security lines,
where we would like to be in the line with the shortest waiting time. Picking one of N
lines at random results in a maximal waiting time of the order of lnN . If instead one
initially selects two lines at random and then chooses the line with the smaller number of
customers, the maximal waiting time drops to O(ln lnN). Further increasing the number
of initially selected lines improves the maximal waiting time only by a constant factor,
thereby illustrating the ‘power of two choices’ [1]–[5].

Growing networks with choice were investigated in [6], where the choice was made to
attach the new node to the node closest to the root. Choice has also been implemented in
evolving random graphs (networks with a fixed number of nodes and a growing number of
links), where it has been shown that appropriate choice may delay [7] or speed up [8, 9] the
appearance of the giant component. One particular example of choice-driven link addition
in evolving random graphs has recently attracted considerable attention [10]–[18], as it
leads a percolation transition which is explosive in character.

In this work, we determine how a degree-based choice affects the growth of complex
networks [20]. Instead of a new node attaching to a target node according to a specified
rate, we select a fixed number of targets according to this rate and the new node attaches to
the target with the largest degree—‘greedy’ choice (figure 1). When the targets are selected
randomly and independent of their degrees [6], it was found that the degree distribution
decays exponentially with degree, but at a slower rate than in the case with no choice.
When the targets are selected according to the preferential attachment mechanism, the
effect of the choice is much more dramatic, as we show below.
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Figure 1. Illustration of network growth by greedy choice. Two nodes (shaded)
in the network are selected according to preferential attachment. A new node
(solid) attaches to the target with the larger degree, in this case, degree 5.

As an example, consider the situation where two targets are provisionally selected, each
with the probability proportional to Ak = k+ λ for a target of degree k. Then our results
can be summarized as follows. For λ > 0, the network has a degree distribution with an
algebraic tail that possesses a non-universal exponent (i.e., dependent on λ). This exponent
is smaller than in the case of no choice; thus choice broadens the degree distribution. For
λ = 0 (strictly linear preferential attachment), the degree distribution has a power-law tail
with the smallest possible exponent that is consistent with the network remaining sparse.
More precisely, the fraction of nodes of degree k asymptotically decays as (k ln k)−2, with
the logarithmic factor ensuring that the network is sparse. For −1 < λ < 0, a macrohub (a
node whose degree grows linearly with the number of nodes in the network) emerges; the
remainder of the degree distribution is still characterized by a non-universal algebraic tail.
These properties are qualitatively robust for greedy choice with at least two alternatives,
although the critical value of λ depends on the number of alternatives; in the case when
p target nodes are provisionally selected, then λc = p− 2.

In contrast, when attachment occurs to a target whose degree is less than the
largest among the target set—which we term ‘meek choice’—a double-exponential degree
distribution arises, where nk ∼ exp(−const. × ek). Somewhat surprisingly, this behavior
occurs even if attachment occurs to the second largest out of a large number of targets.
Thus greedy choice is the unique case and all other less greedy attachment choices lead
to a double-exponential degree distribution. Two examples of small networks grown by
greedy and meek choice from two alternatives are shown in figure 2.

2. Greedy choice

2.1. Two alternatives

We start by studying the degree distribution in networks where growth is driven by greedy
choice between two alternatives. Let Nk(N) be the number of nodes of degree k when the
network contains N total nodes. Although the Nk(N) are random variables, fluctuations
in these quantities are small when the network is large. We thus focus on the averages
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Figure 2. Example networks of 104 nodes that are grown by strictly linear
preferential attachment for (a) greedy and (b) meek choice from two alternatives.
The maximal degree is 3399 in (a) and 8 in (b). Red are high-degree nodes.

〈Nk(N)〉 in the limit of large N , where we may replace Nk(N + 1)−Nk(N) by dNk/dN .
We also drop the angle brackets henceforth.

The evolution of the degree distribution in this greedy choice model is governed by
the master equations

dNk

dN
=
Ak−1Nk−1

A

∑
j<k−1

AjNj

A/2
− AkNk

A

∑
j<k

AjNj

A/2
+

[
Ak−1Nk−1

A

]2
−
[
AkNk

A

]2
+ δk,1. (1)

Here Ak is the rate at which a node of degree k is selected as a potential target and
A =

∑
j AjNj the total rate. The first term on the right-hand side of equation (1) accounts

for the increase in Nk due to the new node attaching to a node of degree k − 1. Such an
event occurs if the two initial targets have degrees k−1 and j < k−1. The complementary
gain term has a similar origin, while the quadratic terms on the second line account for
events where the two targets have the same degree. The master equations satisfy the sum
rules

∑
k≥1Nk = N and

∑
k≥1 kNk = 2(N − 1).

In the following, we focus on the class of shifted linear attachment rates given by
Ak = k + λ. In this case the total rate becomes A =

∑
j AjNj = (2 + λ)N − 2. We are

interested in the N →∞ limit, so we simply write A =
∑

j AjNj = (2+λ)N . The fraction
of nodes of fixed degree becomes independent of size when N →∞, so that Nk(N)→ Nnk
(see, e.g., [21, 22]). Using this fact, we recast (1) into

nk =
ψk−1 − ψk
(2 + λ)2/2

∑
j<k

ψj −
ψ2
k−1 + ψ2

k

(2 + λ)2
+ δk,1, (2)

where ψk ≡ (k + λ)nk.
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Let us now specialize to strictly linear preferential attachment, or λ = 0. The solutions
to the first few of the recurrences (2) can be found straightforwardly and give

n1 = 2
√

2− 2 ≈ 0.828 43,

n2 = 1
2
−
√

2 + 1
2

√
21− 12

√
2 ≈ 0.089 45,

n3 = 1
9
− 1

3

√
21− 12

√
2 + 2

9

√
70− 6

√
21− 12

√
2− 36

√
2 ≈ 0.031 79,

(3)

etc. To obtain the asymptotic form of the degree distribution, it is convenient to analyze
(2) in the continuum approximation. To lowest order, we use the asymptotic behavior∑

j<k jnj → 2 as k→∞, which follows from
∑

k≥1 kNk = 2(N−1), and we also ignore the
terms on the second line. These approximations simplify equation (2) to (knk)

′ = −nk,
which gives nk ∼ k−2. However, this solution cannot be correct, as the sum

∑
k≥1 knk

logarithmically diverges. The inconsistency arises because the terms that were dropped
are of the same order, namely k−2, as those in the approximate equation (knk)

′ = −nk.
As will become plausible with hindsight, a logarithmic correction in the asymptotic

degree distribution can be anticipated. We thus seek a solution of the form

nk = k−2u(`), ` = ln k. (4)

Substituting this ansatz into (2), keeping all terms, and using the continuum approxi-
mation, gives

2u =

(
u− du

d`

)∫ `

0

dxu(x)− u2, (5a)

or, in terms of the cumulative variable v(`) =
∫ `
0 dxu(x),

2 =

(
1− du

dv

)
v − u, (5b)

where we now view u as a function of v. This equation can be rewritten as
(2− v) dv + u dv + v du = 0, with solution 2v − 1

2
v2 + uv = 2. (The integration constant

is set by the sum rule
∑

k≥1 knk = 2, which implies v(∞) = 2 and u(∞) = 0.) Thus

u =
dv

d`
=

2

v

(
1− v

2

)2
. (5c)

Integrating gives

`

2
= ln

(
1− v

2

)
+

v

2− v
, (5d)

or 2− v ' 4/`, as `→∞. Combining this result with v(`) =
∫ `
0 dxu(x) ultimately leads

to u ' 4/`2, so that the asymptotic degree distribution is (see figure 3)

nk '
4

k2 (ln k)2
. (6)

Attempting a power-law fit to the data for nk versus k leads to an effective exponent
that appears to be slowly changing with k; this is often the symptom of a logarithmic
correction, as predicted by (6).
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Figure 3. Influence of choice from two alternatives on the degree distributions
of networks grown by strictly linear preferential attachment. The distribution
without choice asymptotically decays as k−3. Data are based on 102 realizations
of 107 nodes.

This slow decay of the degree distribution implies the existence of an almost
macroscopic hub—a node whose degree is nearly of the order of N . To estimate this
maximal degree kmax in a network that contains N nodes, we apply the standard extremal
criterion [23] that there is of the order of one node with degree kmax or larger,∑

k≥kmax

nk ∼
1

N
, (7)

to the degree distribution (6) to give

kmax ∼
N

(lnN)2
; (8)

that is, a maximal degree that is almost of the order of N .
For shifted linear preferential attachment, Ak = k+λ, the degree distribution without

choice has the closed form [21]

nk = (2 + λ)
Γ(3 + 2λ)

Γ(1 + λ)

Γ(k + λ)

Γ(k + 3 + 2λ)
, (9)

whose asymptotic behavior is the non-universal power law nk ∼ k−(3+λ). (Note that
λ > −1, so that attachment can occur to nodes of degree 1.)

A convenient way to implement shifted linear preferential attachment is by the
redirection algorithm [21, 22, 24]. This algorithm consists of: (i) selecting a target node
uniformly at random from the existing network; (ii) a new node either attaches to this
target with probability 1 − r or to the parent of the target with probability r, where
r = (2 + λ)−1. This algorithm exactly reproduces network growth by shifted linear
preferential attachment with shift λ, where the redirection probability is related to λ

doi:10.1088/1742-5468/2014/04/P04021 6
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Figure 4. (a) The exponents ν1 = 2 + 1/r, ν2 from equation (14), and ν3
from equation (23). (b) Representative degree distributions for shifted linear
preferential attachment with greedy choice for redirection probabilities r = 1

3 and
r = 2

3 for 50 realizations of a network of 108 nodes. The dashed line corresponds
to exponent ν2 = 2.5, as given by (14) and (23). For r = 1

3 , the isolated data
point at k = 7.5 × 107 corresponds to macrohubs whose degree is given by
equation (11).

via r = (2+λ)−1. This algorithm is extremely simple and efficient, as the time to simulate
a network of N nodes scales linearly with N .

We now determine how greedy choice affects the degree distribution when the network
grows by positive shifted linear preferential attachment, Ak = k + λ with λ > 0.
For large k, we again drop the quadratic terms in (2), replace

∑
j<k(j + λ)nj by∑

j≥1(j + λ)nj = 2 + λ, and employ the continuum approximation. It may subsequently
be verified that the dropped terms are indeed subdominant when λ > 0. These steps yield
(knk)

′ = −(2 + λ)nk/2, with solution nk ∼ k−(2+λ/2). As in positive shifted preferential
linear attachment without choice, the asymptotic behavior of the degree distribution is
non-universal, but with a much more slowly decaying tail (figure 4).

For negative shifted linear preferential attachment, λ < 0, (corresponding to 1
2
< r < 1),

the same analysis of the recurrence (2) as given above predicts nk ∼ k−2, which violates the
sum rule

∑
k≥1 knk = 2. The source of this inconsistency is that our analysis has ignored the

possibility of a transition to a new type of ‘condensed’ network that contains a macrohub—
a node whose degree is of the order of N . Let us assume that such a macrohub of degree
hN exists, with h of the order of 1. To determine the degree of this macrohub, we now
exploit the equivalence between shifted linear attachment and the redirection algorithm.
According to redirection, whenever a random target node is selected, redirection will lead
to the macrohub being chosen with probability hr. The probability of choosing this hub
at least once in the two independent selection events is 1− (1− hr)2. This quantity gives
the growth rate of the hub, so that

h = 1− (1− hr)2. (10)

doi:10.1088/1742-5468/2014/04/P04021 7
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This equation has two solutions, h = 0, and

h =
2r − 1

r2
. (11)

The former (trivial) solution is relevant when the redirection probability r ≤ 1
2
, while the

non-trivial solution (11) is realized when 1
2
< r < 1.

An important feature of this macrohub is that it is unique. To justify this statement,
suppose that more than one macrohub exists. Denote the degrees of the largest and second
largest hub by h1N and h2N , respectively. The degree of the largest hub is determined
from equation (10), whose solution is given by (11). For the second largest hub, the same
reasoning that led to equation (10) now gives

h2 = (1− h1r)2 − (1− h1r − h2r)2.

This equation has two solutions, h2 = 0 and an unphysical solution h2 = −h1. Thus a
second largest hub does not exist and greedy choice generates one hub when 1

2
< r < 1.

To compute the degree distribution, we must now explicitly include the effect of
the macrohub in the recurrence (2) when 1

2
< r < 1. In particular, when we replace∑

j<k(j + λ)nj by
∑

j≥1(j + λ)nj as k →∞, the summation must be limited to nodes of
finite degree. Thus we now write

∑
j≥1(j+λ)nj = 2+λ−h, where the last term represents

the contribution of the macrohub. Using the connection λ = 1/r − 2 and (11) to rewrite
2 + λ− h as r−2 − r−1, the recurrence (2) simplifies to

nk = −2(1− r) d

dk
(knk)− 2r2(knk)

2. (12)

The second term on the right-hand side is asymptotically negligible and the asymptotic
solution is nk ∼ k−[1+1/(2−2r)].

To summarize, the degree distribution for greedy choice has the algebraic tail

nk ∼ k−ν2 , (13)

where the decay exponent is given by (figure 4(a))

ν2(r) =

{
1 + 1/(2r) 0 < r < 1

2
,

1 + 1/(2− 2r) 1
2
< r < 1,

(14)

and the subscript refers to greedy choice from two alternatives. Unexpectedly, ν2(r)
satisfies mirror symmetry, ν2(r) = ν2(1 − r). Also notice that the two forms for ν2(r)
coincide when r = 1

2
. This feature, together with the emergence of a macrohub for r > 1

2
,

indicates that a structural transition occurs at r = 1
2
, and it is natural to anticipate

the appearance of a logarithmic correction at this point, as we postulated to derive
equation (6). For comparison, in the situation without choice, the decay exponent is
ν1 = 1+1/r. For the special case of strictly linear preferential attachment, λ = 0 or r = 1

2
,

the degree distribution is

nk ' 4×
{
k−3 no choice,
(k ln k)−2 binary choice.

(15)

doi:10.1088/1742-5468/2014/04/P04021 8
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Using the above exponent ν2 in the extremal criterion (7), the maximal degree kmax

in a network of N nodes with greedy choice is given by:

kmax ∼


N2r 0 < r < 1

2
,

N(lnN)−2 r = 1
2
,

N2−2r 1
2
< r < 1.

(16)

The latter case actually gives the second largest degree, as the macrohub has the maximal
degree whose value is hN .

To numerically implement greedy choice for shifted linear preferential attachment, we
simply allow for choice in the redirection algorithm [21]. That is, we independently identify
two target nodes by redirection and the new node attaches to the target with the higher
degree. Figure 4(b) shows representative simulation results for the degree distribution
with greedy choice when r = 1

3
and r = 2

3
. According to equation (14), the exponent of

the two degree distributions should be the same, as seen in our data. For r = 2
3
, a unique

macrohub also emerges whose average degree is predicted from equation (11) to be hN ,
with h = 3

4
. As an illustration, simulations of 50 realizations of networks of 108 nodes gives

h = 0.7503± 0.0012, in excellent agreement with the theory.

2.2. More than two alternatives

We may readily generalize to greedy choice with p > 2 options, where p target nodes are
selected and attachment occurs to the target with the largest degree. The influence of the
number of options p can be easily determined for the emergence of a macrohub. Now the
analogue of (10) is

h = 1− (1− hr)p, (17)

from which a macrohub emerges when the redirection probability exceeds rc = 1/p. For
p = 3, the explicit solution is

h =
3r −

√
4r − 3r2

2r2
(18)

for r > 1
3
, while for arbitrary p

h ' 2(r − rc)
rc(1− rc)

, rc =
1

p
, (19)

near the transition 0 < r−rc� 1. For any p, the macrohub degree grows linearly in r−rc
close to the transition.

For p = 3 choices, the analogue of (2) for the degree distribution is

nk = 3
ψk−1 − ψk
(2 + λ)3

(∑
j<k

ψj
)2

+ 3
ψ2
k−1 − ψ2

k

(2 + λ)3

∑
j<k

ψj +
ψ3
k−1 − ψ3

k

(2 + λ)3
+ δk,1, (20)

with again ψk = (k + λ)nk. The first term accounts for events where a unique maximal-
degree node exists from among three choices, while the second and third terms account for
events with a two-fold and three-fold degeneracy in the maximal-degree node, respectively.

doi:10.1088/1742-5468/2014/04/P04021 9
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When −1 < λ < 1, or equivalently 0 < r < 1
3
, the terms in the first line of (20)

are dominant and the equation reduces to (knk)
′ = −1

3
(2 + λ)nk for k →∞. We thereby

obtain nk ∼ k−[1+1/(3r)]. In the marginal case of r = 1
3
, we again expect a logarithmic

correction of the form given in (4). With this ansatz, the terms in the first and second
lines of (20) are now of the same order, while the terms in the third line are negligible.
The governing equation for u(v) is

9 =

(
1− du

dv

)
v2 − 2uv, (21)

which gives u = (3− v)2(6 + v)/(3v2). Combining this with u = dv/d` and specializing to
the limit of large `, we find

nk '
3

k2 (ln k)2
. (22)

When λ > 1 (equivalently 1
3
< r < 1), the first term on the right-hand side of

(20) is dominant. However, we should again exclude the macrohub from the sum
Σk =

∑
j<k(j + λ)nj. Hence Σk → 2 + λ− h and (20) reduces to

nk = −3r[1− hr]2 d

dk
(knk).

Thus for the greedy three-choice model, the degree distribution scales as nk ∼ k−ν3 , with

ν3(r) =

{
1 + 1/(3r) 0 < r < 1

3
,

1 + 1/(3r[1− hr]2) 1
3
< r < 1.

(23)

For arbitrary p ≥ 2, the generalization of (23) is

νp(r) =

{
1 + 1/(pr) 0 < r < 1

p
,

1 + 1/(pr[1− hr]p−1) 1
p
< r < 1.

(24)

with h = h(r) implicitly determined by (17). In the marginal case of r = 1/p, the
generalization of (22) is

nk '
p(2p− 2)!

(p− 2)!

1

k2 (ln k)2
, (25)

and the maximal degree kmax in a network of N nodes is

kmax ∼


Npr 0 < r < 1

p
,

N(lnN)−2 r = 1
p
,

Npr[1−hr]p−1 1
p
< r < 1.

(26)

As in optimization and queuing theory, the possibility of choosing between more than two
options leads only to quantitative changes compared to the more fundamental case of two
options.
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2.3. Networks with loops

Thus far, we have studied the situation where every new node attaches to one already
existing node, leading to tree networks. However, we can also treat networks with loops.
Here we outline how to deal with the situation where loops are created when each new
node attaches to m already existing nodes, with each attachment event created by the
same choice-driven algorithm as in the previous section. Limiting ourselves to shifted
linear attachment and focusing on greedy choice from two alternatives, the recursion for
nk is given by (compare with equation (2))

nk = m
ψk−1 − ψk

(2m+ λ)2/2

∑
j<k

ψj −m
ψ2
k−1 + ψ2

k

(2m+ λ)2
+ δk,m. (27)

This recurrence can be analyzed using the same methods as in the case of trees.
For instance when λ > 0, we replace

∑
j<k ψj by

∑
j≥m ψj = 2m + λ when k � 1, and

then employ the continuum approximation to recast (27) into the differential equation
(knk)

′ = −(1 + λ/2m)nk. This equation again has an algebraic solution of the form (13),
with decay exponent ν2 = 2 + λ/(2m).

A macrohub of degree hN again emerges when λ < 0, with h determined by the relation

h = m

[
1−

(
1− h

2m+ λ

)2
]
, (28)

which generalizes (10). Thus

h = −λ(2m+ λ)

m
. (29)

Note that the range of the shift parameter is now λ > −m, since the minimal degree is m
and we must ensure that the attachment to nodes of degree m is non-negative. The degree
distribution associated with the remaining nodes still has an algebraic tail. To summarize,
the decay exponent is given by

ν2 =

{
2 + λ/(2m) λ > 0,
(4m+ 3λ)/(2m+ 2λ) 0 > λ > −m. (30)

For the special case of strictly linear preferential attachment λ = 0, the tail of the degree
distribution is

nk '
{

2m(m+ 1)× k−3 no choice,
4m× (k ln k)−2 binary choice.

(31)

3. Meek choice

The complementary situation of meek choice, where a set of target nodes is first selected
and a new node attaches to a target with less than the largest degree leads to very different
phenomenology. The simplest case is that of first selecting two nodes according to linear
preferential attachment (corresponding to λ = 0) and the new node attaches to the smaller
degree target; this specific example was also recently investigated in [25].
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We determine the degree distribution in this meek choice model by following the same
approach as in greedy choice. The analogue of (2) for the degree distribution, in the case
of λ = 0, is

nk = 1
2

[
ψk−1 − ψk

]∑
j≥k

ψj + 1
4

[
ψ2
k−1 + ψ2

k

]
+ δk,1. (32)

Using identity
∑

j≥k jnj = 2−
∑

j<k jnj recasts (32) as a recurrence. In the case of strictly
linear preferential attachment, λ = 0, the solutions for small degrees are:

n1 = 4− 2
√

3 ≈ 0.535 89,

n2 = −1
2

+
√

3− 1
2

√
25− 12

√
3 ≈ 0.205 48,

n3 = −1
9

+ 1
3

√
25− 12

√
3− 2

9

√
79− 6

√
25− 12

√
3− 36

√
3 ≈ 0.110 99,

(33)

etc. Notice that while the first few nk are larger than those for greedy choice in
equations (3), the asymptotic degree distribution decays precipitously with k (figure 3).
For example, in simulations of 50 realizations of networks grown to 108 nodes, the largest
observed degree is only 9!

We now exploit this rapid decay to determine the asymptotic behavior of the degree
distribution. For large k, an increase in nk can occur only if the two target nodes have
degree k−1. Thus we posit that the dominant term in (32) is 1

4
(k−1)2n2

k−1. Keeping only
this term, the asymptotic behavior of the logarithm of the degree distribution is given by

lnnk ∼ −C × 2k, (34)

up to some amplitude C that cannot be determined within this simplified analysis. One
can then verify that the remaining terms in (32) are subdominant. From this asymptotic
degree distribution, we estimate the maximal degree in a network of N nodes to be
kmax ' log2 log2N , as recently proved in [25].

When p distinct initial target nodes are selected by preferential attachment, there are
p possibilities for the attachment event: to the highest degree node, to the second highest
degree node, all the way to the lowest degree node. While the combinatorics become
unwieldy for the general case of identifying the target node with the mth largest degree
out of p choices, the dominant contribution to nk for large k arises when m targets have
degree k− 1 and the remaining p−m targets have degrees less than k− 1. Following the
same reasoning as in the case of attaching to the smallest degree node out of two choices,
the dominant term in the generalization of (32) is proportional to (k−1)mnmk−1. This leads
to nk ∼ exp(−const.×mk). Thus for all but greedy choice, the degree distribution decays
precipitously with degree.

From this asymptotic degree distribution, the maximal degree grows with N as

kmax ∼


Nωp greedy choice
log2 log2N second highest degree
log3 log3N third highest degree
· · ·
logp logpN smallest degree

(35)

for p ≥ 2. The exponent ωp that appears in (35) depends on the number of alternatives
p and on details of the attachment rate. For strictly linear preferential attachment,
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ωp = p(1 − h)/(2 − h), where the degree h of the macrohub is the positive solution of
the equation h = 1− (1−h/2)p. The other ultra-slow growth laws in (35) are robust with
respect to the details of the attachment rule. These latter behaviors do not depend on the
details of the selection rule as long as the choice is less than greedy.

4. Summary

Incorporating choice in preferential attachment network growth leads to a rich
phenomenology in which the effect of preferential attachment can be strongly amplified
or entirely eliminated. We have explored a general class of models in which a set of target
nodes in the network are first selected according to preferential attachment and then a
new node joins the network by attaching to one of these target nodes according to a
specified criterion. In greedy choice, attachment is made to the target with the largest
degree. We also investigated attaching to a node in the target set whose degree is not the
largest. For a target set of p nodes, there are p − 1 possible such choices—to the second
largest degree node, the third largest, . . . , to the smallest degree node. We term this class
of models as meek choice.

Past work on the power of choice on the random recursive tree [6] found that greedy
choice broadens the degree distribution, but only in a quantitative way. We have shown
that greedy choice plays a much more significant role for networks that grow by preferential
attachment. We focused on shifted linear preferential attachment, but our methods apply
to other models with asymptotically linear preferential attachment. The details depend
on the model, but the general outcome is robust. In the sub-critical phase, the degree
distribution has a power-law tail that is considerably broader than in the case of no
choice. In the super-critical phase, a macrohub emerges, while the remainder of the
degree distribution is still algebraic. At the boundary between these two phases, the
degree distribution decays as (k ln k)−2. This form for the degree distribution is consistent
with a finite average degree in the network because of the presence of the logarithmic
factor.

The influence of meek choice is perhaps even more dramatic, as it effectively
counteracts preferential attachment. When p target nodes are initially selected, meek
choice means that the new node attaches to a target whose degree is less than the highest
in the target set. For the case where a new node attaches to the mth largest degree out
of a target set of p nodes that are each selected by linear preferential attachment, meek
choice leads to a double-exponential degree distribution of the form exp(−const. × ek),
and a maximal degree that is of the order of logm logmN . It is surprising that this sharp
decay should hold for attachment to the target with the second highest degree out of
p � 1 targets. In this case, the degree distribution will initially resemble that of greedy
choice and the crossover to a precipitous decay will occur at an extremely large degree
value.
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