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Does Good Mutation Help You Live Longer?
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We study the dynamics of an age-structured population in which the life expectancy of an offspring
may be mutated with respect to that of its parent. When advantageous mutation is favored, the average
fitness of the population grows linearly with time t, while in the opposite case the average fitness is
constant. For no mutational bias, the average fitness grows as t2�3. The average age of the population
remains finite in all cases and paradoxically is a decreasing function of the overall population fitness.

PACS numbers: 87.10.+e, 02.50.Ey, 82.20.Mj, 87.23.Cc
In this Letter, we investigate the role of mutation on the
age distribution and fitness of individuals within a simple
age-structured population dynamics model. The basic fea-
ture of our model is that the life expectancy of an offspring,
which measures its fitness, may be mutated with respect to
that of its parent. While age-structured population mod-
els have been studied previously [1,2], relatively little is
known about the role of mutation. When the individual
reproduction rate is the fitness measure and population is
regulated by externally imposed death, mutation leads to
predominance by the fittest species [3]. In a related vein, it
was recently shown that longevity is heritable [4,5] within
the Penna bit-string model of aging [6]. In these studies,
the role of positive mutations was central. Our focus is
quite different, as we study the dynamics of the fitness and
age in a self-interacting population as a function of the ad-
vantageous and deleterious mutation rates.

When advantageous mutation is favored, that is, the off-
spring life expectancy (fitness) is greater than that of its
parent, the fitness distribution of the population approaches
a Gaussian with average fitness growing linearly in time
and dispersion increasing as t1�2. Conversely, when dele-
terious mutation is more likely, there is a t22�3 approach to
a steady fitness distribution. In the absence of mutational
bias, the fitness distribution again approaches a Gaussian,
with average fitness growing as t2�3 and width growing as
t1�2. The average age of the population reaches a steady
value in all cases and, surprisingly, is a decreasing func-
tion of the average fitness. Therefore within our model, a
fitter population leads to a decreased individual lifetime.

Our model is a simple population dynamics scenario
which incorporates age structure and mutation. This dy-
namics is based on the logistic model, �N � bN 2 gN2,
in which a population with density N�t� evolves both by
birth at rate b, and death at rate gN , with steady-state so-
lution N` � b�g. The crucial new element in our model
is that the life expectancy of each newborn may be mu-
tated by 6t (with jtj � 1 without loss of generality)
with respect to that of its parent. We also assume a con-
stant age-independent mortality rate and birth rate for each
individual.
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Each of these features represents idealizations of real-
ity; for example, it would be more realistic to incorporate
a mortality rate which is an increasing function of age
[2,5,7]. We shall argue below that our choice of an age-
independent mortality leads to behavior which applies to
systems with realistic mortality rates. The nature of our
results also suggests that the details of the mutation-driven
shift in offspring life expectancy is not crucial.

Let Cn�a, t� be the density of individuals with life
expectancy n $ 1 and age a at time t. According to our
model, the rate equation for Cn�a, t� isµ

≠

≠t
1

≠

≠a

∂
Cn�a, t� � 2

∑
gN�t� 1

1
n

∏
Cn�a, t� . (1)

The derivative with respect to a on the left-hand side ac-
counts for aging [1,8]. On the right-hand side, the loss
term gNCn accounts for death by competition and is as-
sumed to be independent of an individual’s age and fitness.
As discussed above, the mortality rate is taken as age inde-
pendent; the form Cn�n guarantees that the life expectancy
equals n.

We account for the population of newborns as a bound-
ary condition for Cn�a � 0, t� [1]. An individual produces
offspring with the same life expectancy at rate b, and, due
to mutation, produces offspring whose life expectancy is
longer or shorter than its parent by 61, with respective
rates b6. Defining Pn�t� �

R`

0 da Cn�a, t� as the density
of individuals at time t of any age whose life expectancy
equals n, then the boundary condition for Cn�0, t� is

Cn�0, t� � bPn�t� 1 b1Pn21�t� 1 b2Pn11�t� . (2)

To determine the asymptotic behavior of the age and
fitness distributions, it proves useful to first disregard the
age structure and focus on fitness alone. From Eqs. (1)
and (2), the rate equations for Pn�t� for n $ 1 are

dPn

dt
�

µ
b 2 gN 2

1
n

∂
Pn 1 b1Pn21 1 b2Pn11 ,

(3)
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with P0 � 0. This describes a random-walk-like process
in a one-dimensional fitness space which is augmented
by birth and death due to the first term on the right-hand
side (rhs). Using N�t� � SPn�t�, we find that the total
population density obeys a generalized logistic equation

dN
dt

� �B 2 gN�N 2
X̀
n�1

Pn

n
2 b2P1 , (4)

where B � b 1 b1 1 b2 is the total birth rate.
We now discuss the asymptotic behavior of these rate

equations for three basic cases: subcritical—deleterious
mutations favored (b2 . b1); critical—no mutational
bias (b1 � b2); and supercritical—advantageous muta-
tions favored (b1 . b2). In all three cases, the total popu-
lation density N and the average age A � N21

P
An, with

An �
R

aCn�a� da, approach steady values. These are de-
termined by a balance between the total birth rate B and
the death rate gN due to overcrowding. In the critical and
supercritical cases, this leads to the steady state behaviors
for the total density and the average age,

N �
B
g

, A �
1

gN
�

1
B

. (5)

The behavior in the subcritical case is more subtle, as we
now discuss.

Subcritical case.—Here a steady state is reached whose
properties are found by setting dPn

dt � 0 in Eq. (3). We
solve this rate equation by introducing the generating func-
tion F�x� �

P
n$1 Pnxn21 to transform the rate equation

into the differential equation

F0

F
�

gN 2 b 1 1 2 2b2x
b2 2 �gN 2 b�x 1 b1x2 . (6)

Integrating Eq. (6), subject to the obvious boundary con-
dition F�1� � N , gives a family of solutions which are pa-
rametrized by the total population density N . To extract a
unique solution one has to invoke additional arguments.
First notice that N lies within a finite range. The up-
per limit is found from the steady-state version of Eq. (4),
�B 2 gN�N � Sn21Pn 1 b2P1 . 0, to give gN , B.
The lower limit is obtained from the physical requirement
that all the Pn’s are positive and therefore F�x� is an in-
creasing function of x. From Eq. (6) this leads to the in-
equality �gN 2 b�2 $ 4b1b2. Thus

b 1 2
p

b1b2 # gN , B . (7)

For any initial condition for the Pn with a finite support
in n, only the minimal solution which satisfies the lower
bound of Eq. (7) is realized. This selection is reminiscent
of the behavior in the Fisher-Kolmogorov equation and
related reaction-diffusion systems [1].

To understand why the minimal solution is selected,
consider the steady-state asymptotic behavior of Pn for
n ! `. In this limit, we may neglect the Pn�n term
in Eq. (3). The resulting quasilinear equation has the
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solution Pn � A1ln
1 1 A2ln

2, with l6 � �gN 2 b 6p
�gN 2 b�2 2 4b1b2 ��2b2, and with l6 , 1. Thus

the steady-state fitness distribution decays exponentially
with n. When the total population density attains the mini-
mal value Nmin � �b 1 2

p
b1b2 ��g, l1 achieves its

minimum possible value lmin
1 �

p
b1�b2 � m21, where

m is the mutational bias. Since Pn � ln
1, the fitness

distribution has the most rapid decay in n for the minimal
solution. This minimal solution appears to be the basin of
attraction for any initial condition with Pn�0� decaying at
least as fast as m2n. Conversely, an initial condition which
decays as an with a in the range �m21, lmax

1 � 1� should
belong to the basin of attraction of the solution where, from
the steady-state version of Eq. (3) in the large-n limit, the
total population density is N � �b 1 b2a 1 b1a21��g.
We have verified this general classification of solutions
numerically [9].

Since the steady state is approached exponentially in
time for the classical logistic equation, �N � bN 2 gN2,
one might anticipate a similar relaxation for our age-
structured logistic equation (4). However, a numerical in-
tegration of the rate equations gives a power-law relaxation
of the total population density, N` 2 N�t� � t22�3, for a
compact initial condition (Fig. 1). This is also verified by
an asymptotic analysis of the rate equations [9]. A similar
relaxation also occurs for the subpopulation densities with
given fitness, Pn�t�.

For the relevant situation where the density N takes the
minimal value, we integrate Eq. (6) to give the generating
function

F�x� � N

√
m 2 1
m 2 x

!2

exp

(
x 2 1

b1�m 2 x� �m 2 1�

)
. (8)

One can formally determine the Pn by expanding F�x� in
a Taylor series. However, the asymptotic characteristics
of the fitness distribution are more easily determined
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FIG. 1. N�t� versus t22�3 in the subcritical case with b � 0,
b1 � 1, b2 � 2, and g � 0.5, and with the initial condition
Pn�t � 0� � 0.1 for 1 # n # 10. The asymptotic intercept
with the y axis gives the theoretically predicted value of
Nmin � 4

p
2 � 5.6568.
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directly from the generating function by using 	nk
 �
1
N 3P`

n�1 nkPn �
1
N �x d

dx �kF�x�jx�1. Applying this to Eq. (8),
the first two moments of the fitness distribution are

	n
 �
1

b1�m 2 1�2 1
2

m 2 1
1 1 ,

s2 � 	n2
 2 	n
2 �
m 1 1

b1�m 2 1�3 1
2m

�m 2 1�2 .

(9)

The average age of the population may be obtained by
first solving Eq. (1) in the steady state to give

Cn�a� � Pn

µ
gN 1

1
n

∂
exp

∑
2

µ
gN 1

1
n

∂
a

∏
. (10)

The average age then is [9]

A �
1
N
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1
N

1
�gN�2
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n�1

Pn

n 1 �gN�21 ,

�
1

gN
2

1
N

1
�gN�2

Z 1

0
x�1�gN�F�x� dx , (11)

where the second line is obtained by using the expression
for Cn�a� from Eq. (10) and the last line follows by ex-
pressing the sum in terms of an integral of the generating
function. The surprising feature that emerges by numeri-
cal evaluation of this integral (Fig. 2) is that the average
age decreases as the population gets fitter.

Supercritical case.—When b1 . b2, the random walk
in fitness space defined by Eq. (3) is biased away from the
origin and a continuum approach becomes appropriate in
the long-time limit. Treating n as continuous and Taylor
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FIG. 2. Average age A of the steady state population versus
m21 �

p
b1�b2 with b � 0, and with fixed total birth rate

equal to one. For m21 . 1, the average age A � 1, while for
m21 ! 0, A ! 2 [9].
expanding the master equation for small deviations about
n, gives the following convection-diffusion equation, sup-
plemented by birth/death terms, for the fitness distribution:µ

≠

≠t
1 V

≠

≠n

∂
P �

µ
B 2 gN 2

1
n

∂
P 1 D

≠2P
≠n2 .

(12)

The difference between the advantageous and deleterious
mutation rates now defines a bias velocity V � b1 2 b2,
and the average mutation rate plays the role of a diffusion
constant D � �b1 1 b2��2. Integrating over all fitness
values, the total population density obeys

dN
dt

� �B 2 gN�N 2
Z `

0

P�n, t�
n

dn . (13)

Since the fitness distribution is sharply peaked at 	n
 � Vt
(see below), the integral on the rhs approaches N�Vt. By
setting dN

dt � 0 in the resulting equation, we conclude that
gN ! B 2

1
Vt . This gives both the steady-state density,

as well as the rate of convergence to the steady state.
We now find the fitness distribution by substituting this

asymptotics for N�t� into Eq. (12) to giveµ
≠

≠t
1 V

≠

≠n

∂
P �

µ
1
Vt

2
1
n

∂
P 1 D

≠2P
≠n2 . (14)

The birth/death term on the rhs may be neglected, since
	n
 � Vt, and fluctuations about this average are of the
order of t1�2. This approximation reduces Eq. (14) into
the classical convection-diffusion equation, with solution

P�n, t� �
N

p
4pDt

exp

"
2

�n 2 	n
�2

4Dt

#
. (15)

This gives a localized fitness distribution with average
fitness growing linearly in time, 	n
 � Vt, and width
growing diffusively, s �

p
2Dt.

To determine the age characteristics, notice that asymp-
totically, the Pn’s change slowly with time, so that the time
variable t is slow. On the other hand, the age variable a is
fast. Physically this reflects the fact that during the lifetime
of a typical individual the change in the age characteristics
of the population is small. Thus in the first approximation,
we retain only the age derivative in Eq. (1). We also ig-
nore the term Cn�n, which is small near the peak of the
asymptotic fitness distribution. Solving the resulting mas-
ter equation and using the boundary condition of Eq. (2)
we obtain

Cn�a, t� � Pn�t�gNe2gNa

�
gN2

p
4pDt

exp

"
2gNa 2

�n 2 Vt�2

4Dt

#
. (16)

Summing over the fitness variable, the total age distribu-
tion C�a, t� �

P
Cn�a, t� is just a (stationary) Poisson,
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C�a, t� � gN2e2gNa, and the average age is A �
�gN�21 � B21, in agreement with Eq. (5).

Let us compare this average age to that in the subcritical
case; the latter is given by Eq. (11) with gN � b 1

2
p

b1b2. To provide a fair comparison (Fig. 2), take the
total birth rate B to be the same in both cases. It can
then be proved that the average age in the supercritical
case is always smaller than that in the subcritical case [9].
Individuals in a population with preferential deleterious
mutations live longer than if advantageous mutations are
favored. The continuous “rat-race” to increased fitness in
the supercritical case does not lead to an increase in the
average life span.

Critical case.—With no mutational bias, the fitness still
grows indefinitely, but more slowly than in the supercriti-
cal system. The equation of motion for P�n, t� is again
given by Eq. (12), but with V set equal to zero and with
N�t� is still described by Eq. (13). To derive the scaling
behaviors of 	n
 and the width of the fitness distribution,
we first use the fact that numerical integration of Eq. (12)
again gives a localized fitness distribution. Thus we may
estimate the integral on the rhs of Eq. (13) as N�	n
. This
leads to gN ! B 2

1
	n
 . Substituting this into Eq. (12)

for P�n, t� now yields

≠P
≠t

�

µ
1

	n

2

1
n

∂
P 1 D

≠2P
≠n2 . (17)

To determine the long-time behavior of this equation,
we exploit the fact that the fitness distribution is peaked
near n � 	n
. This suggests changing variables from �n, t�
to the comoving coordinates � y � n 2 	n
, t�. Equa-
tion (17) then becomes

≠P
≠t

2
d	n

dt

≠P
≠y

�
y

	n
2 P 2
y2

	n
3 P 1 D
≠2P
≠y2 .

(18)

Let us first assume that the average fitness grows faster
than diffusively, that is, 	n
 ¿

p
t. With this assumption,

the dominant terms in Eq. (18) are

d	n

dt

≠P
≠y

� 2
y

	n
2 P . (19)

These terms balance when 	n
��ty� � y�	n
2. Using this
scaling in Eq. (18) and then balancing the remaining
subdominant terms gives y �

p
t. The combination of

these results then gives 	n
 � t2�3. This justifies our initial
assumption, 	n
 ¿

p
t. Finally, writing 	n
 � �ut�2�3

simplifies Eq. (19) to

≠P
≠y

� 2
3y

2u2t
P , (20)

whose solution is the Gaussian of Eq. (15), but with 	n
 �
�ut�2�3. The value u �

p
3D is determined by substituting

	n
 � �ut�2�3 in Eq. (18) and balancing the subdominant
terms. To summarize, a Gaussian fitness distribution holds
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in both the critical and supercritical cases with the fitness
distribution peaked at

	n
 �

Ω
�3D�1�3t2�3 critical case;
Vt supercritical case.

(21)

The age distribution in the critical case is obtained simi-
larly to the supercritical case. The asymptotics of Cn�a, t�
is again given by a form similar to Eq. (16), which gives
C�a, t� � gN2e2gNa after summing over n. Hence the
average age is B21, as in Eq. (5).

While our discussion is based on a population dynamics
with an age-independent mortality rate, this assumption
does not substantially affect our main results. The crucial
point is that old age is unattainable within our model. In
the critical and supercritical cases, this is due to death by
increased competition among fit individuals, while in the
subcritical case, age is limited by the deleterious muta-
tional bias. Thus for a more realistic mortality rate which
increases with age, similar fitness and age dynamics to
those outlined here would still result [9].

In summary, in our population dynamics model, the av-
erage fitness grows linearly in time when advantageous
mutations are more likely and the fitness approaches a
steady value when deleterious mutations are favored. In
spite of this fitness evolution, the average age of the popu-
lation always reaches a steady state. Intriguingly, this
average age is a decreasing function of the average popula-
tion fitness. This paradoxical behavior arises because com-
petition becomes keener as the population becomes fitter.
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