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Abstract

Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and
building block biosynthesis. While these are the best characterized networks in living systems, understanding their
evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately
related to the enigma of life’s origin itself. Is the evolution of metabolism subject to general principles, beyond the
unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In
particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can
optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that
the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and
hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of
pathway length as a function of input/output molecule size. Some of these properties can be derived analytically,
borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified
carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for
real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some
aspects of biochemical complexity.
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Introduction

The prominent role of metabolism in any biological process and

the fact that a large portion of the environmental factors shaping

living systems are ultimately metabolic in nature, suggest that strong

selective forces have been acting on metabolic networks throughout

the history of life. In laboratory evolution experiments [1–3] one

can witness mostly short term metabolic adaptations, affecting

metabolic enzyme regulation and fine tuning of kinetic parameters.

However, especially during major transitions, such as the early

stages of life’s appearance or the rise of oxygen in the Earth’s

atmosphere, selective forces must have shaped the metabolic wiring

itself [4]. Comparative genomics can provide top-down insight into

some long-term evolution of metabolic pathways [5,6]. In addition,

studies of prebiotic chemistry scenarios have suggested possible

seeds of biochemical organization from a bottom-up perspective

[7–10]. Yet, whether the long term evolution of metabolism

was dominated by unpredictable frozen accidents, or by inevitable

network optimization processes, remains a fundamental open

question.

In a 1961 review, Baldwin and Krebs suggested that biochemical

network topologies may reflect the adaptation toward optimally

efficient metabolic strategies, and that manifold use of certain

molecules may be a crucial element of this adaptation, as ‘‘it is

indeed a general principle of evolution that multiple use is made of

given resources.’’[11]. Some computational studies have proposed

that the topology of specific metabolic pathways may have evolved

towards maximal efficiency [12], minimal number of steps [13], or

that network properties may reflect optimal organization [14]. Here

we seek to address this problem by exploring a system that can reach

a level of complexity comparable to the one observed in the union of

all known metabolic pathways, yet is simple enough to allow

efficient computation and analytical calculations. In addition, we

wish to explore at an ecosystem-level the potential role of

‘‘metabolic multi-tasking’’, as suggested by Baldwin and Krebs.

The increasing evidence of abundant horizontal gene transfer in the

history of life suggests that this question may be indeed especially

relevant at the ecosystem level, where the interchange of genetic

information might have created a free economy of enzymes among

simple organisms, allowing for the emergence of species that share

common molecular tools [15]. Recent metagenomic studies of

microbial consortia [16] also suggest the question of whether

metabolic functions, more than individual species distributions,

might be directly dependent on environmental conditions. Hence

it is possible that hallmarks of metabolic optimality in meta-

bolic network wiring may be observable at the level of global
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(multi-species) metabolic networks [17,18], more than at the

individual species level. Do specific molecules, reactions or pathway

topologies appear to be universally useful in a biochemical network,

i.e., relevant for maximally efficient completion of several possible

metabolic tasks, possibly across multiple organisms?

In the present work, we combine the study of an extremely

simple artificial chemistry [19–22] with recent systems biology

approaches [23,24] to systematically compute pathways that are

optimal for an array of elementary metabolic tasks, converting an

input molecule into an output one. Behind the apparent

complexity of the ensuing pathways, we identify recurring,

modularly organized categories of network topologies, and

analytically predictable trends in pathway length. In addition,

we observe the emergence of ‘‘universal metabolic tools’’ across all

optimal pathways. Finally, despite the huge gap in the underlying

chemical rules, we find that some properties of real metabolic

pathways are consistent with the patterns detected in the model,

suggesting that fundamental optimality principles may have played

a role in shaping biochemical networks.

Results

Our artificial chemistry consists of a set of N possible molecules

{a1, a2, a3, …, aN}, that can participate in reversible ligation/

cleavage reactions of the form ai + aj « ak, with i+j = k. This model

could be viewed as the simplest possible string-based artificial

chemistry [19]. The reaction network RN that includes all

metabolites up to length N and all possible reactions (of the order

of N2/4, see Methods) between them (Fig. 1) can be thought of as

the underlying chemistry based on which specialized metabolic

tasks could emerge. Here we were concerned with pathways,

within the RN network, that can optimally perform a given

metabolic task. In particular, we searched for optimal solutions to

the problem of producing a specific end-product (e.g., aj, with

output flux vout) from a single available nutrient (e.g., ai, with input

flux vin). We define an optimal pathway as one that satisfies the

following conditions: (i) it allows a steady state solution, i.e., a

mass-conserving flow from input to output; (ii) it has maximal

yield, and no waste [25], such that vout = vin?j/i; and (iii) it has the

fewest reaction steps possible. A pathway satisfying these

conditions is termed a minimal balanced pathway (MBP) between ai

and aj, and will be denoted ai) aj. MBPs (also referred to below as

optimal pathways) can be thought of as the pathways that are most

efficient for a specific metabolic task, in the sense that they require

the smallest possible number of different enzymes for producing

the maximal possible yield [12,26,27].

Despite the simplicity of our artificial chemistry, identifying the

MBPs between all possible input-output pairs in a given artificial

chemistry RN is a challenge for large N. We implement three

algorithms to approach this problem: a mixed integer linear

programming (MILP) akin to flux balance analysis (FBA) [28]; an

algorithm that uses enumeration of elementary flux modes [23];

and finally an iterative algorithm that gradually assembles new

MBPs from already identified simple ones (see Methods). The

three algorithms differ mainly in their scalability, and in their

capacity to predict multiple degenerate solutions (see Table S1). A

partial overview of the results of our calculations is shown in

Fig. 2A and Fig. S1 (see Tables S2 and S3 for a comprehensive list

of MBPs).

Behind the apparent complexity of the topologies encountered

in each of the different pathways, it is possible to observe the

recurrence of three fundamental categories: each MBP functions

either as a pure ‘‘addition chain’’ [29], where smaller metabolites

are progressively added together to build the target molecule,

or as an ‘‘addition-subtraction chain’’, in which metabolites are

both synthesized and degraded within the pathway. Addition and

Figure 1. Representation of the R4 network. (A) This schematic of
the R4 artificial chemistry network is composed of metabolite ‘‘strings’’ of
a up to a maximum length of four, and all allowed reactions between
them. (B) The reaction list for the R4 network. There are four reactions
that represent the exchange of mass with the environment (r1-r4) – one
for each metabolite – and four reactions between the metabolites (r5-r8).
doi:10.1371/journal.pcbi.1000725.g001

Author Summary

Metabolism is the network of biochemical reactions that
transforms available resources (‘‘inputs’’) into energy
currency and building blocks (‘‘outputs’’). Different organ-
isms have different assortments of metabolic pathways
and input/output requirements, reflecting their adaptation
to specific environments, and to specific strategies for
reproduction and survival. Here we ask whether, beneath
the intricate wiring of these networks, it is possible to
discern signatures of optimal (i.e., shortest and maximally
efficient) pathway architectures. A systematic search for
such optimal pathways between all possible pairs of input
and output molecules in real organic chemistry is
computationally intractable. However, we can implement
such a search in a simple artificial chemistry, which roughly
resembles a single atom (e.g., carbon) version of real
biochemistry. We find that optimal pathways in our
idealized chemistry display a logarithmic dependence of
pathway length on input/output molecule size. They also
display recurring topologies, including autocatalytic cycles
reminiscent of ancient and highly conserved cores of real
biochemistry. Finally, across all optimal pathways, we
identify universally important metabolites and reactions, as
well as a characteristic distribution of reaction utilization.
Similar features can be observed in real metabolic
networks, suggesting that arithmetic simplicity may lie
beneath some aspects of biochemical complexity.

Arithmetic Simplicity in Metabolic Networks

PLoS Computational Biology | www.ploscompbiol.org 2 April 2010 | Volume 6 | Issue 4 | e1000725



Arithmetic Simplicity in Metabolic Networks

PLoS Computational Biology | www.ploscompbiol.org 3 April 2010 | Volume 6 | Issue 4 | e1000725



addition-subtraction chains are concepts borrowed from the field

of cryptography, whose relevance to our question will become

apparent later. There is also a third, smaller category of cyclical

pathways that cannot proceed unless a certain intermediate

molecule is already present in the system. These pathways are

autocatalytic cycles (Fig. 2B) that very much resemble autocatalytic

cycles found in real biochemistry, such as the reverse TCA cycle

[7], or the formose reaction [30]. Our results show that

autocatalytic cycles can be simultaneously optimal for multiple

tasks (Fig. 2B), suggesting that such types of structure may have a

fundamental evolutionary advantage in a biological context. In

addition to the recurrence of these topological categories among

MBPs, we find that some specific structures are used repeatedly,

often in a modular fashion (Fig. 2C). Specifically, many simple

MBPs are used hierarchically as a toolkit for the construction of

progressively more complex MBPs (data not shown), similar to

what has been observed in real metabolic networks [15,31,32].

This modular architecture of recurring graph types provides a

topological signature of optimally efficient pathways in our

idealized chemistry. Since these pathways are chosen based on

their minimal length, one may expect that a systematic analysis of

all MBP lengths will display additional distinctive properties.

Indeed, pathway lengths increase roughly logarithmically with the

size of the input (or output) molecule (Fig. 3 and S3), with

superimposed sharp jumps. For example, the task a9 ) a6 can be

performed in 2 steps, but the neighbor task a9 ) a7 requires a

minimum of 6 steps. Moreover, while most MBPs have only one or

a few optimal realizations, selected instances display a peak in

possible redundant solutions (Fig. S2), usually due to interconver-

sions between molecules of similar size (e.g., ax ) ax+1), or to the

inherent complexity of a specific molecule (e.g., a7 ) aj). These

regular patterns suggest that it may be possible to reproduce the

MBP length curves without having to actually compute the MBPs.

A similar search for patterns associated with minimal steps had

been previously encountered in the mathematics of addition-

subtraction chains, of high importance in cryptography [29].

These are integer sequences, beginning with 1, in which the i-th

entry is either the sum or difference of any two previous entries

in the sequence. These chains are often used in calculating large

exponents of numbers [33]. For example, calculating n128 can

either be performed in 127 multiplications (n 6 n = n2, n2 6 n =

n3,…, n127 6n = n128) or in a chain of 7 exponent multiplications

(n6n = n2, n26n2 = n4, n46n4 = n8,…, n646n64 = n128). The

latter can be further simplified by tracking the sums of the

exponents in each calculation, which form an addition chain (1, 2,

4, 8, 16, 32, 64, 128). Shortest addition-subtraction chains are

commonly used to calculate very large numbers in the fewest

number of steps, thus speeding up computation time. These are

often applied to methods in cryptography where the calculated

exponents can have on the order of thousands to tens of thousands

of bits [34].

The pathways explored in our model resemble optimal addition-

subtraction chains. For example, the problem of obtaining a128 from

a1 is formally equivalent to the addition chain example described

above. However while typical addition-subtraction chains start with

the number 1, in our MBPs we explore minimal paths starting from

any molecule ai (i$1). As described in detail in the Methods, we

extended previous work on addition-subtraction chains [29,35] to

derive the following analytical estimate of the length of MBPs:

L i,jð Þ*log2

i

gcd i,jð Þzlog2

j

gcd i,jð Þ ð1Þ

where L(i, j ) is the number of reactions in the MBP with input ai and

output aj, and gcd(i, j ) is the greatest common divisor of i and j. As

seen in Fig. 3, Eq. (1) reproduces the corresponding pathway lengths

obtained by computing individual MBPs. This agreement implies

that the number of reaction steps needed to construct an efficient

metabolic pathway between two metabolites in our artificial

chemistry can be roughly estimated from Eq. (1). The only feature

that determines the pathway lengths is the complexity of the input

and output molecules.

We can now ask whether similar minimal pathway length

signatures are discernible in real metabolic networks. To cope with

the gap in complexity between our model and real chemistry, we

mapped real metabolic networks onto a single atom backbone

[13,14]. For example, the aldolase reaction, which cleaves fructose-

1,6-bisphosphate (C6H14O12P2) into dihydroxyacetone phosphate

(C3H7O6P) and glyceraldehyde-3-phosphate (C3H7O6P), can be

mapped onto a carbon atom backbone, becoming simply C6 « C3

+ C3 (see Methods). This reaction is now formally analogous to the

a6 « a3 + a3 reaction in the idealized chemistry. Upon performing

this mapping onto a carbon atom backbone, we ask whether the

structure of real metabolic networks allows interconversions that use

the minimal, logarithmic number of steps found for the artificial

chemistry (Fig. 3 and Eq. (1)). Specifically, we identified all shortest

pathways between any two carbon compounds in Escherichia coli’s

metabolic network. This was performed using two methods. The

first was an explicit use of elementary flux modes as done in the

artificial chemistry. As with the artificial chemistry method, this has

the advantage of finding all of the shortest pathways that connect

any two carbon compounds, but is limited in computational scope

to a smaller network. Because of this limitation, we used the network

of E. coli’s central carbon metabolism [36,37], modified to remove

cofactors and reactions that do not affect carbon transfer (see

Methods). After finding all minimal elementary flux modes that

connect every pair of carbon compounds in the network, we

reduced those compounds to their carbon content alone, as

described above. We determined, for each input compound, the

length of the shortest elementary flux mode that reaches its closest

molecule with j carbons; then, for each value of i, we averaged these

path lengths over all input molecules with i carbons. The results

show that the lengths of the E. coli elementary flux modes correlate

with the lengths of the corresponding artificial chemistry MBPs and

with the analytical predictions, though the actual E. coli values are

overall larger than the artificial chemistry ones (Fig. 4). This last fact,

as discussed later, may be due, for example, to energetic constraints,

or to the higher complexity of real organic chemistry.

The second method is aimed at identifying all shortest pathways

between any two carbon compounds in the whole genome-scale

Figure 2. Emergent complexity and modularity in artificial network topology. (A) This set of example MBPs displays the emergent
modularity of structure and function, as well as the multiple usage of different reactions. Each row denotes the input metabolite used, and each
column the output metabolite. The reaction marked in red interconverts a2 + a2 « a4 and is the most used reaction. MBPs on a yellow background
are autocatalytic cycles. For a larger image with more examples, and a more detailed view of the properties observed in these networks, see Figure
S1. (B) A single autocatalytic loop is used as a modular backbone for several MBPs: the cycle that constructs a8 from a7 is also used to produce a1, a2,
and a4. (C) Four examples of the MBP that produces a10 from a9. Each breaks down a10 into a1 in different but equally optimal ways. Each of these
sub-pathways (shaded metabolites) is an MBP in itself, showing the modularity of use of each of these metabolic tools.
doi:10.1371/journal.pcbi.1000725.g002
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Figure 4. Similar distributions are observed among MBPs from
the R19 network and minimal elementary modes from the E. coli
central carbon metabolic network. Each plot has a single starting value
i corresponding to either ai for the model or Ci for E. coli. The red lines show
the number of reactions in each MBP with different output metabolite size,
and the black lines show the average number of reactions used to reach the
nearest metabolite of increasing carbon number in E. coli central carbon
metabolism. The predicted number of reactions from Equation (1) is
shown for each plot in blue. (A) C2/a2 input. Correlation coefficient = 0.92,
p-val = 0.003. (B) C3/a3 input. Correlation coefficient = 0.94, p-val = 0.001.
(C) C5/a5 input. Correlation coefficient = 0.78, p-val = 0.04.
doi:10.1371/journal.pcbi.1000725.g004

Figure 3. Logarithmic growth is observed among pathways
from both the R19 and E. coli metabolic networks. Each plot has a
single starting value i corresponding to either ai (for the model) or Ci

(for E. coli). The red lines show the number of reactions in each MBP
with different output metabolite size, and the black lines show the
average number of reactions used to reach the nearest metabolite of
increasing carbon number in E. coli. The predicted number of reactions
from Equation (1) is also shown for each plot in blue. (A) C1/a1 input. (B)
C2/a2 input. (C) C5/a5 input.
doi:10.1371/journal.pcbi.1000725.g003
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metabolic network of Escherichia coli [38], for which it is still

infeasible to apply the elementary flux mode analysis. For this, we

implemented a heuristic approach to analyze the set of shortest

pathways between every pair of metabolites. We first determined,

for each input compound, the minimal path length to reach its

closest molecule with j carbons; then, for each value of i, we

averaged these path lengths over all input molecules with i

carbons. The results (Fig. 3 and S3) show that these E. coli minimal

path lengths approximately follow the predicted logarithmic trend.

For some curves (e.g. the one with C5 as an input), the specific

peaks and valleys of the predicted function are closely followed by

the E. coli network. While this does not prove that MBPs are

indeed used in real metabolic networks, it suggests that the

logarithmic strategy of MBPs is embedded in their architecture.

However, because this second method focuses on shortest paths

across a metabolite-to-metabolite network rather than on flow-

conserving MBPs, the predicted values are likely an underestimate

of the number of reactions necessary to construct one metabolite

from another in a mass-conserved manner.

So far, we have analyzed the properties of individual MBPs in

our idealized chemistry, as well as analogous minimal length

pathways in E. coli metabolism. However, some fundamental

aspects of the architecture of metabolism may be visible only at the

ecosystem-level, namely by collectively analyzing the metabolic

network obtained as the union of the metabolic maps of known

individual species (sometimes called the ‘‘meta-metabolome’’). For

example, previous work using an algorithm of network expansion

applied to this meta-metabolome has identified potential signa-

tures of major evolutionary events [39], including the metabolic

transition that took place upon the great oxidation event, about

two billion years ago [4].

Here, we build a meta-metabolome for our idealized chemistry

by considering the collection of MBPs. One could imagine that

each task ai ) aj corresponds to a different organism, which has

filled a specific metabolic niche (availability of ai), and found an

optimal solution (the MBP) for its main metabolic task (produce aj).

The question we ask next is whether, in this ecosystem of MBPs,

all metabolites and reactions are used in roughly the same number

of pathways, or if specific metabolites or reactions seem to be

essential for many optimal tasks, hence representing ‘‘universal

tools’’.

For this analysis we used the set of MBPs calculated on the R19

network using the MILP method. One first result of this analysis is

that every metabolite of an even length is used in many more MBP

reactions than their odd length neighbors, compared to the

underlying chemistry (Fig. 5B). Thus even-length metabolites are

more important in that they can be used for more tasks. A possible

explanation for this enhanced importance comes from the

logarithmic nature of the MBP path lengths. For example,

producing a8 from a1 requires only three doubling reactions (a1

+ a1 R a2, a2 + a2 R a4, and a4 + a4 R a8). In addition, this same

pathway, with one additional reaction, can also be used to

optimally produce a9 and a10 (see Tables S2 and S3), overall

increasing the number of pathways in which each of those even-

length intermediates is used. Indeed, because similar logarithmic

pathways can be used as a backbone connecting distant inputs and

outputs, we expect metabolites of an even length to appear more

often. Similarly, one can address the relevance of each possible

reaction across different MBPs. The existence of ubiquitous

reactions is visible in Fig. 2A and Fig. S1, and can be more

systematically assessed by plotting a usage distribution (Fig. S2).

The most abundant reactions – the ‘‘universal tools’’ in this model

chemistry – are the ones that ligate two identical molecules (e.g. a2

+ a2 « a4, see Tables 1, S4, and S5). The distribution of reaction

utilization follows a long-tailed distribution (Fig. 5A), whose fit to a

power law gives an exponent of approximately 21.1 (R2 = 0.99).

This value is close to our theoretically predicted value of 21 (See

Methods).

As in the case of the artificial chemistry network, we can now

search for patterns of metabolites and reactions usage in the

collective set of all metabolic reactions known in living systems,

obtained from the KEGG database [17]. The presence of such

signatures would suggest a long-term selective advantage of

molecules and reactions that are useful for multiple tasks across

different organisms and environments. By counting how many

times each possible carbon backbone reaction is used across this

biosphere-level metabolism we obtained a broad distribution, and

a fit to a power-law gives the exponent of 20.89, comparable with

the analytically predicted value, and with that in the artificial

chemistry model (Fig. 5A and Fig. S4). We found that several

reactions that are top ranking in their count across MBPs in the

artificial network, are also at the top of the list in the KEGG-

derived reactions (Spearman correlation p-value,1026; see also

Tables 1 and S6, S7, S8, S9, S10, and S11). This suggests that the

RN network model, despite its simplified chemical rules, captures

some fundamental features of the role of the carbon reaction

backbone of real metabolic networks.

In addition to a preference for specific reactions, we can ask

whether the spectrum of metabolite usage across the whole KEGG

metabolism reflects the possible optimality criteria encountered in

the model (Fig. 5C). The metabolite usage in the hydrogen

backbone network (see Methods) is similar to that in the artificial

chemistry: each even-length hydrogen metabolite is used more

often than its odd-length neighbors (Fig. S4A). For the carbon

backbone distribution, we see a similar descending periodic be-

havior, but with a periodicity of approximately 5 (Fig. 5C and Fig.

S5B). Hence, molecules containing carbons in a number that is a

multiple of 5 are used more abundantly than other molecules

across different metabolic reactions. One possible explanation

for this C5 periodicity is the profuse usage of adenine and

nicotinamide adenine dinuculeotide compounds as energy carriers

and redox balance molecules, although the removal of such

compounds has little effect on the observed periodicity (Fig. S6).

Hence, the prominent usage of compounds with specific numbers

of carbons might reflect global network optimization principles for

the efficiency of multiple pathways, as observed in the artificial

chemistry model. The periodicity of 5 that we observe, together

with the evidence displayed in Fig. 3C, may suggest that the

evolutionary optimization of metabolism has been partially taking

place around building blocks of five carbons, compatible with

previous observations of prebiotic abundance of terpenoids [40]

and pentoses [41]. It is also interesting to note that an unexplained

periodicity of two had been previously observed in the distribution

of the number of carbons among known organic compounds

[42–44]. While our analysis is based on the distribution of usage of

carbon compounds in different reactions, rather than the total

count of molecules, future analyses may investigate possible

connections between these trends.

Discussion

We have explored the potential existence of general principles

underlying the evolution of metabolic network architecture. Specif-

ically, we studied the properties of pathways (the MBPs) that perform

elementary metabolic tasks with maximal yield and minimal length in

an idealized chemistry. Using the results from the model chemistry,

we asked whether similar signatures of optimally efficient organiza-

tion could be found in real metabolic networks.

Arithmetic Simplicity in Metabolic Networks
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In computing possible MBPs, we have focused mostly on

identifying modular features, on predicting their lengths, and on

the statistics of usage of metabolites and reactions. In the future, it

may be interesting to characterize the full spectrum of degenerate

MBPs for large artificial chemistries. This would allow us to assess,

for example, the density of specific topologies (such as autocatalytic

cycles), or the dependence of degeneracy on the numerical

properties of input/output pairs. One of our algorithms (the

elementary modes one) can find a large number of degenerate

solutions, including autocatalytic cycles. This algorithm is currently

not scalable, because of the difficulty of computing elementary flux

modes, especially in the highly connected artificial chemistry

network we have used, though very recent improvements in

elementary flux mode calculations [45] might be useful for this

enumeration. In addition, while intuitively this approach seems to

capture the full degeneracy of MBPs, this still remains to be formally

proven. Another intriguing possibility might be to modify our flux

balance MILP approach to identifying degenerate solutions by

employing integer cuts, as described in [46]. Alternative avenues for

optimization using Linear Programming rather than MILP could be

in principle devised to reduce the complexity of calculations. For

example minimizing the sum of absolute values of fluxes allows for

rapid calculation of pathways up to the R100 network, though in this

case the ensuing pathways are not of minimal length (see Fig. S7). In

any case, for the purpose of the current work, we verified that

degeneracy does not affect the statistics of usage of different

reactions (Fig. S8).

Among the recurrent MBP topologies identified, we encountered

numerous autocatalytic cycles. The properties of autocatalytic

cycles have been studied previously [8,11], and their self-replication

potential has been theorized to be important in the early evolution

of carbon fixation [7,9]. Autocatalytic cycles have also been shown

to be kinetically stable, even in the absence of regulatory control

[47]. We found that some autocatalytic pathways (e.g. the pathway

from a7 to a8) are simultaneously optimal for multiple metabolic

tasks. In this specific case, the MBP a7) a8 is also an MBP for the

production of each intermediate in the cycle (Fig. 2B). This special

property of autocatalytic cycles in our artificial chemistry may have

a parallel in real metabolism. For example, many metabolites in the

TCA cycle (which is autocatalytic when run in reverse [7]) are

precursors for fundamental anabolic processes [48,49]. Similar

properties can be observed in the fundamental autocatalytic cycle

known as the formose reaction [30].

Along with the structural details of MBPs, we also used analytical

methods to estimate the length of MBPs as a function of the length

of input and output molecules. This estimate closely matched the

lengths of the artificial chemistry pathways computed with

numerical algorithms. These calculations establish a new link

between two apparently unrelated disciplines, namely the mathe-

matics of addition-subtraction chains and biochemistry. It will be

interesting to explore in the future whether extensions to more

realistic artificial chemistries can be formalized in a similar fashion.

Conversely, the MBP length estimate obtained for biochemical

pathways may suggest new avenues in applied mathematics.

To determine whether predictions of minimal MBP length in

our idealized chemistry could have implications in real biochem-

istry, we searched for pathways of minimal length between

compounds with different counts of carbon atoms in the E. coli

metabolic network. The complexity of real chemistry relative to

our idealized system made this comparison difficult to interpret.

MBPs in E. coli were found to be composed of many more

reactions than in the artificial chemistry. This might be due to the

additional requirement of energy gradients (e.g. the phosphoryla-

tion steps), to the complex interdependence of multiple elements,

and to the properties of stability of intermediates.

Previous work had addressed the question of optimality in

specific metabolic pathways. For example, Meléndez-Hevia and

Torres [50], used optimality criteria to infer that some metabolic

pathways, most notably the pentose-phosphate pathway, can be

traversed using the fewest number of reactions. Heinrich and

Schuster [51], conversely, describe the identification of a series of

phosphorylation/dephosphorylation and ATP consumption/pro-

duction steps that maximize the flux of ATP production in central

carbon metabolism pathways. In contrast, our search for MBPs in

the artificial chemistry model corresponds to a systematic search

for maximal yield, minimal length pathways for all possible input-

output relationships (something not yet feasible for real metabolic

pathways). This allows us to infer analytical relationships and

potential principles that may hold (perhaps in an approximate

way) for virtually any evolved metabolism. In real systems, various

compounds are often produced as waste byproducts and simply

excreted into the environment, leading to suboptimal yields of

target metabolites. For example, one could go in one step from a

C6 compound to C5, with a yield of 5/6 ,83% and an additional

Table 1. Of the top 10 most used reactions in the R19

network and carbon-only KEGG network, there are five
equivalent reactions that appear in both.

Model reaction KEGG carbon reaction

1 a2 + a2 « a4 C6 + C6 « C12

2 a1 + a1 « a2 C1 + C5 « C6

3 a4 + a4 « a8 C1 + C3 « C4

4 a3 + a3 « a6 C1 + C4 « C5

5 a2 + a4 « a6 C5 + C5 « C10

6 a6 + a6 « a12 C1 + C7 « C8

7 a1 + a2 « a3 C1 + C8 « C9

8 a8 + a8 « a16 C3 + C3 « C6

9 a5 + a5 « a10 C4 + C5 « C9

10 a1 + a4 « a5 C1 + C2 « C3

Recognizing that 74 of the 90 possible reactions from the R19 set are found in
the 631 carbon-only reactions from KEGG, we can use the Spearman rank-
correlation to find that this has a correlation value of 0.54 with p-value 8?1027.
doi:10.1371/journal.pcbi.1000725.t001

Figure 5. Metabolite and reaction usage frequencies. (A) The frequency of usage of reactions in the artificial chemistry model and in the KEGG-
derived carbon reaction set. MBPs for the R19 network were calculated using the MILP method while the others (R30 through R100) were estimated
using the iterative algorithm. We calculated the reaction usage by counting the number of MBPs that use each reaction. These were then ranked in
descending order, yielding curves that follow a power law with an average exponent of -1.14 (+/2 0.03) (R2 = 0.99). The reaction usage in the KEGG-
derived carbon dataset was calculated by counting the number of times each equivalent reaction appears, and follows a power law tail distribution,
with exponent 20.89. The curve predicted by the analytical model, with exponent 21, is shown as a solid line (see Methods). (B) The usage frequency
of each metabolite among all MBPs in the R19 model. This also shows the frequency of use of each metabolite in the R19 network itself, and in a
randomly chosen set of reactions (control). In the inset, the metabolite usage was sorted by rank and plotted on a semilog axis. (C) The usage
frequency of each metabolite among all reactions in the KEGG carbon reaction set. The inset shows the usage sorted by rank on a semi-log scale.
doi:10.1371/journal.pcbi.1000725.g005
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C1 byproduct; yet, obtaining maximal yield in this transformation,

would cost at least 3 more reactions. One could argue that the

combination of all of these criteria, including the maximization of

ATP production and optimization of enzymatic catalysis may have

played a key role in the evolution of modern metabolism, leading

to compromise solutions. Exploring pathways that produce

multiple compounds from multiple inputs with the addition of

thermodynamic constraints might constitute an interesting model

extension for further investigation.

We found that the statistical properties of the usage of reactions

across MBPs recapitulate the statistics of reaction usage in the

union of all known metabolic pathways (represented by the KEGG

metabolic database). Both across the set of all MBPs for the

idealized chemistry, and in the KEGG metabolic map, we

observed that a few reactions are used far more often than many

of the others in the set. Another way of determining the

importance of individual reactions in the context of the global

functionalities of a meta-metabolome would be to perform

perturbation experiments. We implemented such an experiment

in our idealized chemistry, by progressively removing reactions

and checking how many metabolites can still be produced.

Depending on whether reactions are removed in random order or

in the order determined by their usage across MBPs, the outcome

is quite different (Fig. S9). This analysis sheds light on the

importance of reactions in terms of the capacity to produce a

certain output.

Determining to what extent real metabolic networks obey

optimality principles like the ones described here will take

additional effort. Even if an underlying arithmetic simplicity

governs idealized optimal pathways, deviations from ideal

behavior should be expected. For example, parallel selection

pressures for energy production and biochemical stability would

likely sacrifice pathway minimality. However, guiding principles as

the ones we are proposing could serve as reference points for

future research, including circumstances in which metabolism can

be different from what we are used to. Using synthetic biology

techniques, for example, it might be possible to redesign metabolic

pathways so as to approach predicted ideal efficiencies and

minimal enzyme cost [52,53]. From a totally different perspective,

in the field of astrobiology, having a prediction of possible

signatures of an evolved metabolism might help select, among the

molecular spectra of extrasolar planets, those possibly indicative of

biogenic processes [54–56].

Methods

Artificial Chemistry Model
We define an artificial chemistry inspired by previous string-

based artificial chemistries (see also main text and Fig. 1). One

may think of molecules in this artificial chemistry as polymers (up

to a given length N) of a monomeric unit a. Since no specific

assumption is made in the model about the nature of these

molecules, they could equally represent aggregates or branched

polymers of different sizes, as well as molecules with different

counts of a specific atom. A network RN = {MN, CN} is defined by

the set of N molecules MN = {ai | Y i = 1,…,N} and the set of all

possible uni-bi ligation/lysis reactions between them, CN = {ai + aj

« ak | Y i, j, and k, such that i#j, i+j = k, and k = 2,…,N}. The

number of reactions in CN can be shown to grow quadratically

with N. Since each reaction describes how to reversibly combine

two molecules to make a larger one, there is a fixed number of

ways to produce any given metabolite ai, equal to ti/2s. The

number of reactions in CN is then given by
PN
i~1

ti=2s, which can be

approximated by N2/4.

Flux Balance Analysis
Flux Balance Analysis (FBA) is a steady state constraint-based

approach to study the flow of mass through metabolic networks

[28,57,58]. Briefly, FBA represents the metabolic network of

interest as an n6m stoichiometric matrix S, whose element Sij

indicates the number of molecules of metabolite i (i = 1,…,m) that

participate in reaction j (j = 1,…,n) (with a positive sign if the

metabolite is produced, negative if it is consumed). Each reaction

can be associated with a flux, vj. Under the assumption of a steady

state the following set of mass conservation constraints on the

fluxes is generated:

Xn

j~1

Sijvj~0 i~1,2, . . . ,m ð2Þ

Additional constraints (such as availability of nutrients,

experimentally observed irreversibility, maximal or minimal rates,

etc.) can be imposed on the fluxes as inequalities of the form

ajƒvjƒbj ð3Þ

where aj is the minimal allowed rate of a reaction and bj is its

maximal rate. Taken together, the above constraints define a

convex polyhedron (the ‘‘feasible space’’) in the n-dimensional

space of fluxes. Linear programming (LP) can be used to identify,

within the feasible space, flux vectors that maximize or minimize a

given linear objective function. In microbial systems it has been

often hypothesized that a biologically meaningful objective is the

maximization of the flux through the reaction that represents

cellular growth, or biomass production [2,59]. Hence, LP applied

to FBA provides a prediction of all metabolic fluxes in a cell. FBA

can be applied at genome scale, and corresponding stoichiometric

models are available for a number of organisms. FBA predictions

have been experimentally validated most thoroughly in Saccharo-

myces cerevisiae SC288 [60] and E. coli K-12 [38].

Minimal Balanced Pathway Discovery Algorithms
Minimal Balanced Pathways (MBPs) are defined as sets of

reactions in the RN network that can optimally perform a given

metabolic task. A task is defined as the production of a specific end

product (e.g., aj, with output flux vout) from a single available

nutrient (e.g., ai, with input flux vin). A pathway between two

molecules is a MBP if (i) it satisfies a steady state solution,

analogous to Eq. (1); (ii) it produces the final product with maximal

yield, i.e., vout = vin?j/i; and (iii) it contains the smallest possible

number of reaction steps. The MBP between ai and aj will be

indicated as ai ) aj.

We have developed three different algorithms for computing

MBPs, as described below:

Flux Balance Analysis/Mixed Integer LP Algorithm
We use a modified FBA approach to formulate the MBP

problem in a constrained optimization framework. Specifically, we

impose the same constraints used in an FBA problem, and further

require that the maximal yield condition vout = vin?y/x for the MBP

ax ) ay be satisfied. We then search for a solution that minimizes

the number of active (nonzero) fluxes. Towards this goal, we use a

modification of the LP problem described above to introduce

binary variables (bj) that represent flux activity: bj = 0 if vj = 0, and

bj = 1 otherwise. To identify a minimal path, we can then search

for the set of fluxes that minimize Sibi. Because of the nature of the
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variables involved – the fluxes are continuous, and the number of

active fluxes is an integer – this problem must be solved using a

mixed integer linear programming (MILP) algorithm. Our MILP

problem for the optimal MBP satisfying ax ) ay is formulated as

follows:

Minimize
XN

j~1

bj

Subject to :

XN

j~1

Sijvj~0

ajbjƒvjƒbjbj for j~1,2, . . . ,N

vout~
y

x
vin

bj[ 0,1f g for j~1,2, . . . ,N

ð4Þ

The optimal solution for this problem will give the flux

distribution v that uses the fewest nonzero values to maximize

the objective. In our MBP computations, the only flux constraints

used were those that limit the uptake of the single nutrient to an

arbitrary value of 10 mmol?gDW21?h21, and the production of

the target metabolite to the known maximal yield vout/vin = j/i.

Elementary Flux Modes Algorithm
Given a metabolic network defined by a stoichiometric matrix S

(as described in the above FBA section), a vector of fluxes v is said

to correspond to an elementary flux mode (EFM) if it satisfies the

following three conditions [23].

1. It satisfies the steady state condition (Sv = 0).

2. It must be feasible within the conditions of the model: if there

are known boundaries for the fluxes, then v must fall within

them.

3. It must be non-decomposable. There are no two smaller EFMs

that can be linearly combined to form the one in question.

Because of these constraints, those EFMs that use the minimal

number of reactions satisfy the requirements for being an MBP.

We used the METATOOL software package [61] to find all

EFMs in the R10 network, and then identified all of those EFMs

that are also MBPs.

Iterative Additive Algorithm
We designed and implemented an algorithm to produce most

MBPs de novo, without relying on prior steady state stoichiometric

modeling methods. The algorithm works in an iterative manner,

producing longer pathways from shorter ones. For example, we

can start from two trivial MBPs: a1 ) a1 (which requires no

reactions), and a1 ) a2 (requiring one reaction, a1 + a1 R a2). To

compute a1 ) a3, we identify all the ways in which we can

decompose 3 into two smaller addends (in this case, only one:

3 = 2+1). Next we combine together the previously computed

MBPs that progress from a1 to each of these two addends, giving a

new putative MBP for the desired new task (a1 + a1 R a2, and a1 +
a2 R a3). This procedure can be then iterated to give a prediction

of MBP ai ) aj (i, j#N).

This algorithm is fast and efficient compared to the previous

methods, allowing us to apply it to even the R100 network.

However, it has two main drawbacks. First, it will miss pathways

that ‘‘overshoot’’ the target value then subtract down to it. Second,

it may miss MBPs that are not built modularly from smaller ones.

From a comparison of the MBPs predicted by the different

algorithms, one can see that the approximations introduced in this

algorithm cause 18 out 361 MBPs (5%) in R19 to overestimate

pathway length by one reaction. Also, this algorithm correctly

identifies 204 of the 384 degenerate MBPs that the EFM algorithm

finds in R10. The reaction usage using this method is highly

correlated with that of the MILP method applied to R19 (Pearson

correlation = 0.96, p-val = 10251), and the EFM method applied

to R10 (Pearson correlation = 0.98, p-val = 2?10217).

KEGG Reaction Reduction
Data used for the comparison between the RN metabolic network

and real metabolism was gathered from the KEGG LIGAND

database (July 26, 2009 release)[17]. This database was parsed to

convert its compounds and reactions into a single-atom form, as

described in the text. Compounds that carried any uncertainty in

their atomic makeup, including non-specific side-chains or variable

chain length were removed from the current analysis. We also

removed from the analysis reactions with no associated formula, as

well as reactions involving non-specific molecules (such as glycans

and non-specific nucleotide or peptide chains). Finally, a number of

reactions were found to leave the atomic composition of the

compounds essentially unchanged on either side of the reaction

(e.g., C3 « C3). These reactions were ignored as well, without

consequences on the results (data not shown).

Metabolite and Reaction Usage
We counted how often each metabolite and reaction was used in

the artificial chemistry pathways as well as in the KEGG-derived

single-atom networks. In the model pathways, reaction usage was

calculated by counting how many times each reaction was used

across all pathways. Metabolite usage was similarly calculated by

counting the occurrence of reactions in which each metabolite

participates. For example, in the pathways that convert a9 to a10 in

Fig. 2C, a9 participates in only one reaction, but a10 participates

in two.

In the KEGG-derived networks, a similar counting scheme was

used. The reaction usage was calculated by counting how many

times each reduced reaction appears, and the metabolite usage

was calculated by counting how many times each metabolite

appears across all reactions.

Shortest Paths in Escherichia coli
The first method used EFMs to find all shortest pathways in the

central carbon metabolism of Escherichia coli [36,37]. Because we

are interested in the pathways that alter the carbon content of

different molecular species, we removed those common cofactors

that do not alter the carbon content of other metabolites (ATP,

ADP, AMP, NADH, NADPH, NAD+, NADP+, H+, and PO4).

Also, we effectively ignored reactions involving transport and

exchange. We then used the EFM method described above to find

the number of reactions in each of the MBPs for this reduced

network.

For each input compound, we listed the lengths of the MBPs for

all output compounds containing a number j of carbons. For each

j, we select among these paths the shortest one, giving an estimate

of the shortest path between any individual compound and the

closest j-carbon compound. Finally, for each value of i, we

averaged these path lengths over all input molecules with i

carbons. The end result is a matrix that provides the average of the

shortest paths from any i-carbon compound to its nearest j-carbon

compound.
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All-Pairs Shortest Paths with Johnson’s Algorithm
The larger, genome-scale metabolic network of E. coli [38] has

761 metabolites and 1075 reactions, and is currently infeasible to

study with the EFM method described above, limiting us to a graph

theoretical approach. Because there are both metabolites and

reactions, metabolic networks are inherently bipartite: metabolites

connect to each other only through reactions. Pathway lengths were

computed by transforming the metabolic reaction network

stoichiometric matrix into an adjacency matrix where metabolites

and reactions are all represented by the same type of node.

As described above, we are only interested in the connections

between carbon compounds, so we removed any non-carbona-

ceous metabolites (water, phosphate, ammonia, etc.). Also, we

removed the following cofactors that are used in many reactions,

but do not participate in the transformation of carbons: ATP,

ADP, AMP, NAD+, NADH, NADP+, NADPH, coenzyme A,

acetyl-CoA, and the acyl carrier protein.

Next, we used Johnson’s all-pairs shortest paths algorithm

(available as a Matlab function) to find shortest pathways between

any two carbon compounds in E. coli’s metabolic network. This set

of pathways was collated as in the previous section, to produce a

matrix of the average of the shortest paths from any i-carbon

compound to its nearest j-carbon compound.

Analytical Estimate of MBP Lengths in Analogy with
Addition-Subtraction Chains

We developed an analytical approximation for the expected

numbers of reactions to be found in any MBP ai ) aj. We begin

with a simplified version of the artificial chemistry model in which

only irreversible addition reactions of the form

apzaq?a pzqð Þ ð5Þ

are allowed. Under these restrictions, we first ask what is the smallest

number of reactions necessary to produce any aj from a1. We shall

denote by l(j) the smallest possible number of such reactions (we

count the use of each reaction (5) once). This problem is equivalent

to the problem of addition chains [29], in which one attempts to

compute a positive integer by generating a sequence of integers such

that each term in the sequence is the sum of two previous terms.

Addition chains have been studied extensively, mainly because of

their applications in computer science and cryptography [29]. For

addition chains, l(j) grows logarithmically with j:

l jð Þ!log2 jð Þ ð6Þ

Our artificial chemistry represents a generalization, in which a

metabolite of any length i can be used to produce an output

metabolite of any length j. If we still assume that only addition

reactions are possible (i.e. molecules cannot be broken down), a

chain from ai to aj will exist only when i is a divisor of j. The problem

can then be reduced to the case with a1 input and aj/i output.

Therefore, in the irreversible case, we can assume that inputs consist

of monomers without loss of generality. Let L(j) be the length of the

shortest reaction chain in this case. Because not every reactant exists

when dividing by the input length i, we have the obvious inequality

l jð ÞƒL jð Þ ð7Þ

Sometimes the shortest chain can be found easily. For instance,

{20, 21, …, 2k} is obviously the shortest chain from 1 to j = 2k

whose length is k+1. This suggests the general lower bound on the

shortest length L(j) of the addition chain:

L jð Þ§qlog2 jð Þrz1 ð8Þ

where qxr represents the ceiling of x, or the smallest integer not less

than x. Likewise, as seen below, txs represents the floor of x, or the

largest integer not greater than x (for example, q3.14r= 4, and

t3.14s= 3). The longest minimal addition chain arises when the

output length is j = 2m21. From this fact, we have the upper bound

[29]

L jð Þƒtlog2 jð Þszu jð Þ ð9Þ

where u(j) is the number of 1s in the binary representation of j. Since

u jð Þƒtlog2 jð Þsz1, the bound in equation (9) implies a simpler (but

weaker) upper bound

L jð Þƒ2tlog2 jð Þsz1 ð10Þ

The above bounds give precise values in some cases and act as

bounds in others. For instance, L(16) = 5, and L(17) = L(18) = 6 for

both the lower and upper bounds, while L(31) = 8 is between the

lower bound and the upper bound (5 and 9, respectively).

There are various conjectures regarding L(j); one of the most

famous [35] asserts that computing L(j) is NP-hard. Nonetheless,

the computation of L(j) has been pushed up to n#225. Two other

conjectures [33] predict the general lower bound

L jð Þ§tlog2 jð Þszlog2u jð Þz1 ð11Þ

and the upper bound

L 2k{1
� �

ƒkzL kð Þ{1 ð12Þ

While algorithms for generating the shortest addition chains are

discussed by Thurber [33], these all hold for the specific case of

pure addition where the input is always a1.

We are interested in the general case involving both addition

and subtraction, and specifically the lengths l(i, j) of the shortest

reaction chains (MBPs) with ai input and aj output. Addition-

subtraction chains have also been studied previously as an

expansion of addition chains, although these correspond to MBPs

with only a1 as an input. Sometimes, in these cases, l(j) is readily

computable, e.g.

l 2k{1
� �

~kz2 for k§3 ð13Þ

while L 2k{1
� �

remains unknown for sufficiently large k. Both

lengths can also be equal, i.e. l(j) = L(j). For example,

l 2k
� �

~L 2k
� �

zk~1 ð14Þ

l 2kz1
� �

~L 2kz1
� �

~kz2 ð15Þ

Note also an inequality:

l jð Þ§qlog2 jð Þrz1 ð16Þ

All of these features explain the growth law in equation (6).
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The quantity l(i, j) has a rich behavior, e.g., there is only a trivial

lower bound since l(j, j) = 1. To ignore this non-interesting effect,

let us divide i and j by their greatest common divisor as it never

affects the length of the MBP:

l i,jð Þ~l
i

d
,

j

d

� �
, d~gcd i,jð Þ ð17Þ

then we can use an obvious inequality

l i,jð Þƒl i,1ð Þzl 1,jð Þ~l ið Þzl jð Þ ð18Þ

Recalling (6) we finally arrive at an approximation for the

number of reactions in an MBP that uses ai to produce aj:

l i,jð Þ*log2

i

d

� �
zlog2

j

d

� �
ð19Þ

The approximation in (19) can also be used to estimate the

rank distribution of reaction usage. Consider all possible MBPs

producing aj from ai. For each (i, j) pair, take an MBP and mark all

reactions. Let the reaction in (5) occur Epq times: that is, there are

Epq MBPs that use (5). We now divide Epq by the total number of

MBPs and call epq~N{2Epq the reaction frequency. It is better to

order reactions not according to (p, q) but to their ranking j, so that

the reaction of rank j = 1 is the most frequent, that of rank j = 2 is

the second in frequency, etc. This gives ej. How does ej decrease

with rank? To infer the answer we note that

XN2

j~1

ej~SlT ð20Þ

From (19) it is clear that the average length Ælæ of the shortest

reaction chain scales as log N. This is consistent with (20) if and

only if we have rj , j21. Thus we predict the power-law decay in

(21).

rj*j{1 when jww1 ð21Þ
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Found at: doi:10.1371/journal.pcbi.1000725.s009 (0.04 MB PDF)
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