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Abstract 

Metabolic networks perform some of the most fundamental functions in living cells, 

including energy transduction and building block biosynthesis. While these are the best 

characterized networks in living systems, understanding their evolutionary history and 

complex wiring constitutes one of the most fascinating open questions in biology, 

intimately related to the enigma of life's origin itself.  Is the evolution of metabolism 

subject to general principles, beyond the unpredictable accumulation of multiple 

historical accidents? Here we search for such principles by applying to an artificial 

chemical universe some of the methodologies developed for the study of genome scale 

models of cellular metabolism. In particular, we use metabolic flux constraint-based 

models to exhaustively search for artificial chemistry pathways that can optimally 

perform an array of elementary metabolic functions. Despite the simplicity of the model 

employed, we find that the ensuing pathways display a surprisingly rich set of properties, 

including the existence of autocatalytic cycles and hierarchical modules, the appearance 

of universally preferable metabolites and reactions, and a logarithmic trend of pathway 

length as a function of input/output molecule size. Some of these properties can be 

derived analytically, borrowing methods previously used in cryptography. In addition, by 

mapping biochemical networks onto a simplified carbon atom reaction backbone, we find 

that several of the properties predicted by the artificial chemistry model hold for real 

metabolic networks. These findings suggest that optimality principles and arithmetic 

simplicity might lie beneath some aspects of biochemical complexity. 
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Author Summary 

An open question in biology is whether the evolution of metabolic networks has been 

guided by general optimality principles beyond the unpredictable accumulation of 

historical accidents. Here we search for signatures of such optimality in an idealized 

artificial chemistry model, where it is feasible to systematically explore a complete set of 

efficient metabolic pathways of minimal length between any two compounds. These 

pathways display a modular organization of recurring topologies, including autocatalytic 

cycles, and a logarithmic dependence of pathway length on input/output molecule size. 

Across all pathways, we predict the emergence of ubiquitous metabolites, and a broad 

spectrum of reaction utilization, with certain reactions serving as universal steps.  Similar 

properties hold for real metabolic networks, suggesting that optimality principles and 

arithmetic simplicity underlie biochemical complexity.



 3

Introduction 

It is still a mystery how abiotically-formed molecules on primordial Earth were gradually 

converted into the building blocks of life [1-3]. Even more enigmatic is the emergence of 

the self-sustaining network of chemical reactions called cellular metabolism [4-9]. Was 

the evolution of metabolism subject to inevitable network optimization steps [10] or 

dominated by unpredictable frozen accidents [6]? In comparative genomics studies [11] 

and laboratory evolution experiments [12-14], one can witness mostly short-term 

metabolic adaptations that affect metabolic enzyme regulation and fine tuning of kinetic 

parameters. Yet, no experimental methods exist to probe the long-term evolution of the 

metabolic wiring itself.  

 

It has been suggested that biochemical network topologies may have evolved towards 

optimal efficiency [15, 10, 16]. Here, we seek to identify potential distinctive features of 

optimally efficient metabolic networks, as well as the ecosystem-level union of all 

metabolic pathways [17] in which multiple metabolic tasks must be concurrently 

performed. We focus on elementary metabolic tasks, in which a given input molecule is 

converted into a specified output. Since a systematic search for optimal pathways 

between any two molecules in a real biochemical network is combinatorially 

inapproachable, we apply recent systems biology approaches [18, 19] to an artificial 

chemistry universe [5, 6, 20, 21]. Behind the apparent complexity of the ensuing optimal 

pathways, we identify recurring, modularly organized categories of network topologies, 

and analytically predictable trends in pathway length. In addition, we observe the 

emergence of “universal metabolic tools” across all optimal pathways. Finally, despite 

the huge gap in the underlying chemical rules, we find that some properties of real 

metabolic pathways are consistent with the patterns detected in the model, suggesting that 

fundamental optimality principles may have played a role in shaping biochemical 

networks. 

 

Results 

Our artificial chemistry consists of a set of N possible molecules {a1, a2, a3, …, aN}, that 

can participate in reversible ligation/cleavage reactions of the form ai + aj ↔ ak , with i + 
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j = k. This model could be viewed as the simplest possible string-based artificial 

chemistry [5]. The reaction network RN that includes all metabolites up to length N and 

all possible reactions between them (Fig. 1) can be thought of as an evolving biosphere-

level metabolism. Here we were concerned with pathways, within the RN network, that 

can optimally perform a given metabolic task. In particular, we searched for optimal 

solutions to the problem of producing a specific end-product (e.g., aj, with output flux vout) 

from a single available nutrient (e.g., ai, with input flux vin). We require an optimal 

pathway to (i) allow a steady state solution, i.e., a mass-conserving flow from input to 

output; (ii)  have maximal yield, and no waste [22], such that vout=vin·j/i; and (iii) have 

the fewest reaction steps possible. A pathway satisfying these conditions is termed a 

minimal balanced pathway (MBP) between ai and aj, and will be denoted ai ⇒ aj. MBPs 

can be thought of as the pathways that are most efficient for a specific metabolic task, in 

the sense that they require the smallest possible number of different enzymes for 

producing the maximal possible yield [10, 23, 24].  

 

Despite the simplicity of our artificial chemistry, identifying the MBPs between all 

possible input-output pairs in a given artificial chemistry RN is a challenge for large N. 

We implement three algorithms to approach this problem: a mixed integer linear 

programming (MILP) akin to flux balance analysis (FBA) [25]; an algorithm that uses 

enumeration of elementary flux modes [18]; and finally an iterative algorithm that 

gradually assembles new MBPs from already identified simple ones (see Methods). The 

three algorithms differ mainly in their scalability, and in their capacity to predict multiple 

degenerate solutions (see Table S1). A partial overview of the results of our calculations 

is shown in Fig. 2A and Fig. S1 (see Table S2 for a comprehensive list of MBPs).  

 

Behind the apparent complexity of the topologies encountered in each of the different 

pathways, it is possible to observe the recurrence of three fundamental categories: each 

MBP functions either as a pure “addition chain” [26], where smaller metabolites are 

progressively added together to build the target molecule, or as an “addition-subtraction 

chain”, in which metabolites are both synthesized and degraded within the pathway. 

There is also a third, smaller category of cyclical pathways that cannot proceed unless a 
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certain intermediate molecule is already present in the system. These pathways are 

autocatalytic cycles (Fig. 2B) that very much resemble autocatalytic cycles found in real 

biochemistry, such as the reverse TCA cycle [4], or the formose reaction [27]. Our results 

show that autocatalytic cycles can be simultaneously optimal for multiple tasks (Fig. 2B), 

suggesting that such types of structure may have a fundamental evolutionary advantage in 

a biological context. In addition to the recurrence of these topological categories among 

MBPs, we find that some specific structures are used repeatedly, often in a modular 

fashion (Fig. 2C). Specifically, many simple MBPs are used hierarchically as a toolkit for 

the construction of progressively more complex MBPs (data not shown), similar to what 

has been observed in real metabolic networks [28-30]. 

 

This modular architecture of recurring graph types provides a topological signature of 

optimally efficient pathways in our idealized chemistry. Since these pathways are chosen 

based on their minimal length, one may expect that a systematic analysis of all MBP 

lengths will display additional distinctive properties. Indeed, pathway lengths increase 

roughly logarithmically with the size of the input (or output) molecule (Fig. 3), with 

superimposed sharp jumps. For example, the task a9 ⇒ a6 can be performed in 2 steps, 

but the neighbor task a9 ⇒ a7 requires a minimum of 6 steps. Moreover, while most 

MBPs have only one or a few optimal realizations, selected instances display a peak in 

possible redundant solutions (Supplementary Fig. 2C), usually due to interconversions 

between molecules of similar size (e.g., ax ⇒ ax+1), or to the inherent complexity of a 

specific molecule (e.g., a7 ⇒ aj). These regular patterns suggest that it may be possible to 

reproduce the MBP length curves without having to actually compute the MBPs. Inspired 

by the analogy with addition-subtraction chains, that are used in cryptography to compute 

large integers in a minimal number of exponent addition steps, or addition-subtraction 

combinations [26, 31], we derived the following analytical estimate of the length of 

MBPs (see Methods):  
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where L(i, j) is the number of reactions in the MBP with input ai and output aj, and gcd(i, 

j) is the greatest common divisor of i and j. As seen in Fig. 3, Eq. 1 reproduces the 

corresponding pathway lengths obtained by computing individual MBPs. This agreement 

implies that the number of reaction steps needed to construct an efficient metabolic 

pathway between two metabolites in our artificial chemistry can be roughly estimated 

from Eq. 1. The only feature that determines the pathway lengths is the complexity of the 

input and output molecules. 

 

The patterns identified so far relate to individual optimally efficient pathways. What 

patterns would we expect to see in an ecosystem-level metabolic network, in which 

multiple organisms under different environmental conditions collectively perform a large 

variety of optimal metabolic interconversions? Would all metabolites and reactions be 

used in roughly the same number of optimal pathways, or do we expect to observe the 

emergence of “universal tools” – specific metabolites or reactions essential for many 

optimal tasks? In our artificial chemistry model, we can address this question by 

examining the overall usage of reactions and metabolites across all possible MBPs (see 

Methods). This analysis shows that every metabolite of an even length is used in many 

more MBP reactions than their odd length neighbors, compared to the underlying 

chemistry (Fig. 4B). Thus even-length metabolites are more important in that they can be 

used for more tasks. A possible explanation for this enhanced importance comes from the 

logarithmic nature of the MBP path lengths. For example, producing a8 from a1 requires 

only three doubling reactions (a1 + a1 → a2, a2 + a2 → a4, and a4 + a4 → a8). In addition, 

this same pathway, with one additional reaction, can also be used to optimally produce a9 

and a10 (see Table S2), overall increasing the number of pathways in which each of those 

even-length intermediates is used. Indeed, because similar logarithmic pathways can be 

used as a backbone connecting distant inputs and outputs, metabolites of an even length 

should appear more often. Similarly, one can address the relevance of each possible 

reaction across different MBPs. The existence of ubiquitous reactions is visible in Fig. 

2A and Fig. S1, and can be more systematically assessed by plotting a usage distribution 

(Fig. S2). The most abundant reactions are the ones that ligate two identical molecules 

(e.g. a2 + a2 ↔ a4, see Tables, 1, S2, and S3). Strikingly, the distribution of reaction 
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utilization follows a long-tailed distribution (Fig. 4A), whose fit to a power law gives an 

exponent of approximately -1.1 (R2 = 0.99). This value is close to our theoretically 

predicted value of -1 (See Methods). 

 

After identifying signatures of optimal efficiency in our idealized chemistry, we can 

return to our original question, and ask whether similar optimality principles are 

discernible in real metabolic networks. To cope with the gap in complexity between our 

model and real chemistry, we mapped real metabolic networks onto a single atom 

backbone [32, 33]. For example, the aldolase reaction, which cleaves fructose-1,6-

bisphosphate (C6H14O12P2) into dihydroxyacetone phosphate (C3H7O6P) and 

glyceraldehyde-3-phosphate (C3H7O6P), can be mapped onto a carbon atom backbone, 

becoming simply C6 ↔ C3 + C3 (see Methods). This reaction is now formally analogous 

to the a6 ↔ a3 + a3 reaction in the idealized chemistry. 

 

The first question is whether the structure of real metabolic networks allows 

interconversions that use the optimal, logarithmic number of steps found for the artificial 

chemistry (Fig. 3 and Eq. 1). A real metabolic network might be thought of as the overlap 

of several MBPs, with the additional complexity of multiple atoms and multi-substrate, 

multi-product reactions. To search for patterns beneath this complexity, we identified all 

shortest pathways between any two carbon compounds in Escherichia coli’s metabolic 

network [34], pruned of highly connected cofactors that do not participate in carbon 

transfers (see Methods). We first determined, for each input compound, the minimal path 

length to reach its closest molecule with j carbons; then, for each value of i, we averaged 

these path lengths over all input molecules with i carbons. The results (Fig. 3, black 

curves, and Fig. S4) show that these E. coli minimal path lengths approximately follow 

the predicted logarithmic trend. For some curves (e.g. the one with C5 as an input), the 

specific peaks and valleys of the predicted function are closely followed by the E. coli 

network. While this does not prove that MBPs are indeed used in real metabolic networks, 

it demonstrates that the logarithmic strategy of MBPs is embedded in their architecture.  

 



 8

As in the case of the artificial chemistry network, we can now search for signatures of 

optimality in the collective set of all metabolic reactions known in living systems, 

obtained from the KEGG database [35]. The presence of such signatures would suggest a 

long-term selective advantage of molecules and reactions that are useful for multiple 

tasks across different organisms and environments. By counting how many times each 

possible carbon backbone reaction is used across this biosphere-level metabolism we 

obtained a broad distribution, and a fit to a power-law gives the exponent of -0.89, 

comparable with the analytically predicted value, and with that in the artificial chemistry 

model (Fig. 4A and Fig. S4). Most surprisingly, we found that several reactions that are 

top ranking in their count across MBPs in the artificial network, are also at the top of the 

list in the KEGG-derived reactions (Spearman correlation p-value<10-6; see also Table 1, 

and Supplementary Spreadsheet). This suggests that the RN network model, despite its 

simplified chemical rules, captures some fundamental features of the role of the carbon 

reaction backbone of real metabolic networks. 

 

In addition to a preference for specific reactions, we can ask whether the spectrum of 

metabolite usage across the whole KEGG metabolism reflects possible optimality criteria 

(Fig. 4B). The metabolite usage in the hydrogen backbone network (see Methods) is 

similar to that in the artificial chemistry: each even-length hydrogen metabolite is used 

more often than its odd-length neighbors (Fig. S5C). For the carbon backbone 

distribution, we see a similar descending periodic behavior, but with a periodicity of 

approximately 5 (Fig. 4B and Fig. S5B). Hence, molecules containing carbons in a 

number that is multiple of 5 are used more abundantly than other molecules across 

different metabolic reactions. One possible explanation for this C5 periodicity is the 

profuse usage of adenine and nicotinamide adenine dinuculeotide compounds as energy 

carriers and redox balance molecules, although the removal of such compounds has little 

effect on the observed periodicity (Fig. S7). Hence, the prominent usage of compounds 

with specific numbers of carbons might reflect global network optimization principles for 

the efficiency of multiple pathways, as observed in the artificial chemistry model. The 

periodicity of 5 that we observe, together with the evidence displayed in Fig. 3C, may 

suggest that the evolutionary optimization of metabolism has been partially taking place 
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around building blocks of five carbons, compatible with previous observations of 

prebiotic abundance of terpenoids [1] and pentoses [36]. It is also interesting to note that 

an unexplained periodicity of two had been previously observed in the distribution of the 

number of carbons among known organic compounds [37-39]. While our analysis is 

based on the distribution of usage of carbon compounds in different reactions, rather than 

the total count of molecules, future analyses may investigate possible connections 

between these trends.  

 

Discussion 

The multitude of metabolic tasks and environments encountered by living systems and 

the prevalence of horizontal gene transfer may have collectively caused metabolic 

networks to evolve towards an architecture that allows multiple tasks to be performed in a 

near optimal way. In an attempt to mirror these multiple evolutionary optimization 

processes, we systematically computed a complete set of elementary optimal pathways in 

a simple artificial chemistry universe. Several properties emerging from these optimal 

pathways seem to have unexpected correspondences in real metabolic networks, pointing 

to the possible existence of universal rules that may govern the evolution of metabolic 

network wiring.  Some constraints used in the artificial chemistry model – most notably 

that no waste is produced and that optimal tasks are single-input/single-output pathways 

that do not take into account free energies, may be relaxed in future versions of the model, 

using more realistic chemical rules [40, 41]. At the same time, more complex models will 

carry the burden of increased computational cost, and possibly less interpretable results. 

One may hope that if any fundamental principle is truly at work underneath the evolution 

of metabolism, its consequences might be robustly detectable for a broad category of 

chemical rules.  

 

Materials and Methods 

1. Artificial Chemistry Model 

We define an artificial chemistry inspired by previous string-based artificial chemistries 

(see also main text and Fig. 1).  One may think of molecules in this artificial chemistry as 

polymers (up to a given length N) of a monomeric unit a. Since no specific assumption is 
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made in the model about the nature of these molecules, they could equally represent 

aggregates or branched polymers of different sizes, as well as molecules with different 

counts of a specific atom. A network RN ={MN, CN} is defined by the set of N molecules 

MN  = {ai | ∀ i = 1,…,N} and the set of all possible uni-bi ligation/lysis reactions between 

them, CN  =  {ai + aj ↔ ak | ∀ i, j, and k, such that i ≤ j, i + j = k, and k = 2,…,N}. 

 

2. Flux Balance Analysis 

Flux Balance Analysis (FBA) is a steady state constraint-based approach to study the 

flow of mass through metabolic networks [25, 42, 43]. Briefly, FBA represents the 

metabolic network of interest as an n×m stoichiometric matrix S, whose element Sij 

indicates the number of molecules of metabolite i (i=1,…,m) that participate in reaction j 

(j=1,…,n) (with a positive sign if the metabolite is produced, negative if it is consumed). 

Each reaction can be associated with a rate, or flux, vj. Under the assumption of a steady 

state the following set of mass conservation constraints on the fluxes is generated:  

 
0

1
=∑

=

n

j
jijvS   mi ,...,2,1=  (1)

Additional constraints (such as availability of nutrients, experimentally observed 

irreversibility, maximal or minimal rates, etc.) can be imposed on the fluxes as 

inequalities of the form  

 jjj v βα ≤≤  (2)

where αj is the minimal allowed rate of a reaction and βj is its maximal rate. Taken 

together, the above constraints define a convex polyhedron (the “feasible space”) in the 

n-dimensional space of fluxes. Linear programming (LP) can be used to identify, within 

the feasible space, flux vectors that maximize or minimize a given linear objective 

function. In microbial systems it has been often hypothesized that a biologically 

meaningful objective is the maximization of the flux through the reaction that represents 

cellular growth, or biomass production [13, 44]. Hence, LP applied to FBA provides a 

prediction of all metabolic fluxes in a cell. FBA can be applied at genome scale, and 

corresponding stoichiometric models are available for a number of organisms. FBA 

predictions have been experimentally validated most thoroughly in Saccharomyces 

cerevisiae SC288 [45] and E. coli K-12 [34]. 
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3. Minimal Balanced Pathway discovery algorithms. 

Minimal Balanced Pathways (MBPs) are defined as sets of reactions in the RN network 

that can optimally perform a given metabolic task. A task is defined as the production of 

a specific end product (e.g., aj, with output flux vout) from a single available nutrient (e.g., 

ai, with input flux vin). A pathway between two molecules is a MBP if (i) it satisfies a 

steady state solution, analogous to Eq. 1; (ii) it produces the final product with maximal 

yield, i.e., vout=vin·j/i; and (iii) it contains the smallest possible number of reaction steps. 

The MBP between ai and aj will be indicated as ai ⇒ aj. 

We have developed three different algorithms for computing MBPs, as described below: 

 

a. Flux Balance Analysis/Mixed Integer LP algorithm 

We use a modified FBA approach to formulate the MBP problem in a constrained 

optimization framework. Specifically, we impose the same constraints used in an FBA 

problem, and further require that the maximal yield condition vout=vin·j/i be satisfied. We 

then search for a solution that minimizes the number of active (nonzero) fluxes. Towards 

this goal, we use a modification of the LP problem described above to introduce binary 

variables (bj) that represent flux activity: bj=0 if vj=0, and bj=1 otherwise. To identify a 

minimal path, we can then search for the set of fluxes that minimize Σibi. Because of the 

nature of the variables involved – the fluxes are continuous, and the number of active 

fluxes is an integer – this problem must be solved using a mixed integer linear 

programming (MILP) algorithm. Our MILP problem for the optimal MBP between an 

and am can be formulated as follows: 

Minimize  ∑
=

N

j
jb

1
 

 

Subject to: 

   0
1

=∑
=

n

j
jijvS        (5) 

   jjjjj bvb βα ≤≤   for j = 1, 2, … , n 
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   inout v
n
mv =   

   { }1,0∈jb    for j = 1, 2, … , n 

 

The optimal solution for this problem will give the flux distribution v that uses the fewest 

nonzero values to maximize the objective. In our MBP computations, the only flux 

constraints used were those that limit the uptake of the single nutrient to an arbitrary 

value of 10 mmol/grDM·h, and the production of the target metabolite to the known 

maximal yield vout/vin=j/i. 

 

b. Elementary Flux Modes algorithm 

Given a metabolic network defined by a stoichiometric matrix S (as described in the 

above FBA section), a vector of fluxes v is said to correspond to an Elementary Flux 

Mode (EFM) if it satisfies the following three conditions [18].  

1. It satisfies the steady state condition (Sv = 0). 

2. It must be feasible within the conditions of the model: if there are known 

boundaries for the fluxes, then v must fall within them. 

3. It must be non-decomposable. There are no two smaller EFMs that can be linearly 

combined to form the one in question. 

Because of these constraints, those EFMs that use the minimal number of reactions 

satisfy the requirements for being an MBP. We used the METATOOL software package 

[46] to find all EFMs in the R10 network, and then identified all of those EFMs that are 

also MBPs. 

 

c. Iterative additive algorithm 

We designed and implemented an algorithm to produce most MBPs de novo, without 

relying on prior steady state stoichiometric modeling methods. The algorithm works in an 

iterative manner, producing longer pathways from shorter ones. For example, we can 

start from two trivial MBPs: a1 ⇒ a1 (which requires no reactions), and a1 ⇒ a2 

(requiring one trivial reaction, a1 + a1 → a2). To compute a1 ⇒ a3, we identify all the 

ways in which we can decompose 3 into two smaller addends (in this case, only one: 
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3=2+1). Next we combine together the previously computed MBPs that progress from a1 

to each of these two addends, giving a new putative MBP for the desired new task (a1 + 

a1 → a2, and a1 + a2 → a3). This procedure can be then iterated to give a prediction of 

MBP ai ⇒ aj (i, j ≤ N). 

This algorithm is fast and efficient compared to the previous methods, allowing us 

to apply it to even the R100 network. However, it has two main drawbacks. First, it will 

miss pathways that “overshoot” the target value then subtract down to it. Second, it may 

miss MBPs that are not built modularly from smaller ones. From a comparison of the 

MBPs predicted by the different algorithms, one can see that the approximations 

introduced in this algorithm cause 18 out 361 MBPs (5%) in R19 to overestimate pathway 

length by one reaction. Also, this algorithm correctly identifies 204 of the 384 degenerate 

MBPs that the EFM algorithm finds in R10. The reaction usage using this method is 

highly correlated with that of the MILP method applied to R19 (Pearson correlation 0.96, 

p-val 10-51), and the EFM method applied to R10 (Pearson correlation 0.98, p-val 2·10-17). 

 

4. KEGG reaction reduction 

Data used for the comparison between the RN metabolic network and real metabolism 

was gathered from the KEGG LIGAND database (July 26, 2009 release)[35]. This 

database was parsed to convert its compounds and reactions into a single-atom form, as 

described in the text. Compounds that carried any uncertainty in their atomic makeup, 

including non-specific side-chains or variable chain length were removed from the 

current analysis. We also removed from the analysis reactions with no associated formula, 

as well as reactions involving non-specific molecules (such as generic glycans and non-

specific nucleotide or peptide chains). Finally, a number of reactions were found to leave 

the atomic composition of the compounds essentially unchanged on either side of the 

reaction (e.g., C3 ↔ C3). These reactions were ignored as well, without consequences on 

the results (data not shown). 

 

5. Metabolite and reaction usage 

We counted how often each metabolite and reaction was used in the artificial chemistry 

pathways as well as in the KEGG-derived single-atom networks. In the model pathways, 
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reaction usage was calculated by counting how many times each reaction was used across 

all pathways. Metabolite usage was similarly calculated by counting the occurrence of 

reactions in which each metabolite participates. For example, in the pathways that 

convert a9 to a10 in Fig. 2C, a9 participates in only one reaction, but a10 participates in 

two. 

In the KEGG-derived networks, a similar counting scheme was used. The reaction 

usage was calculated by counting how many times each reduced reaction appears, and the 

metabolite usage was calculated by counting how many times each metabolite appears 

across all reactions. 

 

6. Shortest paths in Escherichia coli 

We calculated the lengths of the shortest pathways in the metabolic network of 

Escherichia coli, using the genome-scale iJR904 model [34] which has 761 metabolites 

and 1075 reactions. Because there are both metabolites and reactions, metabolic networks 

are inherently bipartite: metabolites connect to each other only through reactions. 

Pathway lengths were computed by transforming the metabolic reaction network 

stoichiometric matrix into an adjacency matrix where metabolites and reactions are all 

represented by the same type of node.  

In this part of our analysis we are only interested in the connections between 

carbon compounds, so we removed any non-carbonaceous metabolites (water, phosphate, 

ammonia, etc.). Also, we removed the following cofactors that are used in many reactions, 

but do not participate in the transformation of carbons: ATP, ADP, AMP, NAD+, NADH, 

NADP+, NADPH, coenzyme A, acetyl-CoA, and the acyl carrier protein.  

Next, we used Johnson’s all-pairs shortest paths algorithm (available as a Matlab 

function) to find shortest pathways between any two carbon compounds in E. coli’s 

metabolic network. For each input compound, we listed the shortest paths to all output 

compounds containing a number j of carbons. For each j, we select among these paths the 

shortest one, giving an estimate of the shortest path between any individual compound 

and the closest j-carbon compound.  Finally, for each value of i, we averaged these path 

lengths over all input molecules with i carbons. The end result is a matrix that provides 
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the average of the shortest paths from any i-carbon compound to its nearest j-carbon 

compound.  

 

7. Analytical estimate of MBP lengths in analogy with addition-subtraction chains 

We developed an analytical approximation for the expected numbers of reactions to be 

found in any MBP ai ⇒ aj. We begin with a simplified version of the artificial chemistry 

model in which only irreversible addition reactions of the form 

 ( )qpqp aaa +→+  (1)

are allowed. Under these restrictions, we first ask what is the smallest number of 

reactions necessary to produce any aj from a1. We shall denote by l(j) the smallest 

possible number of such reactions (we count the use of each reaction (1) once). This 

problem is equivalent to the problem of addition chains [26], in which one attempts to 

compute a positive integer by generating a sequence of integers such that each term in the 

sequence is the sum of two previous terms. Addition chains have been studied 

extensively, mainly because of their applications in computer science and cryptography 

[26]. For addition chains, l(j) grows logarithmically with j: 

 ( ) ( )jjl 2log∝  (2)

Our artificial chemistry represents a generalization, in which a metabolite of any length i 

can be used to produce an output metabolite of any length j. If we still assume that only 

addition reactions are possible (i.e. molecules cannot be broken down), a chain from ai to 

aj will exist only when i is a divisor of j. The problem can then be reduced to the case 

with a1 input and aj/i output. Therefore, in the irreversible case, we can assume that inputs 

consist of monomers without loss of generality. Let L(j) be the length of the shortest 

reaction chain in this case. Because not every reactant exists when dividing by the input 

length i, we have the obvious inequality  

 ( ) ( )jLjl ≤  (3)

Sometimes the shortest chain can be found easily. For instance, {20, 21, …, 2k} is 

obviously the shortest chain from 1 to j = 2k whose length is k + 1. This suggests the 

general lower bound on the shortest length L(j) of the addition chain:  

 ( ) ( )⎡ ⎤ 1log2 +≥ jjL  (4)
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where ⎡x⎤ represents the ceiling of x, or the smallest integer not less than x. Likewise, as 

seen below, ⎣x⎦ represents the floor of x, or the largest integer not greater than x (for 

example, ⎡3.14⎤ = 4, and ⎣3.14⎦ = 3). The longest minimal addition chain arises when the 

output length is j = 2m-1. From this fact, we have the upper bound [26] 

 ( ) ( )⎣ ⎦ ( )jjjL υ+≤ 2log  (5)

where υ(j) is the number of 1s in the binary representation of j. Since ( ) ( )⎣ ⎦ 1log2 +≤ jjυ , 

the bound in equation (5) implies a simpler (but weaker) upper bound 

 ( ) ( )⎣ ⎦ 1log2 2 +≤ jjL  (6)

The above bounds give precise values in some cases and act as bounds in others. For 

instance, L(16) = 5, and L(17) = L(18) = 6 for both the lower and upper bounds, while 

L(31) = 8 is between the lower bound and the upper bound (5 and 9, respectively). 

 There are various conjectures regarding L(j); one of the most famous [31] asserts 

that computing L(j) is NP-hard. Nonetheless, the computation of L(j) has been pushed up 

to n ≤ 225. Two other conjectures [47] predict the general lower bound 

 ( ) ( )⎣ ⎦ ( ) 1loglog 22 ++≥ jjjL υ (7)

and the upper bound 

 ( ) ( ) 112 −+≤− kLkL k  (8)

While algorithms for generating the shortest addition chains are discussed by Thurber 

[47], these all hold for the specific case of pure addition where the input is always a1.  

We are interested in the general case involving both addition and subtraction, and 

specifically the lengths l(i, j) of the shortest reaction chains (MBPs) with ai input and aj 

output. Addition-subtraction chains have also been studied previously as an expansion of 

addition chains, although these correspond to MBPs with only a1 as an input. Sometimes, 

in these cases, l(j) is readily computable, e.g.  

 ( ) 212 +=− kl k  for k ≥ 3 (9)

while ( )12 −kL  remains unknown for sufficiently large k. Both lengths can also be equal, 

i.e. l(j) = L(j). For example, 

 ( ) ( ) 122 =+= kLl kk  

( ) ( ) 21212 +=+=+ kLl kk  

(10) 

(11)
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Note also an inequality: 

 

 ( ) ( )⎡ ⎤ 1log2 +≥ jjl  (12)

All of these features explain the growth law in equation (2). 

 The quantity l(i, j) has a rich behavior, e.g., there is only a trivial lower bound 

since l(j, j) = 1. To ignore this non-interesting effect, let us divide i and j by their greatest 

common divisor as it never affects the length of the MBP: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

d
j

d
iljil ,, ,  d = gcd(i, j) (13)

then we can use an obvious inequality 

 ( ) ( ) ( ) ( ) ( )jliljliljil +=+≤ ,11,,  (14)

Recalling (2) we finally arrive at an approximation for the number of reactions in an 

MBP that uses ai to produce aj: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

d
j

d
ijil 22 loglog~, (15)

The approximation in (15) can also be used to estimate the rank distribution of 

reaction usage. Consider all possible MBPs producing aj from ai. For each (i, j) pair, take 

an MBP and mark all reactions. Let the reaction in (1) occur Epq times: that is, there are 

Epq MBPs that use (1). We now divide Epq by the total number of MBPs and call 

pqpq ENe 2−=  the reaction frequency. It is better to order reactions not according to (p, q) 

but to their ranking j, so that the reaction of rank j = 1 is the most frequent, that of rank j 

= 2 is the second in frequency, etc. This gives ej. How does ej decrease with rank? To 

infer the answer we note that 

 
le

N

j
j =∑

=

2

1
 (16)

From (15) it is clear that the average length 〈l〉 of the shortest reaction chain scales as log 

N. This is consistent with (16) if and only if we have rj ∼ j-1. Thus we predict the power-

law decay 

 1~ −jrj  when  j >> 1 (17)
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Figure Legends 

 

Figure 1 

Representation of the R4 network. (A) This schematic of the R4 artificial chemistry 

network is composed of metabolite “strings” of a up to a maximum length of four, and all 

allowed reactions between them.  

(B) The reaction list for the R4 network. There are four reactions that represent the 

exchange of mass with the environment (r1-r4) – one for each metabolite – and four 

reactions between the metabolites (r5-r8).  

 

Figure 2 

Emergent complexity and modularity in artificial network topology. (A) This set of 

example MBPs displays the emergent modularity of structure and function, as well as the 

multiple usage of different reactions. Each row denotes the input metabolite used, and 

each column the output metabolite. The reaction marked in red interconverts a2 + a2 ↔ a4 

and is the most used reaction. MBPs on a yellow background are autocatalytic cycles. For 

a larger image with more examples, and a more detailed view of the properties observed 

in these networks, see Figure S1. (B) A single autocatalytic loop is used as a modular 

backbone for several MBPs: the cycle that constructs a8 from a7 is also used to produce 

a1, a2, and a4. (C) Four examples of the MBP that produces a10 from a9. Each breaks 

down a10 into a1 in different but equally optimal ways. Each of these sub-pathways (gray 

metabolites) is an MBP in itself, showing the modularity of use of each of these 

metabolic tools. 

 

Figure 3 

Logarithmic growth is observed among pathways from both the R19 and E. coli metabolic 

networks. Each plot has a single starting value i corresponding to either ai (for the model) 

or Ci (for E. coli). The red lines show the number of reactions in each MBP with different 

output metabolite size, and the black lines show the average number of reactions used to 

reach the nearest metabolite of increasing carbon number in E. coli. The predicted 
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number of reactions from Equation 1 is also shown for each plot in blue. (A) C1/a1 input. 

(B) C2/a2 input. (C) C5/a5 input. 

 

Figure 4 

Metabolite and reaction usage frequencies. (A) The frequency of usage of reactions in the 

artificial chemistry model and in the KEGG-derived carbon reaction set. MBPs for the 

R19 network were calculated using the MILP method while the others (R30 through R100) 

were estimated using the iterative algorithm. We calculated the reaction usage by 

counting the number of MBPs that use each reaction. These were then ranked in 

descending order, yielding curves that follow a power law with an average exponent of -

1.14 (+/- 0.03) (R2=0.99). The reaction usage in the KEGG-derived carbon dataset was 

calculated by counting the number of times each equivalent reaction appears, and follows 

a power law tail distribution, with exponent -0.89. The curve predicted by the analytical 

model, with exponent -1, is shown as a solid line. (B) The usage frequency of each 

metabolite among all MBPs in the R19 model. This also shows the frequency of use of 

each metabolite in the R19 network itself, and in a randomly chosen set of reactions 

(control). In the inset, the metabolite usage was sorted by rank and plotted on a semilog 

axis. (C) The usage frequency of each metabolite among all reactions in the KEGG 

carbon reaction set. The inset shows the usage sorted by rank on a semi-log scale. 
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Tables 

 

Table 1 

Of the top 10 most used reactions in the R19 network and carbon-only KEGG network, 

there are five equivalent reactions that appear in both. Recognizing that 74 of the 90 

possible reactions from the R19 set are found in the 631 carbon-only reactions from 

KEGG, we can use the Spearman rank-correlation to find that this has a correlation value 

of 0.54 with p-value 8·10-7. 

 Model reaction KEGG carbon reaction 

1 a2 + a2 ↔ a4 C6 + C6 ↔ C12 

2 a1 + a1 ↔ a2 C1 + C5 ↔ C6 

3 a4 + a4 ↔ a8 C1 + C3 ↔ C4 

4 a3 + a3 ↔ a6 C1 + C4 ↔ C5 

5 a2 + a4 ↔ a6 C5 + C5 ↔ C10 

6 a6 + a6 ↔ a12 C1 + C7 ↔ C8 

7 a1 + a2 ↔ a3 C1 + C8 ↔ C9 

8 a8 + a8 ↔ a16 C3 + C3 ↔ C6 

9 a5 + a5 ↔ a10 C4 + C5 ↔ C9 

10 a1 + a4 ↔ a5 C1 + C2 ↔ C3 
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