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Abstract. We study the crowding of near-extreme events in the time gaps
between successive finishers in major international marathons. Naively, one might
expect these gaps to become progressively larger for better-placing finishers.
While such an increase does indeed occur from the middle of the finishing pack
down to approximately 20th place, the gaps saturate for the first 10–20 finishers.
We give a probabilistic account of this feature. However, the data suggest that
the gaps have a weak maximum around the 10th place, a feature that seems to
have a sociological origin.
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It is fun to learn about sports statistics and discuss their implications among fellow sports
fans. The existence of comprehensive Web-based resources for sports statistics, whose
easy availability was unimaginable just a few years ago, has perhaps helped promote such
activities. In this note, we investigate one such statistic, namely, the finishing times of
individual runners in major marathons [1]. Our main interest is in the dependence of the
time gaps between successive finishers on finishing place. More precisely, let tk be the
time of the kth finisher. Then we wish to understand how the time gaps gk ≡ tk+1 − tk
depend on finishing place k. Because front runners are rare and potential race leaders
are rarer still, the natural expectation is that the gaps between successive finishers should
increase monotonically in moving from the middle of the pack towards the increasingly
rare front runners. However, the data show that the time gaps saturate to a constant
value for sufficiently small k. We suggest that sociological factors may contribute to this
anomaly in the gaps.

The results presented here are based on data for finishing times in major international
marathons that attract world-class entrants. These include Boston, Chicago, and New
York from 2000 to 2007 (entire fields), as well as Berlin 1992 and 1999–2007, Fukuoka
2006–2007, London 2001–2007, and Paris 2004, 2006–2007 (first 100 places for all non-
US races). Data for other years in these non-US marathons are not readily available or
corrupted, and some of the data used in this work required corrections of a few obviously
erroneous results. In these marathons, the winning time is in the range 2:05–2:10. For
example, in Boston, Chicago, and New York, the course records are 2:07:14, 2:05:42, and
2:07:43, respectively, while the current world record, set by Haile Gebrselassie in the 2007
Berlin Marathon, is 2:04:26. After the race winner, there is a trickle of fast finishers that
gradually turns into a steady flow as the finish time approaches 3 h. The main pack
arrives in the range of 3–6 h, with a decreasing stream of progressively slower stragglers.
Thus one naturally anticipates the distribution of finish times shown in figure 1.

Upon examining these distributions critically, a number of curiosities can be seen.
First, in spite of the data smoothing, there are visible peaks at just under 3 and 4 h
for all three marathons. For the Chicago marathon in particular, where the course is
flat and well suited for pacing, one can even discern secondary peaks near 3:10, 3:20,
and 3:30 (figure 1). The existence of such peaks suggests that the distribution of finish
times in this range does not reflect a performance limit, but rather, the surmounting of
a psychological barrier. Parenthetically, the apparent difference in the distributions for
the Boston marathon (where challenging qualifying times exist), and the Chicago and
New York marathons can be made to nearly disappear by plotting them in scaled units—
namely, by making the abscissa the finish time divided by the average finish time for each
set of eight races.

More interesting behavior, and the main point of this work, is the k dependence of
the time gaps gk between successive finishers. We are particularly interested in these gaps
for finishers near the front of the pack. Thus we restrict ourselves to the first 10 000
finishers in the US marathons. This threshold corresponds to finishing times of about
4 h for Chicago and New York, and around 3:45 for Boston. By comparing with figure 1,
these time thresholds are prior to the peak of the finishing time distribution for Chicago
and New York, and near the peak for Boston. For comparison, the average number of
finishers over the last eight US marathons that we studied is 30 668 for Chicago, 33 669 for
New York, and 16 645 for Boston. For k > 10 000, 〈gk〉 begins increasing, corresponding
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Figure 1. Distribution of all finishing times (smoothed over a 20-point range
for visual clarity) for the Boston, Chicago, and New York marathons, 2000–2007.
Notice the peaks at 3 h in all the data, the prominent peaks at 4 h for the Chicago
and New York marathons, and the secondary peaks at 3:10, 3:20, and 3:30 for
the Chicago marathon. The dashed curve shows the distribution of equation (4),
with parameter values as given in the text. The inset shows the data in the range
of 2:08–2:45.

to the lagging tail of the finishing time distribution. For the European data, we quote
g(k) only to k = 100.

Among the fastest finishers, the finish time distribution decays very slowly and is
nearly constant for times less than 2:30 (inset to figure 1). For the marathons that we
studied, the average time gap between consecutive finishers among the first 10 places is
in the range of 20–60 s, and does not have any clear systematic k dependence (figure 2).
Members of this group of elite runners are all possible candidate winners of the race on any
given day. In contrast, beyond the 20th place, the average gap systematically decreases
with k, a decrease that clearly reflects the increase in the density of runners as the leading
edge of the pack arrives at the finish.

We can make these observations quantitative by assuming that the finishing times
of individual runners are independent and identically distributed (iid) random variables,
and then using extreme-value statistics to determine the time gaps gk between successive
finishers [2, 3]. As a preliminary, consider the time tk of the kth finisher. The typical
value for this time can be determined from the extremal condition (which assumes self-
averaging)

∫ tk

0

P (t) dt ≈ k

N
, (1)
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Figure 2. Distribution of the average time gap gk between the kth and (k + 1)st
finisher for: the US (◦ ) and the European (+) marathons cited in the text. For
the US marathons the first 10 000 gaps are shown, while the first 100 gaps are
shown for the European marathons. The dashed line has a slope of −1, as given
by equation (5).

that states that there are k individuals whose finishing times are less than tk. The
resulting estimate for the typical kth finishing time tk should be accurate for k � 1,
where fluctuations in tk are negligible. More generally, we can compute the full probability
distribution of tk, as outlined in appendix A, and thereby find the mean value of tk to be

〈tk〉 =

∫ ∞

0

I (P>(x); N − k + 1, k) dx, (2)

where I(y; a, b) = [
∫ y

0
xa−1 (1 − x)b−1 dx]/[

∫ 1

0
xa−1 (1 − x)b−1 dx] is the regularized (in the

sense that I(1; a, b) = 1) incomplete Beta function and P>(x) ≡
∫ ∞

x
P (x′) dx′ is the

exceedance probability.
The main message from either the exact result in equation (2) or the extremal

condition in equation (1) is that the time gap gk = tk+1 − tk has the following generic
behaviors (see appendix B for three simple examples):

• If P (t) is constant, then 〈gk〉 is independent of k.

• If P (t) increases monotonically as t increases, then 〈gk〉 decreases monotonically as k
increases.

• If P (t) decreases monotonically as t increases, then 〈gk〉 increases monotonically as k
increases.

Let us now apply the above results to marathon finishing times. As a trivial and
artificial initial example, suppose that the marathon runners’ speeds s are distributed
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exponentially, P (s) = s−1
∗ e−s/s∗ , with s∗ a characteristic running speed. Then the

distribution of finishing times t = L/s would be

P0(t) =
T

t2
e−T/t, (3)

where T = L/s∗ is a typical finishing time for the field, and L is the course length.
Applying the extremal criterion equation (1) to this distribution gives the typical kth
finishing time tk = T/[ln(N/k)]. While tk increases with k, as it must, this result has the
unrealistic feature that the winning time approaches zero as the field becomes arbitrarily
large.

More plausibly, the finishing time distribution should incorporate a non-zero fastest
time tmin. A slightly more refined example that obeys this constraint is

P (t) =
mT m

τm+1
e−(T/τ)m

, (4)

where τ = (t− tmin). The main new features of this distribution compared to equation (3)
are the cutoff at tmin and the arbitrary exponent value m; the power-law prefactor is
subdominant and it merely serves to simplify the calculations below. In fact, with the
values tmin = 1.75 h, T = 2.75 h and m = 3, equation (4) roughly follows the data in
figure 1 (dashed curve). While one should not take the distribution (4) and the parameter
values too seriously, we will see that its precise form does not affect the behavior of the
time gaps between successive finishers.

Applying the extremal condition equation (1) to the distribution equation (4), and
using the variable change x = (T/τ)m to simplify the resulting integral, the typical value
of the time gap is

gk = T

[(
ln

N

k + 1

)−1/m

−
(

ln
N

k

)−1/m
]
≈ T

m(ln N)1+1/m

1

k
1 � k � N. (5)

This 1/k dependence holds for any distribution with an exponentially fast cutoff near the
lower limit. The behavior gk ∝ 1/k accords well with the data beyond approximately
20th place. However, contrary to the prediction from equation (5), the data clearly show
that there is an ‘excess’ of elite runners (figure 2), as the time gaps between successive
finishers are roughly constant for the first 20 places. Moreover, for the US races, the gaps
between the first few consecutive finishers actually decrease with k. As seen in figure 2
for US races, the largest gap occurs between 5th and 6th place.

The reason that equation (5) does not capture the small-k behavior seen in figure 2
is that the parent distribution in equation (4) quickly goes to zero close to the fastest
finishing time tmin, whereas the actual distribution becomes nearly flat in this regime
(figure 1). If we were to consider a flat distribution P (t), as suggested by the data
shown in figure 1, then a constant gap would be reproduced. The generic behavior of the
dependence of the gap gk on k is discussed in appendix B. Along these lines, a recent
theory [4] predicts a crowding of runners near the front of marathon packs when the
finishing time distribution is bounded from below. One additional feature of the gaps
is that they begin to increase with k � 1000 (figure 2). This behavior also arises from
equation (5) for large k. This regime corresponds to finishing times of more than 4 h and
is not relevant for our main conclusions.
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Is there an explanation for having an excess of world-class runners? Many elite runners
enjoy considerable incentives to maintain their competitive edge, including appearance
money, access to the best support institutions (medical and athletic), etc. Thus if one
achieves a time that qualifies as an elite performance, one is then in a position to take
advantage of the various inducements offered to leading runners to maintain such a status.
However, runners at the next tier of achievement face a daunting challenge. To run a
marathon in the range, say, of 2:15–2:30 (for men) is still an impressive achievement that
requires significant talent, dedication and time commitment. However, such a finish time
is too slow to be competitive at major marathons. Thus runners who finish in this range
typically have little or no external support for their athletic activities and have to balance
this all-consuming endeavor with the need to survive economically. Consequently, one
may even anticipate a deficit of male runners who can complete a marathon in the range
of 2:15–2:30. Such a feature does actually occur in the Boston marathon.

It would be valuable to study whether a similar excess of the elite exists in different
athletic events or other forms of human competition. It is also worth mentioning that
perhaps a similar elite excess occurs in human mortality, where there is a well-known
mortality plateau among the longest-lived individuals [5]–[7]. Here again, there seems
to be a self-selected sub-population of advantaged individuals who gain advantage both
innately and perhaps because of external reinforcement.

One of us (SR) thanks Guoan Hu for his invaluable data collection assistance, Paul
Krapivsky for a helpful discussion, and the NSF for financial support. SS and SNM
acknowledge the support of the Indo-French Center for the Promotion of Advanced
Research under Project 3404-2.

Appendix A. Probability distribution of the kth finishing time

For a set of N iid random times that are drawn from the same distribution P (t), let
{t1, t2, . . . , tN} denote their ordered set, with t1 < t2 < · · · < tN . Thus t1 denotes the
winning time, t2 denotes the 2nd-place time, and tk denotes the kth-fastest finishing time.

The probability distribution of the kth-fastest finishing time tk is given by

f(tk) =
N !

(N − k)!(k − 1)!

[∫ ∞

tk

P (x) dx

]N−k [∫ tk

0

P (x) dx

]k−1

P (tk),

=
1

B(N − k + 1, k)

[
P>(tk)

]N−k [
1 − P>(tk)

]k−1
[
−dP>(tk)

dtk

]
. (A.1)

Equation (A.1) merely specifies that (N − k) variables are greater than tk, (k − 1)
variables are smaller than tk, and one variable equals tk. The combinatorial prefactor
gives the number of such arrangements of these variables. In the second line, B(a, b) =
Γ(a)Γ(b)/Γ(a + b) is the Beta function, and we have defined the exceedance probability

P>(x) ≡
∫ ∞

x

P (x′) dx′,

namely, the probability that a variable chosen from the initial distribution P exceeds x.
This exceedance probability satisfies the obvious conditions P>(0) = 1 and P>(∞) = 0.
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One can easily check from equation (A.1) that f(tk) is normalized, i.e.,
∫ ∞
0

f(tk) dtk = 1,
as it must be.

The average value of the kth-fastest finishing time is then

〈tk〉 =
1

B(N − k + 1, k)

∫ ∞

0

x
[
P>(x)

]N−k[
1 − P>(x)

]k−1
[
−dP>(x)

dx

]
dx

≡ −
∫ ∞

0

x
dI

dx
dx. (A.2)

In the second line we have introduced I = I(y; a, b), the regularized incomplete Beta
function, I(y; a, b) ≡ B(y; a, b)/B(a, b), in which B(y; a, b) is the incomplete Beta function

B(y; a, b) =

∫ y

0

xa−1(1 − x)b−1 dx, y ∈ [0, 1],

B(a, b) = B(1; a, b) is the standard Beta function, and y ≡ P>(x). Integrating
equation (A.2) by parts, and using the fact that the integrated term vanishes at both
endpoints, gives the mean kth finishing time expressed by equation (2).

Appendix B. 〈gk〉 for three simple cases

In this appendix we calculate 〈gk〉 explicitly for three simple cases of P (t).
Case 1. For the uniform distribution, P (t) = 1 in t ∈ [0, 1] and P (t) = 0 outside.

Hence, P>(t) = 1 − t. Then

〈tk〉 =
1

B(N − k + 1, k)

∫ 1

0

x · xk−1(1 − x)N−k dx =
B(N − k + 1, k + 1)

B(N − k + 1, k)

=
k

N + 1
. (B.1)

Thus we obtain 〈gk〉 = 1/(N + 1) for all k, while using the extremal condition (1) one
finds the typical gap gk ≈ 1/N . As expected, 〈gk〉 is independent of k for a uniform
distribution.

Case 2. Consider the monotonically increasing distribution p(t) = 2t in t ∈ [0, 1].
Then P>(t) = 1 − t2. Hence,

〈tk〉 =
1

B(N − k + 1, k)

∫ 1

0

x · x2(k−1)(1 − x2)N−k dx

=
1

B(N − k + 1, k)

∫ 1

0

zk−1/2(1 − z)N−k dz

=
B(N − k + 1, k + 1/2)

B(N − k + 1, k)
=

Γ(N + 1)Γ(k + 1/2)

Γ(k)Γ(N + 3/2)
. (B.2)

From this exact calculation we find

〈gk〉 =
Γ(N + 1)

Γ(N + 3/2)

Γ(k + 1/2)

Γ(k)

1

2k
, for all N and

≈ 1

2
√

N

1√
k
, for N > k � 1. (B.3)
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Similarly using equation (1) the typical value of the kth finishing time is tk ≈
√

k/N , and
hence

gk ≈ 1√
N

[√
k + 1 −

√
k
]

≈ 1

2
√

N

1√
k
, for N > k � 1. (B.4)

These results show that 〈gk〉 monotonically decreases as k increases. That is, the gap
between successive variables gets smaller when their density increases, as one would
expect.

Case 3. Consider the monotonically decreasing distribution P (t) = exp(−t) where
t ∈ [0,∞). In this case,

〈tk〉 =
1

B(N − k + 1, k)

∫ ∞

0

xe−(N−k)x(1 − e−x)k−1 dx

= − 1

B(N − k + 1, k)

∫ 1

0

ln zN−k(1 − z)k−1 dz.

The latter integral can be found in [8] and the final result is

〈tk〉 = ψ(N + 1) − ψ(N − k + 1), (B.5)

where ψ(x) = d lnΓ(x)/dx is the digamma function. Finally using the series
representation

ψ(n) = −γ +

n−1∑
m=1

1

m
, (B.6)

where γ = 0.577 215 . . . is Euler’s constant, we obtain

〈gk〉 =
1

N − k
, 1 ≤ k ≤ N − 1. (B.7)

On the other hand using the extremal condition (equation (1)) one finds the typical value

gk ≈ − log

(
1 − 1

N − k

)
≈ 1

N − k
, for N − k � 1. (B.8)

Thus 〈gk〉 monotonically increases as k increases. Note that in this case the extremal
condition equation (1) does not describe well the behavior when k is close to N .
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