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Slowly divergent drift in the field-driven Lorentz gas
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The dynamics of a point charged particle that moves in a medium of elastic scatterers and is driven by a
uniform external electric field is investigated. Using rudimentary approaches, we reproduce, in one dimension,
the known results that the typical speed grows with timé'&sand that the leading behavior of the velocity
distribution ise~*I*’t. In spatial dimensiord>1, we develop an effective-medium theory that provides a
simple and comprehensive description for the motion of a test particle. This approach predicts that the typical
speed grows as’® for all d, while the speed distribution is given by the scaling fd®u,t) = (u) = f (u/(u)),
whereu=|v|32 (u)~\t, andf(z)ez{¢"DB%e#12 For a periodic Lorentz gas with an infinite horizon, e.g.,
for a hypercubic lattice of scatters, a logarithmic correction to the effective-medium result is predicted in which
the typical speed grows as nt)3. [S1063-651%97)09609-9

PACS numbegps): 02.50—r, 05.40+j, 05.60+w

[. INTRODUCTION field and a stationary asymptotic VDF will not exist. This
dilemma motivated investigations of the field-driven Lorentz
At the turn of the century, Drude developed a qualitativegas in which some form of dissipation is explicitly incorpo-
theory for electrical conduction in metdl]. To establish a rated[11-13, so that it is possible to obtain Ohm'’s law.
more solid basis for Drude’s theory, Lorefi#d suggested an In the absence of dissipation, however, Piasecki and
idealized model for electron transport in metals in whiph ~ Wajnryb [14] recognized the fundamental ramifications that
electron-electron interactions are ignore@,) the back- arise from the nonstationarity of the system. From an exact
ground atoms are considered to be immobile spherical scasolution to the Boltzmann equation in one dimension and an
terers, andiii ) the electron-atom interaction is described byasymptotic solution for general and with the crucial as-
elastic scattering. Thisorentz gag3] has played a large role sumption of isotropic scattering, they found tliigtthe root-
in developing our understanding of diffusive transport in ran-mean-squardor typical) velocity v, grows with time as
dom media. t® and (ii) the VDF has a nonstationary but symmetric
An important feature of the Lorentz gas is the indepen-asymptotic form whose controlling factor & 1vI*/t

dence of the electrons. This implies that the underlying our goal in the paper is to develop simple and physically
Boltzmann equation for the evolution of the electron velocityyransparent approaches to understand the behavior of this
distribution function(VDF) is linear. The Boltzmann equa- fie|d-driven Lorentz gas. We begin by considering the one-
tion therefore has been fruitful in understanding the propergimensional system in Sec. II, where we substantially repro-
ties of the Lorentz gasee, e.g.[4] and references thergin  duce the results of Piasecki and Wajniyis!] by relatively
These investigations have established that, under relativelimple methods. We first construct a random-walk argument
general conditions, a test particle moves diffusively and thato explain the mechanism that gives rise to the sid#
its diffusivity can be computed in terms of the geometricincrease ofv ¢ with time. This argument relies on the as-
properties of the background scatterers. The Lorentz modelumption that each scattering event is spatially isotrfifg,
is also simple enough to be amenable to rigorous analytical feature that we discuss in more detail later. To determine
studies(see, e.g.[5-10). In particular, for a periodic Lor- the time dependence of the speed distribution function
entz gas in two dimensions with an “infinite” horizdinfi- (SDF), we employ the Langevin and underlying Fokker-
nitely long straight trajectories exjsistrong arguments have Planck equations. These approaches provide a physically
been given that suggest that there is anomalous diffusion dfansparent and simple derivation of the long-time
the form(r?)oct Int [10]; this phenomenon is also expected asymptotic behavior. Finally, we develop a Lifshitz argu-
to arise in arbitrary dimension. ment[16] to reproduce the asymptotic tail of the SDF with
Paradoxically, much less is known about the problem thaminimal calculation.
originally motivated the Lorentz gas model, i.e., the motion In Sec. Il we study the field-driven Lorentz gas for arbi-
of a charged test particle in a scattering medium under thé&rary spatial dimensiod. In greater than one dimension, the
influence of a spatially uniform electric field. Lorentz him- freely accelerated trajectory segments between scattering
self constructed a stationary solution to the Boltzmann equaevents are biased by the field, leading to anisotropy in the
tion by a perturbative expansion around the Maxwell-spatial position of the test particle at the next scattering
Boltzmann distribution[2]. From this solution, Lorentz event. To account for this bias in a simple manner, we apply
reproduced the basic results of the Drude theory. Unfortuan effective medium approach. In this description, a particle
nately, the starting point of Lorentz’s analysis is erroneousbegins at the center of a “transparency” sphere of radius
If the scattering is elastiéno dissipatiol then an electron equal to the mean free path. The particle freely accelerates
will necessarily gain kinetic energy as it accelerates in thauntil it reaches the surface of the sphere. This defines a col-
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lision, whereupon the test particle starts at the center of a function ofn, isotropic scattering, together with the restric-

new transparency sphere. We generally assume isotroption of energy conservation, implies that the SDF is a half

scattering in each collision, a feature of elastic scatteringsaussian im. We then introduce a Langevin equation as a

from hard spheres in three dimensidi$]. However, there convenient and simple way to determine the dependence of

is actually preferential backscattering {3 and preferen- the SDF on time.

tial forward scattering fod>3 [17]. Numerical simulations

sgggest that this short-range persistencedfei3 or antu_)er- A. Random-walk argument for the rms velocity

sistence ford<3 does not affect the asymptotic motion of , ) )

the test particle, so that we typically focus on isotropic scat- Cons@er a charged test particle that moves with constant

tering. acceleratlonaze_E/m, whgree and m are the charge and
For isotropic scattering, it is simple to quantify the field- Mass of the particle anfl is the electric field. The test par-

induced bias of the test particle as it moves within a transticle moves in a medium of equally spaced point scatterers

parency sphere. A random-walk argument of a similar spirithith Separation/. To mimic the behavior of a three-
dimensional system with isotropic scattering, the particle

to that given in one dimension then indicates that the influ- ! - ) k
ops with equal probability to its nearest neighbor on the left

ence of the bias is of the same order as the stochastici . Y !
caused by scattering. This implies that the SDF will obe r the right after each collision. Thus the trajectory of the test

one-parameter scaling. From the solution to the underlyin@@rticle consists of freely accelerating segments that are
Fokker-Planck equation, we find the speed distributionPUnctuated by isotropic scattering events. This is simply an
P(u,t)t~ 27~ Diexp(=2/2), where u=[v|¥? with |v isotropic random walk, but with position- and direction-
the speed, and the scaling variablis proportional tau/t2. dependent time increments between successive steps.
We also extend the effective-medium theory to the case We use this picture to compute the behavior of the typical

where the mean free path is chosen from a distributiorY€!0City as a function of time. Energy conservation gives

p(ec/~#. This allows us to investigate how the width of 1

the mean-free-path distribution affects the transport charac- Emuﬁ—eEchonst, (1)
teristics of the Lorentz gas. As might be expected, when

wu>3, corresponding to a finite second moment®) of : . iy
p(/), the transport of the test particle is nearly identical toyvherez_;n andx;, refer to the pgrtlcle velocity andl pos[tlon
the case where the mean free path is fixed. However, fo|Immed|ately after theth scattering event. We rewrite this as
w<3, i.e., for a distribution wit{ /?) =<, faster asymptotic 2eE 2eE/

transport arises. The borderline caseuof 3 corresponds to V2 U= ——(Xpa1—Xp) = —. 2

a lattice array of scatterers such that an infinite horizon m m

arises, and logarithmic corrections in the transport laws ar

. . . _ 2 .
predicted to occur, analogous to the results for the undrivefpecause of the postulated isotropic scatteriofy, ,—vy, is
Lorentz gag18—20,10. equally likely to be positive or negative. Additionally, if the

In Sec. IV we present Monte Carlo simulation results forParticle starts at rest from=0, then energy conservation
test particle motion in a two-dimensional effective medium./MPlies thatx cannot be negative; this provides a r2eflect|ng
When the radius of the transparency circle is fixed, we obtaiffoundary condition ax=0. Thus we conclude that, un-
excellent agreement between simulation results and our thélergoes a simple random walk as a functionnofwith an
oretical predictions for the case of isotropic scattering. Simu€lementary step size given by’=2eE//m, and with re-
lations based on the correct scattering law for hard circles iflection when the velocity reaches zero. As a result,
two dimensions(preferential backscatteringyive virtually .
identical results, i.e., short-range antipersistence between tra- (vpenw* ©)
jectory segments appears to be asymptotically irrelevant. We U
also consider the case of a power-law distribution of radii for°" |[vrmd N AW _ ,
the transparency circle(/) </ ~*. While the physically in- To determine the dependence wfy,s on time, we write
teresting case of.=3 corresponds to the borderline of ap- the time increment between successive collisions as
plicability of our naive effective-medium approach, numeri-
cal results indicate transport properties that are close to those
obtained for a fixed radius transparency circle.

In Sec. V we present a brief discussion and summary.

dt,=tp 1 —te="1|v,|. (4)

The last approximation applies when the typical speed is
large so that the acceleration between scatterings can be ne-
glected. The typical elapsed time forcollisions is therefore

Il. LORENTZ GAS IN ONE DIMENSION

n )
L ) . . . / (ndk /
With isotropic scattering, a test particle in a one- = __ — 34
p g p t k§:1 dt, w . PR Wn : (5)

dimensional periodic array of scatterers undergoes an isotro-
pic random walk as a function of the number of stepdut

with a position- and direction-dependent time increment forSolving forn as a function of time and substituting into Eq.
each hop. In the next subsection we provide a heuristic rarl3) gives the fundamental result

dom walk argument to first determine the dependence of the 13

typical speed om and then infer the dependence on time. v NW("E) ~(a2/1)R (6)
We then apply a more rigorous approach to find the SDF. As rms / '
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It is instructive to compare the time dependence gfs =§(t—t")(dt/dn) gives {n(n)n(n")y=(n(t) n(t"))/1|v],

with that of the average velocity in the field direction. The ¢, thaty(n) = 5(t) V/7]v]. Substituting this into the Lange-
latter can be computed from the recursion relation vin equation(10) gives

a/ dlv| w? \/7
~+y, +adt,~*+v,+—. 7 el S
Un+1 Un ty Un |Un| (7) dt 2/ |U| 7(t) (12

By isotropy, the factor oft1 occurs equiprobably for each or
scattering and we therefore ignore the influence of the sto-
chastic term with respect to the systematic term in &3 djv[®?  3w?

i | indefini i BT (U (13)
Since the typical speed grows indefinitely, we also ignore the dt NG
acceleration during the free flight between adjacent sites, so
that v 4rin=(vn)~a//vms. As a function of time, this may Thus we conclude that the distributi®{u,t) is Gaussian in
be rewritten as u=|v|¥? with a dispersion proportional t@*//. Then the

5 SDF is determined from the identityP(v,t)d|v|

a’/ = P(u,t)du to yield
< (8)

| . o P(0,0)= \| exp[— oF
Thus the average drift velocitdecreaseswith time, even ’ A/ a%t 9/ a’t
though the rms velocity increases. Therefore the VDF be-
comes systematically more isotropic in the long time limit An independent and appealing approach to obtain the

13
U griee(t) ~

. (14)

[14]. SDF is by a Lifshitz tail argumenfl16], in which the as-
Finally, using Eq.(8), one can estimate the average dis-sumed scaling form of the SDF is matched to the “extreme”
placementx(t)) in the field direction to be contribution that arises from a particle that is scattered in the
field direction at each collision. This extreme tail can usually
(X(1))~v (Dt~ (ar?t?) 3, (9)  be estimated by elementary means, which is the basis for the

appeal of this approach. Although heuristic, the advantages
Alternatively, this same result follows directly from energy of this method are simplicity and wide applicability.

conservation(1l) and the time dependence of,{t) from Our starting point is to assume that the SDF can be writ-
Eq. (6). ten in the scaling form
o 1
B. Speed distribution P(v,t)~ . f(v/vime, (15)
rms

We now derive the speed distribution using simple but
rigorous approaches that obviate the need to solve th@here the scaling functiofi(z) is expected to approach a
Boltzmann equation. First consider the Langevin equation t@onstant ag—0 and vanish faster than any power law for

describe how the typical speed dependsnorSincevﬁ IS z—o. Generally, this large-dependence is quasiexponen-
randomly incremented or decremented by a fixed amadnt tial [22]

in a single collision, we may write, in the largelimit,

, f(z)~exp — 2%, (16)
dvy,
ﬁzwzﬂ(”): (10 wheresis the “shape” exponent of the distribution.

Consider now a trajectory in which the test particle is
where the noise has zero mean(n))=0 and no temporal p_erpetually scattere(_j pgrall_el to the field, so that its speed is
correlation { 7(n) 7(n'))=8(n—n’). Since we are inter- simply v=at. Substituting into Eq(16) and using Eq(6)
ested in then— limit, the continuum result for this corre- O Vrms 9ives
lation function is appropriate. In this limit, the amplitude
distribution of the noise is also Gaussian. Consequently, the
solution to the Langevin equation with reflectionu‘ﬁt=0 is
a half-Gaussian distribution fmﬁ with a dispersion equal to
nw* [21].

To determine the time dependence of the speed distrib
tion, we transform fromm to t by writing dt=/dn/|v,|, so
that

P(v=at,t)~e [aV@ VPP _g-@?)® (19

On the other hand, the probabiliBy, thatn scattering events
are all parallel to the field equals™2. For this uniformly
accelerated motion, the correspondence betweamd the
Yime is simplyat?/2=n/. Writing P,, as a function of time
and matching with the argument of the exponential in Eq.
(17) gives 6= 3, in agreement with above asymptotically ex-
5 act results. Note that if we define a size exponettirough

% Y M (11) vms~1”, then the general scaling relatios (1— v) ~1[22],

dn Coodt between the size and shape exponents, fails for the field-

driven Lorentz gas.

Next, we transform the dependence of the Parenthetically, we note that the naive substitution of the
noise correlation fromn to t. Writing &(n—n’) dependence on the number of scattering events by the time
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be the point where the surface of this sphere is reached. This
collision point also defines the center of the next transpar-
ency sphere. This construction is repeated to generate a par-
ticle trajectory that consists of parabolic segmedtite free-
particle motion between collisionswvhich are punctuated by
collision events. As discussed in the Introduction, we gener-
ally employ isotropic scattering, so that the outgoing particle
direction is randomized at each collision event.

B. Typical speed

To estimate the typical speed, we need to quantify the
deflection of a trajectory during free flight. Let us define
trajectories whose collision points are in the hemisphere
x>0 as positively biased and vice versa. Separating these
trajectories is a “critical” trajectory, in which the next col-

FIG. 1. “Transparency” sphere that surrounds a scatterer. AftefiSION point is also ak=0 (Fig. 1). (This critical trajectory

a scattering event, the test particle moves freely on a paraboli§Xists only if the initial speed satisfies>w/v2; otherwise

trajectory until the next collision at the sphere boundary. The initialdll trajectories are deflected towards increasingiowever,

and final angular position of the test partidleind a, respectively, ~ since the typical speed grows as a power law in time, the role

are indicated. The critical trajectotpointing downwardlis defined  Of trajectories in which the speed is too small to define a

by the condition that the final longitudinal position of the test par-critical trajectory is expected to be negligible.

ticle is atx=0. By elementary mechanics, the inclination angle of this
critical trajectory is

dependence for extreme events gives a correct description for

the tail of the SDF. In contrast, if we take the correct distri- 0 ZE sin~

bution of v2, P(v2)xexp(v¥2nw*), and substitute ¢ 2

n~(wt//)*3 which expresses the average number of colli-

sions as a function of time, we arrive aiong expression  very roughly, then, we may view the longitudinal motion of

for the SDF. This suggests that the distribution of times fofthe test particle as an equivalent biased one-dimensional ran-

fixed n, averaged over all random walks, will be broad. dom walk, in which trajectories with €@ 6< 6, are mapped
onto steps to the right and trajectories with< < are

as\ m w2

i1 I ORI i
v? 2 (20

w
as ;—>O. (18

IIl. LORENTZ GAS IN GREATER THAN mapped onto steps to the left. From Ebg), the bias at each
ONE DIMENSION step is proportional to the inverse square of the particle speed
e=(w/2v)?. Following the same steps as those given in Egs.
A. Effective-medium approximation (1)—(6), the velocity increment between scatterings is given

. . . . 2 2__ : H :
The field-driven Lorentz gas in greater than one dimendY vi.i—va==W? but with the = sign now occurring

sion presents theoretical and computational challenges. Nwith respective probabilities;(1+be), where b is a
merical simulations of the dissipationless system are prone tdimension-dependent number of order unity. Thus, in addi-
large fluctuations and quantitative conclusions are not readil§ion to the stochastic particle motion given in Eg), a de-
obtained[11]. Because of this computational difficulty and terministic contribution also arises. This latter component
also because dissipation arises in any physical realization @fives, for the n dependence of the speed,
the Lorentz gas, simulations have primarily focused on the’z~new?~ nw*/v?2, or |v,|~n*w, identical to the one-
field-driven system with dissipation. This is achieved by ei-dimensional result. Now employing the approach given in
ther allowing for inelasticity in collision evenfd 2] or intro-  Sec. Il A, we reproduce the same time dependenceas in
ducing a “thermostat” that continuously extracts energyone dimension. Thus, in higher dimensions, the manifesta-
from the particle during its free motion to maintain a con-tions of isotropic scattering and field bias are of the same
stant kinetic energy11,23. While much is known about order in our effective-medium theory and this leads to the
these dissipative system&3,24], our interest is in the non- time dependence of the one-dimensional system.

stationary behavior of dissipationless system: namely, the
time dependence of the typical speed and the form of the
SDF.

Because of the inherent difficulties in describing the mo- To determine the speed distribution, we first derive the
tion of a test particle in a regular lattice of scatterers, welLangevin equation for the dependence of the typical speed
introduce an effective-medium approximation in which theonn, from which the underlying Fokker-Planck equation for
true trajectory is replaced by an effective but physicallythe SDF may be written and solved. In a time after col-
equivalent trajectory whose properties are readily calculabléision n (and before collisiom+ 1), the particle will be lo-
(Fig. D). We assume that immediately after each scatteringated at
event, the test particle starts at the center of a transparency
sphere of radius equal to the mean free pdthThe test
particle freely accelerates until the next collision, defined to 2

C. Speed distribution

e (29
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with respect to the center of the transparency sphere. Rlere Substituting this into the Fokker-Planck equati(®b) and
andeé are the unit vectors in the direction of motion after the writing the time and velocity derivatives in terms of the scal-
scattering event and the electric field, respectively, i.e.jng variable, the partial differential equation can be separated
i,=vh andE=E&. The next collision event takes place on into two ordinary differential equations. From the time de-
the surface of the spherg®=/2. Consequently, the time Pendence ofu), we obtain

incrementr between collisions is implicitly given by 4

d 2_9W )
atr* 0 at" "g7a @
7

/=(wr)?+avr(n-e)+
This then gives a characteristic speed that is proportional to
The velocity change between collisions is found from en-(w*t//)*or (a2/t)*3 From the dependence on the scaling
ergy conservation variable, we find that the scaling function obeys the ordinary
differential equation
v2 —vi=2a(f-&)=2avr(h-&)+(an? (21

, , d-1|f(z) f'(2)
Combining Egs.(20) and (21), the time increment can be -2 @=t"D+—F5— |z ——| @9
eliminated to give the analog of ER)
2,2 where the prime denotes differentiation with respectzto
v2, —v2~2a/ (R &)+ v’/z [1-(A-8)2]. (22 One integration gives
-1
In Eq. (22) and below we ignore terms @(w®/v*). The f'(2)=<¥—2)f(2)+A, (29

first term in EQ.(22) is purely stochastic becaug¢g- e)=0.
Since((n-€)?)=1/d, we may write this stochastic term as where A is a constant. Sincé(z) and its first derivative

w?n(n)/\[d. The second term in E22) has both determin- yvanish faster than any power offor z—=, A=0. The so-
istic and stochastic components, with the magnitude of theution to the resulting equation is
former equal to &//v)?(1— 1/d) = (d— 1)w*/4v2d, the lat-

ter being negligible in the long-time limit. Thus we obtain (4-d)6 A1)z
the Langevin equation f(z)= T(d+2)/6)> e “' (30
dvj _d-1 whoow? with I'(y) the gamma functiofi25] and the numerical coef-

23 ficient is determined by the normalization condition

[of(z)dz=1.
In one dimension, the deterministic term disappears and Eq.
(23) coincides with Eq(10). D. Distributed mean-free paths
Following the same steps as those given after(E@), we
eliminaten in favor of the time to transform the above equa-

dn4d o2 g

In both the random-walk argument fal=1 and the
effective-medium theory fod>1, a mean free path that has

tion to the fixed value/” for each scattering event was an inherent
dol3? 3(d-1)w* 1 3w feature. However, in the Boltzmann equation approach of

= , T 7(t). (24)  Piasecki and Wajnrylh14], a Poisson distribution of mean
dt 167d | 4\z7d free paths is implicitly assumed. In fact, there will be a dis-

tribution of mean free paths in any real scattering medium.

In this equation, the order of magnitudes of the systemaliGye therefore examine the physical effects that such a distri-
and stoggastlc terms on t_he right-hand side are identicaly tion has on transport properties. Probability the@§,27]

Thus_|u| _evolves _by a biased r_andom—walk process, bL”suggests that if the distribution is relatively sharp, the previ-
one in which the bias and the dispersion are of the samgs yandom-walk arguments apply, while for a broad distri-
scale. This can be seen more clearly by writing the underlyytion, different transport behavior arises. We therefore con-

ing Fokker-Planck equation foP(u,t), where u=[vl*2  gidera power-law distribution of mean free paths
Following the standard prescripti¢@1], this Fokker-Planck

equation is p(/)~ Nt Y m, 31)

P ow*
ot 16/d

which is expected to facilitate the absorption of field energy
by the test particle for sufficiently small kg index u. Ad-
ditionally, this form, for u=3, corresponds to the Lorentz
Notice that because the bias is proportional ta,lboth  gas in a scattering medium with an “infinite” horizae.g.,
terms on the right-hand side are of the same order and a square lattice of spherical scatteydk8—20.

scaling solution is appropriate. Let us therefore make the Let us first consider a one-dimensional system in which a
scaling ansatz new mean free path is independently chosen from the above
distribution after each scattering event. We allpmto be
arbitrary since this general situation is tractable. If the second
moment ofp(/) is finite, i.e.,u>3, then the distribution of a

PP d—1 9 (P)
. (25)

ouZ 3d dul\u

P(u,t)=%f(z) with z=u/{u). (26)
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sum of a large number of independent random variables,
each distributed according ta(/’), approaches a Gaussian
and the random-walk argument of Sec. Il applies. In contrast,
for =<3, a Levy distribution emerges whose index depends
on u. Making use of well-known resultf26,27] for Levy
distributions, we determine the dependence o, to be
[the analog of Eq(3)]

5 2\/nlnn, u=3
v~ W nll(ﬂ-*l), ,U,<3, (32)

with w?=X\a. Repeating the calculational steps employed in
Sec. Il, we find, for the time dependencewgf (1),

3827
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FIG. 2. Monte Carlo simulation results for 2000 walks of%2.5

steps in a two-dimensional effective medium. Shown @atg(t)

wat [wt)]¥3
x| o w3

Umd D) ~W Wi U2u=3) 33
(T) , 2<u<3.

The average displacement in the field direction is thus given
by (x(t))=vmgt)%2a, while the drift velocity is (c)
varie(1) =(x(t)}/t. For u<2, the first moment op(/) di-
verges, so that the typical mean free path is infinite. Conse-
quently, collisions become irrelevant asymptotically, so that
the typical velocity should grow linearly in time and an
asymmetric velocity distribution should arise.

IV. NUMERICAL SIMULATIONS (d)

To test our theoretical predictions, we perform Monte
Carlo simulations of particle motion in a two-dimensional
effective medium. An important element in this simulation is
determining where an arbitrary parabolic trajectory, which
starts at the origin, intersects the circumference of a concen-
tric circle. This involves the unwieldy solution of a quartic

(A) and the mean longitudinal positiofx(t)) (X). The straight
lines represents the best fits to the data in the rangé<1t5<1.5%°,

ics, a is perturbatively given in the large velocity limit
by

a=60—esind+ésin 20+ - -,
with e=(w/2v)2.
From the angley, determine the change in the longitu-
dinal position of the particldx and thereby determine
the change in the speed of the particle by
vf2=vi2+w2Ax//’. Herev; is the velocity of the par-
ticle as it begins from the center of the transparency
circle andv; is the particle velocity just before the
collision at the circumference of the circle.
Determine the time increment associated with this
trajectory. In the large velocity limitris perturbatively
given by

% 5¢”
=Tl 1-€ coa9+7(cosz0—1)+--- :

(ii) If the speed is less thany,, then, the scattering angle
is taken to be #=0. Consequently,v?=v?+w? and

equation. However, since the typical speed grows with t|me,7_: 2/1(|vi| + o)~ 2/ 1w.

individual trajectory segments should be only slightly curved
in the long-time limit. Thus we compute the trajectory and
the time between collisions in a perturbation series approprix
ate for the large speed limit. If the speed happens to fal
below a preset threshold such that a strongly curved trajec-
tory segment should arise, we impose the constraint that for
this segment the particle is deflected exactly parallel to th(?
field. We anticipate that this “reflecting” boundary condi-
tion in velocity space has a negligible influence on the long-
time motion of the test particle.

Our simulation algorithm therefore consists of the follow-
ing steps to compute the velocity and time increments be-
tween collisions. These steps are repeated to generate
single-particle trajectory.

(i) If the speed is above a predetermined threshqgld
then:

Clearly, the different particle update rules for initial speed
.smaller or larger than the threshold is a crude approximation.
ne can envision more accurate but more cumbersome rules
o0 integrate over low-speed trajectory segments. Since these
Segments are relatively unlikely, this refinement was not pur-
sued and indeed appears to be unnecessary. Also, because of
he arbitrariness in the integration over the low-speed seg-
ments, the actual value of;, is also somewhat arbitrary and
we chosevy,=w. To appreciate the role of trajectory curva-
ture, note that when=uv, the maximum deviation between
the initial and final angular positions of the trajectory arises
w&‘nen 0~111.5°, with «—6~—15.8°. Forv=2vy, the
maximum deviation point occurs wherd~97°,
a— 6~ —3.7°. Thus the effect of curvature in the individual
trajectory segments is typically small.

Typical results from this Monte Carlo simulation with iso-

with

(@ Choose a random scattering angle in the rangeropic scattering are presented in Fig. 2. Shown w@rg(t)

0<6=< (see Fig. L
(b) Determine the angular positianof the particle when it

and(x(t)) on a double logarithmic scale based on 2000 tra-
jectories of 1.8°~127 834 steps for the case where the

hits the surface of the circle. From elementary mechantransparency circle has a fixed radius. After some transient
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FIG. 3. Scaled distributiori(z)=(u)P(u,t) versusz=u/{u), FIG. 4. Monte Carlo simulation results for 2000 walks of.5

where u=|v|*?. Representative data shown inclutte 1.5° (O) steps in a two-dimensional effective medium in which the radius
andt=1.53 (¢ ) smoothed over a three-site neighborhapd1.52°  of the transparency sphere is drawn from the distribufiger)

(V) smoothed over a five-site neighborhood, and1.5° (+) =/ 3 Shown arev,,{t) (A) and the mean longitudinal position
smoothed over a seven-site neighborhood. The curve is the theord(t)) (X). The straight lines represents the best fits to the data in
ical prediction 0.930 - x z4% 72, the range 1.5<t<15%.

behavior, the d{ita f¢2500 appear to be linear and a linear 5,4 0.671(Fig. 4. The data fow ndt) and(x(t)) exhibit a
least-squares fits yields the respective slopes of 0.329 angight downward trend, a feature that could be attributed to a
0.665, in excellent agreement with the respective theoreticghgarithmic correction. However, our data are insufficient to
predlct!ons of 1/3 and 2/3. . . test for such a correction quantitatively. The distribution of
In Fig. 3 we present corresponding results for the distri-gheeds also exhibits relatively good data collapse, but there

H — 3/2 _ 0 _ 3 _ 26
but|ongof u=[o[*? at t=15° t=1.5% (=155 and  4re quantitative discrepancies between the shape of the scal-
t=1.5°. The raw data has been scaled so that the absmssaiHs function and the predictiori(z)~0.930 -- o 73222
z=ul(u), while the ordinate isf(z)=(u)P(u,t). This 9 P ’

scaled data at later times have then been smoothed by avetpat fit the data for the case of a fixed-radius transparency

aging over a small neighborhood to reduce quctuations.Sphere(Flg' 5.
These data compare well with the theoretical prediction
f(z):[21/3/F(2/3)]Zl/3e—22/2 (Fig. 3. V. DISCUSSION AND SUMMARY

: We glso performed a more faithful S|_mulat|on fori two We have investigated the motion of a charged particle that
dimensions in which the correct hard-circle scattering is

implemented. In place of stef) given above, we assume is driven by a constant field in a dissipationless elastic and
Pi€ - np L given ’ isotropic scattering medium: the field-driven Lorentz gas.
that just before thath collision, with incidence angle,,_ 4

; . . ; . A fundamental aspect of this system is that the transport is
(see Fig. ], the test particle uniformly illuminates the cross b Y P

. - f > nonstationary so that the typical velocity grows with time as
section of the scatterer, which is taken to be a circle of radius y yp Y9

r. After specular reflection by the scatterer, the difference
between the incident and final angles is 1.0
dy=m—2 sin Y(b/r), where the impact parametbris uni- '
formly distributed betweentr. This angular deflection is
used to compute the outgoing andlg= a,_1+d¢ and the
corresponding incoming angte, . Our simulation results for
this more faithful implementation of hard-circle scattering
are virtually identical to those from isotropic scattering and
give the exponent estimates of 0.330 and 0.662 for the time
dependence of ,,{t) and{x(t)), respectively. Because of
this agreement, and also for simplicity, our simulations con-
centrated on the case of isotropic scattering.

As discussed previously, a lattice array of scatterers leads ; ] |
to a power-law distribution of mean free paths. We therefore z
also performed simulations of the effective medium when
the radius of the next transparency circle is chosen from the FIG. 5. Scaled distributiofi(z) = (u)P(u,t) versus the variable
distribution p(/)~X*"1//#, with u=3. We find that the  z=u/(u), whereu=|v|¥2 The radius” of the transparency sphere
time dependence af,,{t) and{x(t)) is quite close to that is drawn from the distributiorp(/)=/ 2. Representative data
obtained for the case of a fixed-radius transparency circleshown includet=1.5° (O) and t=1.52 (¢) smoothed over a
After a relatively long transient, the data foe 1000 appear three-site neighborhood,= 1.5% (V) smoothed over a five-site
to be linear on a double logarithmic scale and a linear leastreighborhood, anti=1.5 (+) smoothed over a seven-site neigh-
squares fits in this range vield the respective slopes of 0.348orhood. The curve is 0.930 x 7% %72,

<u>P(u,t)

4.0
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t3. Although this growth is unbounded, it is significantly could be a direct connection between the effective-medium
slower than the linear time dependence that would occur imnd the Boltzmann equation approaches. Because of the bias
the absence of scattering. In one dimension, we have deveh the free-particle trajectory segments, the isotropy in out-
oped a random-walk description that involves isotropic hop-going particle directions immediately after one scattering
ping together with a position- and direction-dependent timeavent becomes anisotropic at the next scattering. Within an
increment for each hop that correctly predicts the anomalousquivalent one-dimensional random-walk description of the
time dependence of the typical velocity and mean displacetest particle motion, this anisotropy can be described in terms
ment. of an effective bias that is proportional tov¥/ The logical
Based on this random-walk picture, we obtained the veconsequences of this feature again leads to a typical speed
locity distribution by writing first the Langevin equation for that again grows as”®, just as in one dimension.
the typical velocity and then the underlying Fokker-Planck The effect of the field-induced bias is more apparent in
for the velocity distribution. We also constructed a Lifshitz the behavior of the speed distribution. Following a similar
tail argument that reproduced the correct behavior for thepproach to that given for one dimension, the solution to the
velocity distribution. The solution to the Fokker-Planck Fokker-Planck equation far=|v|*? is
equatig/g yields the Gaussian distribution in the variable
u=|v|*4

(d—1)/3
P(u t)oci (i) e Ut (37)
Rl :

1 —u?st
P(u,t)« ﬁe : (34)
which when written in terms ofv| gives

which, when written in terms ofv|, becomes

|U|d/2

]

—\v\3/t
P(U,t)oc T e*|U|3/t. (35) e (38)

P(U't)(xt(m—z)/e ,

Interestingly, this is similar but not coincident with the while the corresponding result of Piasecki and Wajnryb is
asymptotic velocity distribution function

| |d—l

1 — |3t v
P(v.t)x e (36) P05~

e loPrt, (39)
obtained by Piasecki and Wajnryh4] from the Boltzmann
equation. However, their approach implicitly assumes an/Vhile these two forms agree fdr=2, the coincidence seems
“annealed” medium with a Poisson distribution of distancesfortuitous. The Boltzmann approach explicitly builds in isot-
between collisions. While our random walk and the Boltz-ropy in the collision events and in the intervening particle
mann approach should give the same scaling of the typicdnotion, while the effective medium explicitly accounts for
speed with time, the form of the velocity distribution from the field-induced bias between scattering events.
the two approaches should not be expected to coincide. An attractive aspect of the effective-medium approach is
Our random-walk argument can also be applied to thdhat it can be easily generalized to a distribution of mean free
interesting case of an alternating electric field Paths, a feature that arises in a lattice realization of the Lor-
E(t) = Esin(wt) and gives the counterintuitive result that the €Ntz gas. Such a distribution may be accounted for by a
combination of an ac field and isotropic scattering leads tg®ower-law distribution of sphere radjp(/)e/"#, with
unbounded growth in the speed. This growth arises becauge= 3. This represents a marginal case between the regime
of the isotropy in the scattering events. When the time beWwhere distributed radii appear to have no effect,for 3, to
tween collisions becomes less than the time for the field téhe case where the scaling of the mean speed with time is
reverse, then the direction of the field becomes irrelevantffected, for 2<u<3. Our numerical simulations indicate
Consequently, our random-walk argument for a dc field dithat the case oft=3 leads to behavior similar to that of no
rectly applies and s should grow ag'3. Thus scattering dispersion in the sphere radii. However, the applicability of
assists in the absorption of field energy by the test particle igither the Boltzmann equation approach or our effective-
an ac field, while with no scattering, a test particle merelymedium description to a lattice realization of the Lorentz gas

follows the field and the typical speed is bounded. has yet to be tested.
In higher dimensions, we introduced an effective-medium
approximation that provides a physically appealing descrip- ACKNOWLEDGMENTS
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