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Abstract. The break-collapse method recently introduced for the q-state Potts model is 
adapted for resistor networks. This method greatly simplifies the calculation of the con- 
ductance of an arbitrary two-terminal d-dimensional array of conductances, obviating the 
use of either Kirchhoff’s laws or the star-triangle transformation. In addition, a real-space 
renormalisation group based on a new type of averaging gives excellent results for the 
conductivity of the random-resistor network on the square lattice. 

1. Introduction 

A considerable amount of effort is being devoted to the study of random resistor 
networks (see Deutscher 1981 and references therein for connections with experimental 
systems). A convenient way for quantitatively discussing such problems is through the 
real-space renormalisation group (RG) framework (Stinchcombe and Watson 1976, 
Straley 1977, Kirkpatrick 1977, Rosman and Shapiro 1977, Yeomans and Stinchcombe 
1978, Bernasconi 1978, Kogut and Straley 1978, Lobb et a1 1981, Mujeeb and Stinch- 
combe 1982). Typically within this procedure, the conductance of an arbitrary array of 
conductors has to be calculated. The purpose of the present work is to show that the 
break-collapse method (BCM), recently introduced for calculating analogous percola- 
tion, Ising and Potts arrays (Tsallis and Levy 1981), can be adapted to resistor networks, 
thus providing a simple way to calculate conductances. Our method avoids the use of 
Kirchhoff’s laws, or the star-triangle transformation which becomes rather complicated 
for highly-coordinated lattices. 

In 9 2 we state the resistor BCM and related properties; in 9 3 we illustrate its use 
within a RG calculation for the random resistor network on the square lattice. By using 
a new type of averaging procedure, excellent quantitative results are obtained. 
11 Guggenheim Fellow. 
1 Permanent address. 
* Supported in part by grants from NSF, ONR and ARO. 

@ 1983 The Institute of Physics 4339 



4340 C Tsallis, A Coniglio and S Redner 

2. Break-collapse method and related properties 

Denote the conductance of a resistor as g .  Then a parallel (series) array of two resistors 
gl and g2 has a conductance of 

gp = g1+ g2 parallel ( l a )  

gs = g l g a / ( g l +  g 2 )  series. O b )  

g f  = gP + g? (1‘) 

(2) gi - go/gi 

The latter can be rewritten in a form analogous to (la), 

with 
D =  2 

where D stands for dual (see Tsallis 1981, Alcaraz and Tsallis 1982 for a discussion in the 
context of the q-state Potts and Z ( N )  models), and go is an arbitrary reference 
conductance. 

Using (la) and ( lb) ,  the conductance G of any two-terminal array can be calculated 
as long as it is reducible through sequential series and parallel operations (e.g. figures 
l(b), (c)). However, this is not sufficient if the array is irreducible as in figure l (a) .  It is 

Figure 1. Two-terminal planar arrays of conductances {g,} (0 and 0 respectively denote 
terminal and internal nodes): (a)  self-dual b = 2 Wheatstone bridge; ( b )  and (c) are respec- 
tively ‘broken’ and ‘collapsed’ graphs of (a). 

precisely this more general situation which can be solved by using the BCM. For an 
arbitrary two-terminal connected graph with bond conductances { g i } ,  the conductance 
of the graph is given by G({gi})  = N ( { g i } ) / D ( { g i } )  where 

trees on G 

and 

trees on C 

The graph G is obtained from G by adding a unit conductance between the terminals, 
and a spanning tree is a connected subgraph which covers all sites and contains no loops 
(see e.g. Wu 1982). Because of this form of N and D, they are uniquely determined once 
the ratio G = N/D is given. 
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Since N and D are multilinear in the {gi} (Mason and Zimmerman 1960), if the jth 
bond of the graph is ‘broken’, i.e. gj = 0 is imposed, the graph conductance GP becomes, 

G!({gil’) = fl({gi}‘)/Df(ki}‘) (4) 
where the indices j and b indicate that the jth bond has been broken, and the set {gi)’ 
excludes gj. Similarly, ‘collapsing’ the jth bond, i.e. imposing gj = a, yields a new 
conductance Gf equal to, 

Gf ({gi)’ ) = 1Vr: ({gi)’ )/D; ((si) ’). ( 5 )  

The sequential use of these equations (together with equations (la) and ( lb))  is what we 
call the BCM; it greatly simplifies the calculation of conductances. 

Let us illustrate the procedure on the Wheatstone bridge of figure l(a). After 
operating on the central bond of this figure, the broken and collapsed arrays respectively 
indicated in figures l(b) and l(c) are obtained. By using equations ( la)  and (lb), we find 

and 

Therefore, by using (6) and (7), 

G =  

which is the well-known Wheatstone bridge result. The multilinear character of the 
numerator and denominator of (10) is written explicitly in terms of g5. Using the BCM, 
it is therefore possible to systematically reduce complicated resistor networks through 
simple topological operations and thereby calculate the total conductance. 

As a corollary of equations (6) and (7) we obtain the following expression for the 
derivative 

(10) 
glg2g3 + glg2g4 + g2g3g4 + glg3g4 + (glg3 + g2g3 + glg4 + g2g4)g5 

glgZ + glg3 + g2g4 + g3g4 + (gl + gZ + !?3 + g4)gS 

aG/agj = ( N; - GD;)/D. (11) 

Finally, we note that the breakxollapse properties of the resistor network follow quite 
closely those presented in Tsallis and Levy (1981) for the q-state Potts model. This is to 
be expected since the resistor problem can be obtained as the q + 0 limit of the Potts 
model (Stephen 1976, Wu 1982). To be more precise, associate with each bond a 
transmissiuify (Tsallis 1981 and references therein) 

i =  [ l  - exp(-qJ/kBT)]/[l + ( q  - 1) exp(-qJ/k~T)] (12) 

where qJ is the Potts interaction parameter, and q the number of Potts states. With this 
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definition, parallel and series combinations of transmissivities are respectively given by 

- il + i 2  + (q - 2) i& 
1 + (q - l)i& 

tp  = 

By introducing ii = 1 - go/gi and taking the limit go/gi+ 0, it is straightforward to verify 
that for q = 0, the two preceding equations give the conductance of parallel and series 
arrays of resistors. 

3. Renormalisation-group application: random-resistor network 

In this section we employ the BCM for a real-space renormalisation group calculation for 
the random-resistor network on the square lattice. This problem has been well studied 
(e.g. Stinchcombe and Watson 1976, Straley 1977, Bernasconi 1978, Lobb et a1 1981); 
however we propose a new averaging procedure which gives satisfactory values for the 
critical exponents, and the exact slopes for the concentration dependence of the con- 
ductivity in the pure system limit. 

Consider a square lattice with the following conductance distribution for each bond 

P ( g >  = (1 - PI S(g - 81) + Pd(g - g2) 0 s g 1 s g 2  (15) 

and denote the average conductivity of the lattice by a(gl, g2 ; p) .  
We shall calculate a(0, g2 : p )  (resistor-insulator mixture) and a(g l ,  cc : p )  

(resistor-superconductor mixture) within an approximate RG framework by renormal- 
ising the self-dual b = 2 Wheatstone bridge (figure l(a))  into a single bond. The renor- 
malised distribution of conductances is obtained straightforwardly by using equation 
(10). Following along the lines of previous work (Bernasconi 1978, Mujeeb and Stinch- 
combe 1982 and references therein), we shall approximate this rescaled distribution by 
a binary one, namely 

P ’ ( g )  = (1 - P’)  S(g - gi) + p ’ m  - gi) (16) 

where p ‘ ,  gi and 81 are the renormalised parameters. In general, we need three RG 
recursion relations to calculate a(&, g2 ; p ) ,  but for the particular cases of interest, 
namely gl = 0, Vg2 and g;’ = O  , Vgl , two RG recursion relations suffice. In both cases 
there is a Sfunction in the conductance distribution (at g = 0 for the conductor-insulator 
case, and at g-’ = 0 for the conductor-superconductor case) whose position remains 
invariant under renormalisation. Following previous work (Stinchcombe and Watson 
1976, Yeomans and Stinchcombe 1978, Mujeeb and Stinchcombe 1982) we shall use the 
weight of this particular S function in order to obtain the recursion relation for the 
occupancy probability. We have, for both the gl = 0 and g:’ = O  cases, 

= 2p2 + zP3 - 5p4 + 2p5 (17) 
first obtained by Reynolds er a1 (1977) for bond percolation on the square lattice. The 
second recursion relation is provided by requiring that some property of the conductance 
distribution remains invariant under rescaling, i.e. 
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where the left-hand side refers to an average on the rescaled cell at probabilityp’ while 
the right-hand side refers to an average on the original ‘H-shaped’ cell at probabilityp. 
The choice of the function&) appears to be arbitrary, and the casesf(g) = g ,  g-’ and 
lng have been employed previously (see e.g. Bernasconi 1978, Lobb er a1 1981). 

We propose the choice 

f(g) = S(g)  = g/(g +go> (19) 

where go is an arbitrary reference conductance. This is the simplest functional form that 
varies monotonically from 0 to 1 as g increases from 0 to while satisfying the property 

P ( g )  = S(gD) = S(g&) = 1 - S(g).  (20) 

The use of such a variable obeying this probability-like transformation under duality 
has proved to be extremely useful in the treatment of Ising and Potts problems (Levy et 
a1 1980, Tsallis 1981, Tsallis and de Magalhies 1981, de Magalhies et a1 1982). Note also 
that as g+ 0, S(g) - g/go, and as g+ w ,  S(g)  - 1 - go/g, so that the arithmetic and 
harmonic averages are recovered in these limits. 

Equation (18) withf(g) = g/(g + go)  provides for the conductor-insulator problem 
(where we choose go = g2) 

gi = ( !ip2 + ip3 - p4 + App5)gJp‘ (21) 

and, for the conductor-superconductor problem (where we choose go = gl) 

which together with equation (17) provide closed recursion relations. Notice that 
through the dual transformation (p,  g2) + (1  - p ,  l/gl), equations (21) and (22) are the 
same; this property should hold for all self-dual Wheatstone bridges. 

Analysis of the relevant linearised recursion relations near the unstable fixed point 
provides very satisfactory results: (i) the value v = 1.43 (Reynolds er a1 1977); (ii) r = 
s = ln(31/17)/ln(13/8) = 1.237, compared with the value 1.170 obtained by arithmetic 
and harmonic averaging and with the recent estimate of t = 1.28 +- 0.03 (Derrida and 
Vannimenus 1982); (iii) the exact value of 2 for the limiting slopes of the conductivities 
(compared with the value 8/5 obtained from arithmetic and harmonic averaging). The 
fullp dependences are presented in figure 2. 

4. Conclusion 

In conclusion, the calculation of any two-terminal array of conductances can be greatly 
simplified by performing trivial topological operations (bond ‘breaking’ and ‘collapsing’) 
and applying the break-collapse algorithm described herein. It avoids the use of 
Kirchhoff’s laws and of non-linear transformations such as the star-triangle mapping. 
Although the break-collapse method has been exhibited on the standard Wheatstone 
bridge, different and larger arrayscan be solved as well. The study of a few &dimensional 
anisotropic random-resistor problems is presently in progress and will be published 
elsewhere. 

In addition, we have introduced a new averaging procedure in a real-space 
renormalisation-group study of the random-resistor network on the square lattice. The 
full concentration dependence of the mean conductivity was calculated in the limiting 
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Figure 2. Concentration dependence of the square-lattice mean conductivity in both limiting 
cases gl = 0 (resistor-insulator mixture) and g:' =O (resistor-superconductor mixture). 

situations of a resistor-insulator ( g l  = 0) or a resistor-superconductor mixture (gi '  = 
0). When mean values are taken on the variable S ( g )  = g/(g + g o )  excellent results are 
obtained in spite of the small RG cluster that has been used. For the two problems, we 
obtain the exact critical probabilityp, = 1/2, the exact limiting slopes (at p = 0 and p = 
1 respectively), as well as a critical exponent t = s = 1.24 which compares well with a 
quite accurate estimate oft  = 1.28 2 0.03 (Derrida and Vannimenus 1982). 
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