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Abstract. We study the properties of a model system that exhibits a transition between 
ferromagnetic and helical order at a Lifshitz point, as interaction parameters R and S compete. 
Here R JJJ,,  and S = J:/J,,, where J ,  and Jz denote interactions between nearest- 
neighbour and next-nearest-neighbour spin pairs respectively in the z direction, and J, ,  is a 
nearest-neighbour interaction between spin pairs in each x y  plane. We calculate the high- 
temperature susceptibility series to order 8, 6, 5 ,  and 35 respectively for the Ising, planar, 
Heisenberg, and spherical models ( n  = 1,2,3, and io). In order to verify our results, we derive 
rigorous results which provide strong checks on the series coefficients. Series analysis is 
focused on the ferromagnetic phase. In particular, we confirm scaling with respect to both 
parameters R and S. In addition, we find the critical region shrinks as the Lifshitz point is 
approached. This is indicated by analysing the spherical model series where asymptotic series 
behaviour is not evident, even at order 35. Finally, by exploiting simple geometric ideas about 
the dependence of the correlation length on R and S, we describe the full wavevector and 
temperature dependence of the structure factor. 

1. Introduction 

Recently, much attention has been given to the following n-vector Hamiltonian 

- J x y ( C s i . s j  + R x s i . s j  + S c s i . s j ,  
i .  j i , j  i . j  I 

where the first two sums are over nearest-neighbour pairs in the same and adjacent xy 
planes respectively, and the third sum is over next-nearest-neighbour spin pairs along the z 
axis only (cf figure l(a)). This Hamiltonian was first introduced by Elliott (1961), and the 
recent interest in this model is due to the fact that it exhibits a transition, as R and S vary, 
between ferromagnetic and helical order at a Lifshitz point (Hornreich et a1 1975a, b ;  
Nicoll et al 1976a, b). The helical phase arises from the competition between the inter- 
actions R and S. When S/lRI is sufficiently negative, the helical phase is energetically 
favoured. 

This work was supported in part by the NSF and the AFOSR. 
1 1  Present address: Physics department, University of 'Toronto, Toronto, Canada. 
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Figure 1. (a) The three interactions included in the Hamiltonian (1). (b )  The R-S model phase 
diagram for T = 0, showing the four ordered phases and the Lifshitz boundary. 

In this paper we will study the ferromagnetic phase of this system by using high 
temperature series, while the properties near the Lifshitz point, and in the helical phase will 
be treated elsewhere (Redner and Stanley 1977). Using both mean-field theory (cf 
Appendix 1) and exact results for the case n = cx, (cf Appendix 21, it is predicted that 
helical order exists for S < - I R 1/4, and that spatially uniform order exists for S > - I R/4. 
Here, spatially uniform order means ferromagnetism for R > 0, and metamagnetism for 
R < 0. Because of the symmetry of the system, corresponding ‘staggered’? thermo- 
dynamic functions for R < 0, and ‘direct’ thermodynamic functions for R > 0 are 
identical. Therefore in what follows, we consider the case R > 0 only. Since the two 
parameters R and S determine the type oforder that exists, we call the model Hamiltonian 
(1) the R-S model. Figure l(b) is a schematic phase diagram. 

An interesting feature of the ferromagnetic phase is that series analysis indicates 
exponents which appear to vary continuously with R and S, and this variation is quite 
large near the Lifshitz boundary. However, according to the renormalisation group, one 
set of universal exponents exists in the ferromagnetic phase, while a different set of 
exponents exists in the helical phase (Droz and Coutinho-Filho 1976, Garel 1976, Garel 
and Pfeuty 1976). Consequently, the exponents will change discontinuously as R and S 
vary through the Lifshitz point. 

These apparently conflicting results are reminiscent of the situation found in 
anisotropic systems. This type of system may be described by the R-S model with S set 
equal to 0. It is well known that for any R # 0 the exponents are those of a three- 
dimensional system, while for R = 0 the exponents change discontinuously to two- 
dimensional values. Analysis of finite length series indicates exponents that vary 
continuously from three- to two-dimensional values as R -+ 0, and the interpretation of 
this was the source of some controversy. Oitmaa and Enting (1971,1972) claimed that the 
analysis results conflicted with universality, while Rapaport (1971) pointed out that a 
continuous variation must occur if only a finite number of series terms are analysed, and as 
R -+ 0 progressively more terms are required to probe asymptotic behaviour. 

The same conclusion was reached independently by Paul and Stanley (1971, 1972), 
who found that for small R the first few exponent estimates based on successive ratios of 
series terms appeared to extrapolate to the two-dimensional value, while at high order a 
trend to the three-dimensional value was evident. Moreover, they computed and analysed 

t By staggered, we mean alternation in successive xy planes, rather than site alternation 
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series of order 20 for the spherical model ( n  = CO), and found that as R decreased, the order 
at which the true asymptotic behaviour was evident, increased. Thus the use of the 
spherical model series served as an important tool in understanding the asymptotic 
behaviour of the Ising series as R becomes small, and as the critical region becomes 
correspondingly small. Because the exponent behaviour near the Lifshitz point is not 
unlike that found in anisotropic systems, the n = CO series will therefore be used as a tool 
for understanding asymptotic series behaviour. 

In 9 2 we outline the series calculation procedure. We also derive rigorous results for 
the R-S model susceptibility, and apply these to check certain of the series coefficients. In 
9 3, we analyse the series in the ferromagnetic phase and confirm scaling with respect to 
both parameters Rand S. In 9 4, we study the susceptibility series for both n = 1 (Ising) and 
n = CO, and we give a simple geometric interpretation of the fact that asymptotic 
behaviour near the Lifshitz point sets in only at very high order. Then, in 9 5, we discuss 
how this interpretation provides an understanding of the full wavevector and temperature 
dependence of the structure factor. 

2. The series and a rigorous result 

Using the renormalised linked-cluster theory (Wortis et a1 1969, Wortis, 1974), we have 
calculated the coefficients a,(R, S) in the zero-field susceptibility series 

for Ising, planar, and Heisenberg spins ( n  = 1,2,3) to order L = 8,6, and 5 respectively. 
Here /3 = l /kT We calculate the a,(& S) for ( L  + 1)(L + 2)/2 different combinations of Jxy ,  
R, and S, and use these results to solve simultaneous linear equations to determine the 
coefficients Ajkf in the multinomial? 

For n = 1, the three-variable series in /3Jxy, R, and S is also re-expressed in the form 
L Q 

x = 1 Bj,,tanh’-j-k (/3Jx,)  tanhj(jJ,) tanhk(/3Jz). (4) 
i = O  j+kai 

In (4), the coefficients Bjkf  are all integers. The coefficients Bjkl for n = 1, and Ajkl for n = 2 
and 3 are presented in tables 1-3. Hence from (3) and (4), the a, may be computed directly. 
This results in an enormous saving of computer time when series for many different values 
of R and S are required. 

Moreover, by expressing our results for arbitrary Jxy,  R, and S we can check many of 
the Ajkl and B j k f .  Firstly, we verify known results for the linear chain, the square lattice, and 
the simple cubic lattice by taking the respective limits J, = CO, J ;  = 0; J, = 0, J ;  = CO;  

J ,  = J, = 0 ;  J ,  = Jxy ,  J:  = 0; and J ,  = 0, J, = Jxy. More thorough checks are pro- 
vided by generalising to S # 0, the S = 0 theorems of Liu and Stanley (1972, 1973) (see 

t For example, when n = 1: a. = 1, a, = 4 + 2R + 2S, az = 12 + 16R + 2R2 + 8RS + 16s + 2S2, 
n3 = 34t + 80R + 32R2 + l fR3 + 96RS + 10R2S + 16RS2 + 80s + 32s’ + lis3. 
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Table 1. The coefficients Bj,, in the reduced susceptibility series for n = 1, simple cubic lattice. 
8 

x 2 Bjk.tanh'-j-, (fiJxJtanhj(fiJ,)tanhk(PJ:). 
i = n  , + A < !  

(a) k = 0 (all entries check with Harbus and Stanley 1973b). 

7 

1 2 3 4 5 6 7 8  
\ J  

0 1 
1 4 2 
2 12 16 2 
3 36 80 32 2 
4 100 336 240 48 2 
5 276 1264 1392 512 64 2 
6 740 4432 6680 3888 888 80 2 
7 1972 14768 29136 23600 8544 1376 96 2 
8 5172 47376 116528 124720 63216 16080 1968 112 2 

(b )  k = 1 

1 2 3 4 5 6 7  
1 

1 2 
2 16 8 
3 80 96 10 
4 336 672 240 8 
5 1264 3680 2360 384 8 
6 4432 17376 17168 5504 512 8 
7 14768 74208 100000 52032 10032 640 8 
8 47376 294624 517648 378272 120960 15872 768 8 

(c) k = 2 
~ 

1 2 3 4 5 6  

' \  
2 2 
3 32 16 
4 240 288 28 
5 1392 2720 928 16 
6 6680 19040 11 664 1632 10 
7 29136 110336 104192 10400 2112 16 
8 116528 563680 725488 350304 58400 2560 16 
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Table 1.-continued 

(6) k = 3  

0 1 2 3 4 5  
\ j  ~ 

3 2 
4 48 24 
5 512 608 58 
6 3888 7520 2512 24 

8 124720 461344 424432 116352 6144 24 
7 23600 65760 39336 4992 -20 

(e) k = 4 

1 2 3 4  
1 

4 2 
5 64 32 
6 888 1056 100 
7 8544 16448 5440 32 
8 63216 175520 103616 12384 -132 

io --\ .___ - ~ 

5 2 
6 80 40 
7 1376 1632 154 
8 16080 30880 10160 40 

~ 

6 2 
7 96 48 
8 1968 2336 220 

(h)  k = 7 

' \  
\ 

7 2 
8 112 56 
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Table 1.-continued 
(i) k = 8 

8 2 

Table 2. The coefficients Aj , ,  in the reduced susceptibility series for n = 2, simple cubic lattice. 
6 

x 5 1 1 Aj,l(PJ,,)’-j-kR’Sk. 

(a) k = 0 (all entries check with Lambeth and Stanley 1975) 

1=0 j + k g l  

I 2 3 4 5 6  

’ \  
0 1 
1 4 2 
2 12 16 2 
3 34 80 32 1 
4 88 328 240 40 0 
5 2194 1184 1372 468 32 -4  
6 529 39174 6416 3656 640 134 - 3  

(b )  k = 1 

1 2 
2 16 8 
3 80 96 10 
4 328 672 240 2 
5 1184 3632 2360 320 -54 
6 39174 16704 17008 5032 212 -24  

(c) k = 2 

2 2 
3 32 16 
4 240 288 27 
5 1372 2720 920 -7 
6 6416 18880 I lk04  1320 -46 
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Table 2.-continued 

(d) k = 3  

3 1 
4 40 20 
5 468 560 49 
6 3656 7168 2344 -44 

( e )  k = 4 

4 0 
5 32 16 
6 640 768 63; 

5 -3  
6 133 6: 

Table 3. The coefficipts Aj,, in the reduced susceptibility series for n = 3, simple cubic lattice. 
5 

x z 1 Ajt.(PJ,,)'-'-kRjSk. 

k = 0 (all entries check with Lambeth and Stanley 1975). 

f = O  j + t S l  

(a) 

.i 
0 1 2 3 4 5  

I 

0 1 
1 4 2 
2 12 16 2 

4 85& 326& 240 38& -6 
8 3 3 3 6  80 32 m 

5 2 0 6  1168 13666 4 5 7 6  25& -$ 



4772 S Redner and H E Stanley 

Table 3.-continued 
(b )  k = 1 

1 2 
2 16 8 
3 80 96 10 

5 1168 3622A 2360 3 0 G  -9& 
4 326h 672 240 0 

(c) k = 2 

-1 
2 2 
3 32 16 
4 240 288 26& 
5 1366& 2720 915& -17% 

(d) k = 3  

1 y7-T 
__ 
3 80 
4 38& 19& 
5 457& 550h 4 5 6  

( e )  k = 4 

' \  
4 4 -33 

5 25& 12& 

(f) k = 5  

4 5 -7 
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also Citteur and Kasteleyn 1972, 1973), which relate derivatives of x with respect to R 
to the two-dimensional susceptibility. 

Specifically, Liu and Stanley showed that for S = 0, 

d~/dRl,,,=,, = 2JxY(xbq)' = 2Jx, [i[(R = 0. S = 0)12 ( 5 4  
where xSq is the susceptibility of the two-dimensional square lattice. This result follows 
from noting that the graphs which contribute to the term in the susceptibility that is linear 
in R, consist of one R bond joining two arbitrary planar graphs in adjacent xy planes (cf 
figure 2(a)). Since these planar graphs lie in different xy planes, they are completely 
independent. Two inequivalent such configurations exist. Taking the derivative dx/aR and 
then setting R = 0, singles out only these contributions that are linear in R, and (Sa) 
follows. A second check comes from applying the same argument to the R = 0 case. with 
the result 

8 x / d S I R = S = O  = 2 & y ( X ~ q ) ~  = 25x,[X(R = 0, s = ( 5 4  
A third check involves the coefficient of x that is proportional to RS. The graphical 

contribution to this term consists of one R bond and one S bond, the endpoints of which 
connect to three planar graphs (cf figure 2(b)). Because R and S are of unequal length, these 
three planar graphs must be mutually independent. Eight inequivalent such 
configurations exist. These configurations are singled out by taking the derivative 
d2X/8RdS and then setting R = S = 0. Thus we obtain 

d 2 x / d R ~ S I R = s = o  = 8J:y(~sq)3 = 8J:,[;/(R = 0, S = O)I3 .  ( 5 4  
These theorems also hold if instead of using the variables R and S, the respective Ising 

variables 

p tanh(flJ,)/tanh(flJ,,) and CT E tanh(PJ:)/tanh(PJ,,) 

are used. Thus to any order L, these checks verified 2(L + 1) coefficients out of a total of 

Note that the n = 1 susceptibility series of equation (2) (table 1) has the novel feature 
that the coefficients A437 and are negative. This can be understood by the following 
graph-theoretic considerations. In general, AJkl consists of the number of self-avoiding 
walks (SAW) that can be embedded on a lattice, with 1-j-k bonds in the xy plane,j bonds in 
the z direction, and k bonds of length two in the z direction minus a disconnected graph 

( L  + 1)(L + 2)/2. 

Figure 2. (a) The high-temperature graphs which contribute to the term proportional to R in 
the susceptibility. The wavy lines represent the set of all arbitrary bond configurations on one 
xy plane only. Another independent configuration is obtained by permuting 0 and r. (b) The 
graphs which contribute to the RS term in the susceptibility. Six more independent 
configurations are obtained by permuting the R and S bonds, and 0 and r. 
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contribution. This contribution is the number of disconnected graphs with the same 
number of bonds as the SAW, embedded so that bonds from disjoint graph pieces share the 
same lattice bond. In systems previously studied the SAW contribution predominates, and 
series coefficients are positive. However, the R-S model possesses a much more 
complicated graph topology and affords the possibility of a large disconnected graph 
contribution due to multiple occurrences of disconnected graphs containing one S bond 
and two R bonds. 

3. Scaling theory 

Our analysis of critical properties in the ferromagnetic phase is guided by the generali- 
sation of the scaling hypothesis to this system: there exist four numbers u H ,  a,, uR. and as 
such that for all positive 3,. (Hankey and Stanley 1972), 

(6) G(AaHH. i"~, i.""R, j?"S) = i.G(H. z, R. S). 

where G is the Gibbs potential, H is the magnetic field, and z(R,S) E k[T(R,S) - 
T , ( O ,  O)]/Jx,. The new scaling power a, equals a, since G(H,  z, 0, S) = G(H,  z, S, 0) (if R = 0 
and S # 0, the R-S model reduces to two interpenetrating meta-models). A consequence 
of equation (6) is that zc obeys the functional relationship 

z,(iaRR, 3:'S) = Aor~,(R, S) .  (7) 
Setting AaRR = 1. we obtain zc(R,S) = Rac'nRzc(l, SIR), while if 1:"s = 1. we have 
zc(R, S) = Sar'nszc(R/S, 1). Thus along any ray in the ferromagnetic region of figure l(b), 
z,(R,S) varies as Rli4 and as Sli4 (where 1/4 = ar/aR = a,/'as) with an amplitude that 
depends on the ray chosen. For the case n = 1 ,  we test the validity of this prediction by 
using Pad6 analysis on the series to find z,(R, S). On a log-log plot of z, versus R, a line of 
slope I / #  = 4/7 fits the small-R data well, over a substantial range (cf figure 3) .  The 
breakdown of linearity is due to the fact that at very small R, the series are too short to find 
the critical temperature accurately, while for sufficiently large R, scaling is no longer valid 

I I I I I 1 1 1 1  I A I I 1 1 1 1  

A 

10-1 1 
R 

1 U' 
10-2 

Figure 3. Log-log plot of r,(R, S) versus R to test the scaling relation. s , (R.  S) = R"z'"Rr,( 1, SIR). 
The inverse crossover exponent, 4-l  = u,/a, is 4/7 (Abe 1970. Suzuki 1971, Liu and Stanley 
1972, 1973). The straight lines have slope 417. Data are shown for three representative rays in 
the ferromagnetic region of figure l(b). 
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(Harbus and Stanley 1973a). For n = 2 and 3 the series are too short to show a linear 
range when plotting z,(R) versus R and thus data are not shown. 

4. The susceptibility exponents for the Ising and spherical models 

When S < 0 and R > 0, the interactions R and S compete. This competition is necessary 
for the appearance of helical order (cf figure l(b)), and it is interesting to study the effect of 
this competition on the susceptibility as R and S vary. In what follows we set R = 1 to 
eliminate crossover effects between two- and three-dimensional ordering. The series are 
analysed by complementary use of both ratio and Pad6 methods. The ratios p I  
oscillate when plotted against l / l  due to the 'antiferromagnetic singularity' - flAF on the 
negative f l  axis, found by examining the Pad6 table for the logarithmic derivative series for 
x. We reduce these oscillations by using the transformation f l  -+ fl/(1 + P/flAF) in order to 
extrapolate the 1 + cc behaviour of the p ,  . Such a bilinear transformation introduces a 
new but spurious singularity at flsp on the positive real axis (cf figure 4) which has a 

ariaf - 

t T 

(U 1 ( b i  

Figure 4. Singularity structure of the susceptibility series in the complex p plane, (a) before 
transformation, (b) after the bilinear transformation. The antiferromagnetic singularity is 
moved to -cc, while a spurious singularity is introduced at + B A F ,  and the physical 
singularity is moved to 8; = pc/(l + Pc/BAF). The second transformation we use removes the 
spurious singularity. 

substantial effect on series extrapolations. The exponent associated with pSp is equal to the 
negative of the susceptibility exponent (Paul and Stanley 1972). The effect of this new 
singularity on series extrapolations is minimised by multiplying the transformed series by 
(1 - f l / f lsp)v,  where 3 is a rough estimate for the susceptibility exponent. The series 
obtained after both transformations possesses a physical singularity which is isolated from 
all other singularities, and the ratios p l  vary smoothly in 1. From the p,  we form the 
sequence of estimates y I  = 1 - 1(1 - p f / k T , )  for the susceptibility exponent y, where kT, 
= Ip, - ( I  - l )pfp1 is a sequence of estimates for the critical temperature. The y l  are 
shown in figure 5 for three representative values of S .  based on king series. For n = 2 and 
3, the same trends in the y l  are found as in the case n = 1. However, the n = 2 and 3 series 
are too short to provide accurate estimates for y ,  even when S = 0. Therefore, these data 
are not shown. 

At first sight, the n = 1 data indicate that y does indeed depend on S .  However com- 
parison with a similar analysis of the corresponding n = x series (cf Appendix 2)  shows 
that this is not the case. As shown in figure 6, for negative S, the Y l  eventually have a 
downward trend to the universal value of y = 2 (Joyce 1966). The trend appews for large 1, 
and indicates that the critical region shrinks considerably as the Lifshitz point is 
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1 I I I l l  -1 25 

1 ,.*'. /, 

1 // 

Figure 6.  Plots of the successive estimates y i .  for the susceptibility exponent based on the 
corresponding three-dimensional spherical model series. In (a) we show the results when the 
series are analysed by the methods described in the text. However, a Pad6 analysis of the raw 
series reveals an additional singularity on the positive real p axis located at Padd, with exponent 
- is,,. This singularity is somewhat more distant from the origin than the physical singularity, 
and thus the convergence rate of series extrapolations to the physical singularity is reduced. 
Therefore for an improved analysis, we first multiply the raw series by (1 - fi/Padd)-'& and 
then use the methods of the text. The resultant y L  are shown in (b). Note that a downward trend 
in the y ,  occurs for 1 > 20 when S = - 0.1 5,  and this trend is much more apparent in (b) than in 
(U).  S = -0.25 (A), -0.15 (O), -0.05 (m). 

approached. This can be understood physically by considering figure 7. When S = 0 the 
system is isotropic (since R = 1 here) and a 'correlated region' of spins is roughly speak- 
ing a sphere of diameter -(, where 4 is the correlation length. For a f ixed value of 
T - T,, as S decreases, the competition of R and S results in a corresponding decrease in 
the z correlation length, and the correlated region becomes more oblate. The number of 
enclosed spins thus decreases, and this reduces the degree of cooperativity in the system. 
Therefore, for negative S, one must probe closer to T, by generating more series terms, in 
order that the asymptotic three-dimensional behaviour is evident. At the Lifshitz point, 
the z correlation length varies as the square root of the x y  correlation length (Hornreich et 
a1 1975a). This marks the point at which the effects of the competition between R and S are 
most pronounced. The shape of the correlated region is now quantitatively different, in 
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Figure 7. A correlated region of spins is a sphere of diameter 4 for S = 0. Forfixed T - &, as S 
decreases, and the correlated region becomes oblate. At the Lifshitz point 5,  - (lxyji, giving 
rise to quantitatively different critical behaviour. 

that the volume varies as td- * ,  where d is the spatial dimension, rather than ld. From this 
argument it follows that the critical exponents are also different at the Lifshitz point. 

We can gain more insight by looking at the n = 03 series in higher dimensions. Now 
ferromagnetic interactions exist in (d  - 1)-dimensional layers, while competing in- 
teractions exist along one axis only. Therefore, the influence of these competing 
interactions should become relatively less important as d increases. This is reflected in our 
analysis, where for comparison with figure 6, we show in figure 8 the sequences y l  for 

“‘11.35 

‘b! , , , , , , , , , , , ,  

1 1 1 i ! I  
3 L 6 i o  20 LO 

Figure 8. Dependence on l / l  of yi for (a) d = 4, and (b) d = 5 hypercubical lattices, S = -0.25 
(A), -0.15 (Oj, -0.05 (m). The complications that occurred in analysing the three- 
dimensional series (cf figure 6) do not occur for d = 4, 5 .  

various Sin both four and five dimensions. Furthermore. in five dimensions, it is clear that 
even when S = -4, y = 1, while in four dimensions it appears that y # 1 when S = -$. 
This indicates that the dimension at which mean field exponents first occur, the marginal 
dimensionality d,, lies between four and five. In fact, from the Ginzburg criterion (Als- 
Nielsen and Birgeneau 1977 and references therein) it may be shown that d, = 4.5 
(Hornreich et al 1975a). At dimension 4.5, the volume of a correlated region grows as 
54’5-0’5 = 5 , and thus mean-field exponents are expected. 



4778 S Redner and H E  Stanley 

5. The structure factor 

In the previous section, we discussed how competing interactions influence the size of a 
correlated region. By translating the discussion into Fourier space language, we will 
obtain insight into the full dependence of the structure factor Y(q) 1,. (sos,) exp(iq. v) 
on both temperature and q. In addition, we will see in a simple fashion why series 
extrapolations give misleading results a t  low order when R and S compete. 

First consider S = 0. In figure 9(a) we sketch the dependence of Y(q, T )  on q, and T 
Since ~(13 = Y ( g  = 0, T), the q = 0 structure factor diverges as T + T,, and this is 
reflected in extrapolations based on finite-length series for 1. Now suppose 
q, = 4. qx = q )  = 0 where 4 is small. For this value of q, the first few terms in a series for 
Y(q, T)  differ by only a small amount from the first few terms for x. Therefore as T 
decreases the structure factor 974, T )  initially increases and appears to extrapolate to 
infinity. However at T,, Y ( g .  T,) - q-2+q,  which is finite, and in fact the structure factor 
appears to extrapolate to a divergence at some temperature below T,. The extrapolations 
of Y(q,, T )  for a range of small q, thus lead to a line of apparent singularities in the Tq, 

Figure 9. (a) The structure factor in Tq, space, where q = (4,. q,., ql). For q = 0 the structure 
factor isjust the susceptibility, which diverges as T --t T,. For fixed T, the width of the structure- 
factor peak is related to the inverse correlation length (-'(7J which vanishes at T, (for 7 = z, 
the structure factor varies as q ; * + O ) .  For qz = q, where 4 is small, the limiting value of 
9 (q, T = T,) is therefore finite; however extrapolations of finite-length structure-factor series 
will lead to an apparent singularity. Thus, in addition to the true singularity at qz = 0, there 
will be an entire line of apparent singularities (broken line) in the Tq, plane. (Note that the 
small maximum in Y(p, 7J at  positive T - T, is expected from the work of Fisher and Burford 
1967.) 
(b)  The dependence of the normalised structure factor on 4. for fixed T > T,. For negative S ,  
the correlation length is decreased and the peak broadens. At the Lifshitz point, the peak has a 
flatter top corresponding to the physical fact that fluctuations of many wavelengths are 
equally important. 
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plane (cf figure 9(a)). This line of apparent singularities interferes with extrapolations of 
Y(q = 0, T )  to the physical singularity, just as nearby singularities in the complex /3 plane 
interfere with the physical singularity. As more terms in the structure factor series are 
computed, the range of q ,  for which an extrapolated singularity appears becomes smaller. 
The physical singularity becomes more dominant, and extrapolations for y improve. 

Now consider S < 0. The interactions R and Snow compete and the correlation length 
5 is thus decreased relative to the case S = 0. Since 5 -  is proportional to the halfwidth of 
Y(q,, T ) ,  the q, # 0 fluctuations in the structure factor are enhanced compared to q, = 0 
fluctuations (cf figure 9(b)). This enhancement in fluctuations increases the range of q, 
values for which an apparent singularity exists in 9 ( q , ,  T). Thus, it is necessary to 
compute correspondingly longer series in order that extrapolation techniques will 
converge to the physical singularity; this argument is verified by calculating the high- 
temperature series for the structure factor for the R-S model. 

It is interesting to note that the effect that we have described is a precursor of the 
transition to helical order; in the helical phase Y(q, r )  diverges for some nonzero value of 
q. The onset of helical order is characterised by a structure factor independent of q: to 
lowest order (cf figure 9(b)). When this occurs, the competition between the interactions R 
and S is maximised and series extrapolation methods converge quite slowly. 

6. Conclusion 

In summary, we have studied the R-S model in which competing interactions strongly 
influence the properties of the ferromagnetic phase. We have calculated the high- 
temperature series to order 8 , 6 , 5 ,  and 35 respectively for the Ising, planar, Heisenberg, 
and spherical models. These series were analysed for a range of R and S corresponding to 
the ferromagnetic phase; in particular for the king series we verified two-parameter 
scaling in both R and S. Near the Lifshitz point, we found by studying spherical model 
series, that asymptotic series behaviour is not evident unless quite lengthy series are 
analysed. This arises because of the competition between the interactions R and S .  
Geometrically, these ideas are simply understood by considering the full wavevector and 
temperature dependence of the structure factor Y(q, T). 
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Appendix 1. Mean-field theory 

The mean-field theory, while not generally providing correct predictions for critical 
behaviour, does give physical insight into many of the physical features of the R-S model. 
In fact, series expansions may be regarded as a systematic improvement on the predictions 
of mean-field theory (e.g., the mean-field theory agrees with series expansions to lowest 
order). 

One principal advantage of the mean-field theory is that it may be systematically 
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applied to yield unambiguous predictions for all four phases that occur for the R-S model 
(cf. figure l(b))T. To find the ordered phases, we minimise the classical energy. This is 
accomplished first by noting that the anisotropy in the system is along the z axis, and 
therefore below T,,  spatial variation in the spin expectation value occurs along the z axis. 
That is, s, = (so) cos q .L= (so) cos qz where so and s, refer to the spin at the origin and at 
Y respectively, and q = qz is the wavevector describing the ordered phase. The energy per 
spin becomes 

(Al.1) E = -5,,(4 + 21RI COS + ~ S C O S  2q)(s$) = -J(q)(so) '  

where J(q)  is the Fourier transform of the exchange interactions in equation (1). 
Minimising equation (Al. 1) with respect to q yields three solutions corresponding to 
commensurate order when S > - IR1/4, either ferromagnetic (40 = 0) or antiferromag- 
netic (qo = n), and incommensurate order, qo = cos-'( - lR1/4S) when S < - /R1/4. 

The critical temperature at any point in the RS plane is found from the condition 

kT,  = J(q0) .  (A 1.2) 

This may be written as kT,  = 5,,(4 + 2/R/ + 2s) for commensurate order, and 

kT,  = 5,,(4 + 21RI COS 40 + 2S COS 2qo) = 5,,(4 - R2/4S - 2s) 

for incommensurate order, and from t h e  formulae, we can describe the critical surface. 
For the commensurate phases, the lines of constant T,  are inclined at an angle of 45" with 
respect to the R or S axes, and these lines form part of the diamond-shaped figure shown in 
figure Al.l(a) Therefore, the critical surface consists of two planar sections, each of which 
is inclined from the horizontal RS plane by an angle of tan-lJ8.  

In the incommensurate phases, the critical surface can be illustrated by considering the 
critical line for fixed R, and decreasing S,  starting from the Lifshitz boundary. This curve 
initially drops, and then there is a broad trough at S = - iRl/JX (cf figure Al.l(b)). As 
S + - x, the curve becomes asymptotically linear, and kTc 2 5,,(4 - 2s). Therefore, the 
critical surface becomes a plane inclined from the horizontal RS plane by an angle of 
tan-'2. These geometric features are shown in figure Al.1. 

Finally, the nature of the phase transition can be studied as T + T: by considering the 
structure factor, 

Y(q) = [kT - J(q)]- '  

= {kT - J,,[4 + 2 / R /  + 2 s  - q2(IR/ + 4s) + &q4(/R/ + 16s) 
- . . .I}-'  

- 1  

. (A1.3) 
IR1+ 4s lRl+ 16s 

= { t + q 2 ( 4 + 2 1 R l +  2 S ) - h q 4 ( 4 + 2 1 R 1 + 2 S ) + " ' j  

Here t = [T  - T,(O)]/T,(O), and Tc(0) is the critical temperature at q = 0. When S > 
-IR1/4 the coefficient of q2 in (A1.3) is positive, and a minimum of Y - l ( q )  occurs at 
4 = 0 (cf figure A1.2). This corresponds to the fact that at  any T > Tc, the largest fluctu- 
ations are for q = 0, and as T + T,f these fluctuations (the susceptibility) diverge, while 
fluctuations for q = 0 remain finite. 

However, when S < -(R//4, the coefficient of q2 in (A1.3) is now negative and a 
minimum of Y-'(q) occurs at nonzero q. An approximate expression for q2 may be found 
t Many results of mean-field theory are well known, and useful pedagogical accounts may be found in Brout 
(1965) and Smart (1966). 
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' Lifshitz boundary ' Locus of bottom of 'trough I 

I I I 1 I I I I I I  
-0.9 - 0 7  - 0 5  - 1 / 4 8 - 1 / L  -01 

S 

Figwe Al.1. (a) A map of the critical surface in the RS plane, showing contours of constant T, ,  
A broad trough in this surface occurs at S = - IRI/,,'S. (b) A critical line for R = 1, and varying 
S .  Note the exaggerated vertical scale so that the trough is readily apparent. 

Figure A1.2. The inverse structure factor for fixed T z Tc, in the ferromagnetic and helical 
phases, and at the Lifshitz point. The minimum of Y(q)-' determines the ordered phase 
wavevector q,,, and this may be found by minimising Y(q)- (a) Uniform order, S > - IR1/4; 
(b)  Lifshitz point, S = - IR//4; (c) helical order, S < - IRli4. 

I23 
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4 

Figure A1.3. The q dependence of the structure factor for fixed t = ( T -  T,)/T, > 0. (a) 
S > -1R1/4,q, = O o r S  < -IR//4,q,  # O;(b)S = - /Rl /4 ,qo = 0.AttheLifshitzpointthe 
coefficient of q2 in (A1.3) vanishes, and the peak is not a Lorentzian. However, in both the 
ferromagnetic and helical phases the peak is a Lorentzian centred about qo.  

by minimising Y-'(q) with respect to q, 

& 2 -6(IRI + 4S)/(/R1 + 16s). (A1.4) 

This expression agrees with qo = cos-'(-IR//4S) to lowest order in 1 + IR1/4S. As 
T + T:, Y(qo) diverges, and fluctuations for all q # qo remain finite (cf figure A1.2). The 
onset of helical order occurs when lRl + 4 s  = 0, and here the coefficient of q2 in (A1.3) 
vanishes. This condition marks the transition point between the dominance of nonzero 
wavelength and zero wavelength fluctuations, and therefore the transition can be 
regarded as an 'instability in Fourier space'. At this instability, fluctuations of small 
nonzero wavevector are just as important as zero wavelength fluctuations for T > T,, and 
the structure factor is no longer Lorentzian, but rather is much less peaked about q = 0 
(cf figure A1.3). Hence, one might expect that the critical behaviour of a system at such an 
instability is markedly different than the usual critical behaviour, and this is found to be 
the case (Hornreich et a1 1975a). 

Physically, the condition IR/ + 4 s  = 0 also marks the point at which the competing 
influences of the R and S interactions just balance. When this occurs, spin correlations in 
the z direction are drastically reduced (cf figure 7) and the nature of the phase transition is 
quantitatively changed. 

Appendix 2. The spherical model 

We consider the R-S Hamiltonian in the spherical model limit for arbitrary dimen- 
sionality d, 

(A2.1) 
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where the first sum is over nearest-neighbour spin pairs in the same (d - 1 )-dimensional 
layer, while the last two sums are over nearest-neighbour and next-nearest-neighbour spin 
pairs along one axis (the z axis). The spins si can assume any finite value subject to the 
constraint c i s ;  = N where N is the number of spins in the system. It will be more 
convenient to rewrite (A2.1) ir? the following form, 

(A2.2) 

Most of the thermodynamic properties of this system are determined by the location of 
the partition function saddle-point, and this is given by the condition (Berlin and Kac 
1952, Joyce 1966), 

(A2.3) 

where j is the vector distance between the origin and sitej, zsp is the saddle-point location, 
and the integral is over the first Brillouin zone. We define 

J = cJoj and f'(o) E c J o j c o s o . j / c  Joj 
j j j 

and now equation (A2.3) can be written compactly as: 

(A2.4) 

(A2.5) 

The last equality defines f i ,  and for the R-S model in d dimensions we have explicitly, 

and this integral may be evaluated directly. 

and Kac 1952), 
The zero-field susceptibility can be expressed in terms of the saddle point as (Berlin 

(A2.7) x = (kBT/J)(zsp - 1)- ' .  

Thus to generate the high-temperature susceptibility series, we need to revert to the series 
in equation (A2.5) in order to express l/zsp as a series in J/kBT. That is, we have 

m 

(A2.8) 

Substitution of this series in equation (A2.7) then leads to the desired result. 
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