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Abstract. A general discussion of the kinetics of continuous, irreversible fragmentation 
processes is presented. For a linear process, where particle breakup is driven by an external 
force, we develop a scaling theory to describe the evolution of the cluster size distribution. 
We treat the general case where the breakup rate of a cluster of mass x varies as xi. When 
I > 0, corresponding to larger clusters more likely to break up, the scaled cluster size 
distribution, $(x), decays with the scaled mass, x, as x-* exp(-ax”), as x -+ 00. For small 
mass, $(x) has the log-normal form, exp(-a In2 x), if the breakup kernel has a small-size 
cutoff, while $(x) has a power-law tail in the absence of a cutoff. We also show that a 
conventional scaling picture applies only for the case I > 0. For I < 0, we develop an 
alternative formulation for the cluster size distribution, in which the typical mass scale is 
determined by the initial condition. In this regime, we also investigate the nature of a 
‘shattering’ transition, where mass is lost to a ‘dust’ phase of zero-mass particles. We also 
study the kinetics of a nonlinear, collision-induced fragmentation process. We analyse the 
asymptotic behaviours of a simple-minded class of models in which a two-particle collision 
results in either: (1) both particles splitting into two equal pieces, (2) only the larger particle 
splitting in two, or (3) only the smaller particle splitting. We map out the kinetics of these 
models by scaling arguments and by analytic and numerical solutions of the rate equations. 
Scaling is found to hold for different ranges of homogeneity index for the three models. 

1. Introduction and summary 

Fragmentation is a continuous and irreversible kinetic process which occurs in many 
physical situations such as polymer degradation [1-4], liquid droplet breakup [ 5 ] ,  
crushing or grinding of rocks [6,7] and combustion [8]. A basic goal of this paper 
is to provide a general theoretical description of the evolution of the distribution of 
fragment sizes that results from such breakup processes. A basic theoretical approach 
to describe this process is by the rate equations. These are an approximation of a mean- 
field character, as fluctuations are ignored. Fragments are assumed to be distributed 
homogeneously at all times throughout the system, i.e. there is perfect mixing, and the 
variability of cluster shapes is ignored. Thus the mass is the only dynamical variable 
that characterises a given fragment in the rate equation approach. 

The rate equations have been extensively studied in the mathematics, physics and 
applied science literatures. By a mathematical approach, Filippov [9] found general 
conditions for which the fragment size distribution approaches a limiting form at 
long times. Ziff and McGrady [1&12] have recently applied a statistical mechanical 
viewpoint to fragmentation and have obtained new insights which parallel recent 
progress made in the investigation of aggregation phenomena. A variety of basic 
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results have also been obtained for experimentally- and theoretically-motivated models 
[lo-12,17,18]. An important feature of fragmentation is that the typical cluster size 
decreases with size due to breakup. The vanishing of the typical size is analogous to 
the vanishing of the inverse correlation length for a system near a second-order phase 
transition. Thus at long times, one might anticipate that scaling and universality can 
be invoked to describe the nature of the cluster size distribution. 

Our treatment is based on applying scaling to obtain asymptotic information about 
the solutions to the rate equations for a general class of models. We will argue that 
only a few details of the breakup process are relevant in determining basic features 
of the fragment size distribution at long times. Thus the scaling approach naturally 
leads to a universal way of’ describing fragmenting systems. Our approach parallels 
analogous developments in the investigation of the rate equations for the kinetics of 
the inverse process of aggregation [18-211. We will give a more detailed account of 
our earlier work [17] and present a number of new results. 

One basic classifying feature of fragmentation is whether breakup is driven only by 
a homogeneous external agent, or whether additional influences also play a role. The 
former leads to an inherently linear process, while the additional driving influences that 
one might envision in fragmentation are often nonlinear in character. One example 
is fragmentation induced by collisions between fragments. This might arise in an 
explosive-type process, or perhaps in the breakup of small eddies in a turbulent 
fluid flow [22]. As an idealisation of such a situation, we consider collision-induced 
fragmentation, in which fragmentation products continuously participate in repeated 
collisions and fragmentations t. While a purely collision-induced process may be too 
idealised to be of direct practical relevance, the phenomenology of such processes is 
quite rich. Furthermore, there are parallels with the rate equations of the inverse process 
of aggregation, since both processes are driven by a bimolecular rate. Thus studies 
of collision-induced fragmentation may provide a useful first step in understanding 
nonlinear effects in fragmentation kinetics. 

The outline of this paper is as follows. In section 2, we define the linear and the 
nonlinear, collision-induced fragmentation models, and write their corresponding rate 
equations. For linear fragmentation, we consider homogeneous systems in which a 
cluster of mass x breaks up at a rate which varies as x”, and in which the rate of 
production of a fragment of mass x, from the breakup of a cluster of mass y, depends 
only on the ratio x / y .  For collision-induced fragmentation, we focus on a particular 
class of ‘splitting’ models in which a two-particle collision results in either: (1) both 
particles splitting exactly in two, (2) only the larger particle splitting, or (3) only the 
smaller particle splitting. These models retain the essential nonlinearity and generality 
of collision-induced fragmentation, while being simple enough to solve. 

In section 3, we discuss basic features of scaling solutions, including the singular 
cases where the inverse moments of the cluster size distribution fail to converge. In 
section 4, we derive scaling solutions to the rate equations for linear fragmentation 
for systems with positive homogeneity index, I. > 0. The asymptotic form of the 
particle-size distribution at large size is almost completely determined by the value of 
A. In the small-size limit, we determine the general conditions on the relative breakup 
rate, which delineates between the classical log-normal form or a power-law form 
for the small mass tail of the distribution. The former is characteristic of a random 
multiplicative process, and this has been invoked to describe many rock crushing 

t See, for example, [23] for a particular limit of nonlinear fragmentation. 
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processes (see [24], also [ 2 5 ]  and references therein). In section 5,  we discuss general 
properties of the solutions to the rate equations for linear fragmentation when 1. < 0. 
The basic new feature of this case is that the typical size is now determined by the 
initial mass distribution rather than evolving dynamically. We also discuss the criterion 
for the existence of a 'shattering' transition, [9,12] in which mass is lost to a phase of 
zero-size particles. In section 6, we derive the asymptotic solutions for the collision- 
induced splitting models. We also investigate the conditions for which the fragment 
size distribution can be described by a scaling form. In section 7, we test our theoretical 
predictions by direct numerical integration of the rate equations. Finally, in section 8, 
we give our basic conclusions and offer a few suggestions for additional work. 

2. Rate equations for linear and collision-induced fragmentation 

2.1.  Linear fragmentation 

Denote by c(x, t )  the concentration of clusters of mass x at time t .  When Darticle 
breakup takes place 
source, the evolution 
[9-171 

independently and homogeneously as a result of an external 
of c ( x ,  t )  is described by the linear integrodifferential equation 

Here a ( x )  is the overall rate at which x breaks, i.e. a ( x ) d t  is proportional to the 
probability that an x-mer breaks in a time interval dt, while f ( x l y )  is the relative 
breakup rate, i.e. the conditional probability at which x is produced from the breakup 
of y .  The first term on the right-hand side of equation (1) therefore accounts for the 
loss of x-mers due to their breakup, while the second term accounts for the gain of 
x-mers by the breakup of particles with mass larger than x .  We will typically consider 
initial mass distributions which are bounded; this initial mass turns out to be relevant 
in the asymptotic form of the cluster size distribution only when i < 0. 

The cluster size distribution that results from equation (1) is determined by the 
details of the kernels a ( x )  and f ( x l y ) .  With their form left unspecified, it is difficult 
to make general statements about the solutions to the rate equations (see, however, 
[9]). Therefore we restrict ourselves to homogeneous kernels henceforth. Homogeneity 
implies that the overall breakup rate depends on the mass of a fragment as a ( x )  = x)., 
where E. is the homogeneity index. Homogeneity also implies that f ( x l y )  depends 
only on the ratio of the mass of the product to the mass of the initial cluster, i.e. 
f ( x , y )  oc y-' b ( x / y ) .  Notice that the integral J," b ( x )  dx equals the average number of 
fragments produced in a single breakup event. This quantity can be either finite or 
infinite in our results, although only the former case is physical. Mass conservation 
also imposes the condition j: x b ( x )  dx = 1. 

A basic reason for restricting ourselves to homogeneous kernels is that this choice 
includes most physical situations. More importantly, scaling provides a simple and 
powerful tool for analysing the asymptotic behaviour for homogeneous fragmenting 
systems. 
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2.2.  Collision-induced fragmentation 

For breakup driven by collisions between fragments, the interaction details between 
two clusters are now specified by a collision kernel K(x,y), which gives the rate at 
which an x-mer and a y-mer meet, and a breakup kernel B(xly,z), which specifies the 
rate at which x-mers are generated as result of the breakup of a y-mer in a collision 
between a y-mer and a z-mer. The rate equations for c(x, t )  now are [17] 

The first term on the right-hand side accounts for the loss of x-mers because of colli- 
sions between x-mers with the remaining particles in the system, while the second term 
describes the gain of x-mers due to collisions in which the mass of the particle undergo- 
ing breaking is larger than x. In this nonlinear model, the collision kernel is symmetric, 
i.e. K(x, y) = K ( y ,  x), while mass conservation implies that y = fi x B(xly ,  z) dy. 

In order to determine the possible asymptotic behaviours of this model, it is nec- 
essary to specify the functional forms of the collision and breakup kernels. For this 
purpose, we appeal to the analogy with aggregation processes and consider homoge- 
neous systems because of their generality and because considerable information can be 
deduced once the scaling behaviour of the kernels as a function of their arguments is 
given. Accordingly, we consider collision kernels which can be written as 

K(ax, ay) = a”K(x, y). ( 3 4  
For the breakup kernel, many forms for B(xly, z) correspond to physically reasonable 
microscopic processes. Note, however, that the breakup kernel must satisfy 

(3b) B(axlay, az) = a” B(xly, z) 

where v = -1 is required by mass conservation. Equation ( 2 )  can be reduced to the 
rate equations of a linear fragmentation process for particular classes of kernels, such 
as those in which B(xly,z) has no dependence on z, and in which K(x,y) has the 
product form K(x, y) = f(x)f(y).  Under these restrictions, any linear fragmentation 
problem with a homogeneous breakup kernel can be obtained by a suitable choice of 
B!xly,z). 

For the purposes of detailed study, we concentrate on a class of ‘splitting’ models 
which exhibit the essential nonlinearity of a collision-induced fragmentation process, 
but are simple enough to be analysed. In these models, the particle(s) which undergo 
breaking always split into two equal halves. There are three generic cases to consider. 
Model I. Both incident particles split in two as a result of  a collision. This situation is 
described by the kernels 

i . /2  112 K(x,y) = x  Y 
B(x(y, z) = 2 6 (x - y/2). (4) 

Model 11. Only the larger of the two incident particles splits in two. In the case 
where the two particles have the same mass, then only one of the particles splits. The 
corresponding collision and breakup kernels are 

i f x 2 y  
otherwise. 

( 5 )  
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Model 111. Only the smaller particle splits in two. In case of an ambiguity, then only 
one of the incident particles splits. The corresponding kernels are 

i f x s y  
otherwise. 

Models II and I11 represent the two extreme and opposite situations in which only the 
larger, or only the smaller of the two incident clusters is susceptible to breakup. 

3. Basic features of the solutions to the rate equations 

There are two general types of solutions to the rate equations; scaling solutions, in 
which the typical mass evolves continuously, and solutions for which the typical mass 
is determined by the initial conditions. The value of A determines which of these 
two types of solutions will be appropriate. We emphasise scaling solutions for several 
reasons. First, kernels for which the rate equation solutions can be written in a scaling 
form include most physically relevant cases. Second, the scaling ansatz reduces a 
two-variable problem to a single-variable problem, thus simplifying the description of 
fragmentation kinetics. Third, a scaling solution is universal in that it is independent 
of initial conditions. Thus scaling provides a general classification scheme for the 
solutions. 

The scaling ansatz for the cluster size distribution can be written as [18-211 

c(x, t )  = s-* 4 ( x / s ( t ) )  ( 7 4  

where s( t )  is a typical (time-dependent) cluster mass, and the exponent -2 is required 
by mass conservation. In the case of the splitting models, the cluster masses have the 
discrete form x = 2-", with n a positive integer, for a monomer-only initial condition. 
The transformation between the discrete and continuous form of the cluster size 
distribution, c,(t) dn = c(x, t)(dx/dn) dn, then leads to the discrete form of the scaling 
ansatz 

c,(t) = s-l 4(2-"/s). ( 7 4  

It is often the case that the moments of the cluster size distribution can be obtained 
more conveniently than the complete distribution. Therefore we define the ath-moment 
of the cluster-size distribution and of the scaling function, M,(t) and ma respectively, 
by 

r X  /.E 

M,(t) = 1, x' c(x, t) dx m, = 1, x' +(x) dx. ( 8 4  

These are just the Mellin transforms of c(x,t) and d(x) (except for a trivial shift of 1 
in the definition of a). When the fragmentation process favours the production of very 
small fragments, M,(t) may fail to converge for sufficiently negative values of a. In 
such a case, it proves necessary to introduce the moment with a cutoff 

M,(t; E )  = X'C(X, t )  dx LX 
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in order to render the negative moments finite. From equation @a), Mo( t )  is the total 
number of clusters at time t and M , ( t )  is the total mass in the system. There is an 
indeterminacy in these definitions which stems from the fact that there are two free 
parameters in the scaling ansatz, namely the amplitudes of s ( t )  and 4. Without loss of 
generality, we choose m,, = ml = 1 in order to fix these two free parameters. 

If the system obeys scaling, then the 'bare' and 'scaled' moments are related by 

and, in particular, 

The latter equality states that the average size is inversely proportional to the average 
number of clusters, as one expects if there is a unique typical size scale in the system. 
The relation between m, and M,(t) follows solely from the ansatz ( 7 ) ,  therefore this 
relation is common to both fragmentation and aggregation. 

A crucial aspect of the analysis which follows is the determination of the quantita- 
tive relation between the scaled cluster size distribution, $(x), and the corresponding 
moments ma. This relation is embodied by the following correspondence. First, we use 
scaling to compute the moments for a discrete set of equidistant a values. We then 
invoke 'smoothness', in which the form of the moments defined on the discrete set ( a }  is 
extended to continuous values of a. Finally, the functional form of the scaling function 
is determined by computing the inverse Mellin transform of m,. For example, if the 
moments m, are finite for a < a, and infinite for a > a,, then it is interpreted that $(x) 
asymptotically behaves as the power law, 4(x) K x-i-ac.  Although this statement is not 
mathematically precise, the correspondence procedure is supported by available exact 
solutions, and it is physically plausible. If there are cases where this correspondence 
does not strictly apply, the comparison of the limiting forms for m, for two models 
can be a valuable measure of the closeness of the corresponding $(x). In the following 
treatment, we will assume that this correspondence principle is generally valid. 

4. Linear fragmentation for 1 >O 

4 .1 .  Scaling solutions 

For linear fragmentation, straightforward substitution of equation (7a)  into (1) allows 
one to separate the dependence on x and t into two scaling equations 

J t  

Here 5 = x/s, o > 0 is the separation constant, and the overdot denotes the time 
derivative. The value of o depends on the normalisation which is chosen for mo and 
m i .  From equation (12), the typical cluster size has the time dependence 

for i. > 0 and t + x 
for i = 0 and t + CO 

for i < 0 and t < t,. 
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As first shown rigorously in [9], E. > 0 is a necessary and sufficient condition for the 
validity of scaling. (We shall present a physical and simpler line of reasoning for this 
result below.) Therefore the prediction for s ( t )  when i < 0 may not apply in general. 

To find the asymptotic solution to equation (11), we convert it to a relation 
involving the moments of 4( ( ) ,  by multiplying both sides by 5" and integrating over 
all (. (We discuss later the conditions needed for these moments to converge.) In this 
derivation, the second term on the right-hand side of equation (1 1) gives rise to the 
integral 

and the order of integration can be interchanged to yield 

By introducing the moments of the reduced breakup kernel 

nl 

we obtain the linear recursion relation for the moments of the scaling function, m,, 

1-Ci 
ma. m,+, = w - 

L, - 1 

The explicit dependence on the kernel is contained only in La. This suggests that the 
results which follow from this recursion relation will be universal. From equation (16), 
we compute the asymptotic form of m, for a discrete set of equidistant ct values and 
then use the properties of the inverse Mellin transform to reconstruct the functional 
form of the scaling function. These details are presented separately for large and 
small x. 

4.1 .1 .  Large x limit. The large x behaviour of 4 ( x )  corresponds to m, for large values 
of z. To obtain these moments, choose 2 = k i ,  with k a positive integer, iterate 
equation (16), and use mo = 1 .  This yields 

For large k,  the product is dominated the large-n factors, and we now demonstrate 
that this naturally leads to a universal behaviour of the moments. 

To illustrate, consider the class of kernels which have the form, for x -+ 1, 

b ( x )  = b( 1) + 0(( 1 - x)') 

where b(1)  2 0 and p > 0 are constants. For this form of b ( x )  

L,  = b ( l ) / a  + O(CX-~~+')) 
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for large a. Using this result, together with the large-N approximation, U:=, (1 - a/n) a 
N-“, in equation (17), we obtain 
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Employing Stirling’s approximation yields 

where c is a constant and where k has been replaced by @/A. Although equation (21) 
has been derived for a discrete set of equidistant cr values, we expect that this equation 
is generally true, since mu is smoothly varying in a. 

In this limiting form for mu, the dependence on the breakup kernel appears only 
through 2 and b(1). The controlling factor, a U / l ,  arises from fl:ii(nA - l), while the 
next-order term, arises only from the leading behaviour of the product of 
1 - LnA. The 0((1 - x)”) term in b(x) does not contribute to the leading behaviour of 
mu. Owing to this universality of m,, the corresponding functional form of 4(x) is also 
universal. 

The general form of $(x) is now obtained by computing the inverse Mellin transform 
of m,. This gives 

where the constant a equals l / h .  It can be easily verified that this expression indeed 
yields the large-cr behaviour of m, given in equation (21). Moreover, this form for 
+(x) is consistent with previously derived results for specific fragmentation models (see 
e.g.[ll]). Thus we conclude that 4(x) has the universal controlling factor exp(-ax”) 
for large x, for arbitrary kernels with homogeneity index E.. 

4.1.2. Small x limit. In the small-x limit, there is a lesser degree of universality, since 
the small-mass tail is not directly influenced by particles of the typical size. We do find, 
however, that there are only two generic forms for 4(x), whose applicability depends 
on whether or not the moments L-, exist for cr -+ cc. To obtain 4(x) in the small-x 
limit, we require the behaviour of m-, as a + CO. Accordingly, we choose a = 1 - ki. in 
equation (16) and iterate to arrive at the analogue of equation (17), namely 

By analogy with the case of large positive a, the k dependence of ml-ki for large k is 
determined by the limiting form of b(x) for x near 0. 

First, consider the general situation of kernels which are cut off at small fragment 
sizes i.e. ‘flaking off of infinitesimal size pieces in a single breakup event is not allowed. 
One example is the kernel b(x) = 0 for x < xo, with 0 < x,, < 1, and b(x) = b,(x - x,,)” 
for x + x i .  From equation (15), LIP, - C X ~ ~ / I W ~ + ”  for large a , where c is a constant. 
Substituting this leading behaviour into equation (23), yields 
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Thus the controlling factor of m, in the large-a limit is 

with the exponent p appearing in lower-order corrections. The inverse Mellin transform 
of m-, can be obtained straightforwardly, and leads to the classical log-normal form 
for the controlling factor of 4(x):  

4(x) - exp (- -i- (In2 x)) (x -+ 0). 
2 In xo 

This expression represents a strict lower bound for the small-mass limit of the 
cluster-size distribution. That is $(x) decays as exp[-c(ln’x)], or slower, as x + 0, 
independent of the limiting form of b(x) as x + 0. This follows because the controlling 
factor of m-, is given by ~ ~ , l [ L 1 - , A  - 11. For any kernel b(x), there will always exist 
some 0 < xo < 1 for which L-, > x;’. Therefore the product of the L-, diverges as 
exp(ca2) or faster, as a + CO, while the other factors in equation (23) are bounded by 
exp(c’ a In E ) .  Consequently, +(x) decays as exp[-c (In’ x)], or slower, as x + 0. 

The log-normal form can also be obtained from a simple multiplicative argument 
which appears to contain the essence of a repeated fragmentation process with a small 
size cutoff (see e.g. [24,25 and references therein, 261). According to this process, the 
mass of a given fragment schematically evolves as 

where the successive reduction factor, rk  = xk/xk-,, is a random variable with a 
well behaved distribution, for a kernel with a small-mass cutoff. By the central limit 
theorem, log xN = log rk will be normally distributed, so that xN will be distributed 
log-norma11 y. 

A second general class of behaviour arises for kernels in which flaking off of 
infinitesimal size pieces in a single fragmentation event is allowed. This is typified by 
a power-law decay in b(x) for small x i.e. b ( x )  - x”. In this case, it follows from 
equation (16) that m, diverges whenever L, diverges. This divergence occurs for a less 
than a critical value x c ,  which is less than 0, since mo is finite. For a close to a, we keep 
only the leading term in equation (16) to give 

Since m, is proportional to L,, it follows that 4(x) coincides with b(x). That is, 

$(x) - XV as x + 0. (29) 

Thus for a kernel with no small-size cutoff, the limiting form of 4(x) now decays as 
exp(-v In x), which is much slower than the log-normal bound, exp[-c (lnx)*]. We 
believe that equations (22), (26) and (29) provide the asymptotic behaviours of $(x) 
for an encompassingly wide class of breakup kernels. The range of possibilities are 
summarised by the ‘phase diagram’ of figure 1 .  
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c 
0 x 

Figure 1. Phase diagram for linear fragments, ?n in the plane defined by the homogeneity 
index i. and a loosely defined parameter, the ” akiness’ of the relative breakup rate. Small 
flakiness corresponds to a vanishingly small pr1)bability of small flakes being produced in a 
single breakup event i.e. a small-size cutoff in h(s), while large flakiness corresponds to the 
opposite limit of a power-law tail in b ( x ) .  In the phase plane there is a ‘shattered phase 
for i. < 0, while for 2. 2 0 there is a ‘gravel’ phase for small flakiness and a ‘dusty’ phase 
for large flakiness. The fragment size distributions corresponding to these latter two phases 
are sketched. 

4.2.  Existence of scaling 

As mentioned above, scaling has rigorously been shown to be valid for A > 0 [9]. 
We now present a simpler, physical approach which shows that i. > 0 is a necessary 
condition for scaling, and we also give a plausibility argument that 1 > 0 is also a 
sufficient condition for scaling to apply. 

First we show that A < 0 implies no scaling. If scaling did hold for I. < 0, then 
equation (13) would predict that there is a singularity in s at a finite time, and by 
equation (lo), M,,(t) would vanish at a finite time. This contradicts the fact, from 
equation ( l ) ,  that c ( x ,  t) must decay exponentially in time or slower, for any x. Hence 
scaling solutions do not exist when i. < 0. 

To argue that iv > 0 is a sufficient condition for scaling, we follow steps, similar to 
those that led to equation (16), to derive the ‘bare’ moment relation 

Starting 
L,-i - 1 

with M,(t) = 1 ,  equation (30) gives M,-,(t)  = (Ll-i - 1)t + constant, where 
is a positive constant. Iterating this process, one finds the asymptotic solution 
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for a discrete set of equidistant index values 1 - ki.. Assuming that the form of M ,  
for arbitrary CL interpolates smoothly between the moments defined on the discrete set, 
then equation (30) reproduces the temporal behaviour of the moments from the scaling 
ansatz. 

It is worth emphasising that the negatiue moments of the cluster size distribution are 
the fundamental dynamical quantities that characterise the fragmentation process. They 
play a role analogous to that of the positive moments of the cluster size distribution 
in growth phenomena such as aggregation. 

5. Linear fragmentation for i, < 0 

5.1 .  Scaling theory 

For the asymptotic solution to the cluster size distribution when E. < 0, we argue 
that a modified scaling ansatz for $ ( x )  may be written which superficially resembles 
equation (7a ) ,  except that the typical cluster size is determined by the initial condition, 
rather than by the dynamics of the fragmentation process. 

We will justify this modified scaling ansatz by first showing that there is an anomaly 
in the time dependence of c ( x ,  t) for j. -= 0. Notice first that for the case of a monomer- 
only initial condition, c ( x ,  t = 0)  = 6 ( x  - I), the scaling solution for $ ( x )  given in 
equation (22)  yields the time dependence, c ( x , t )  - e-''' . The coefficient of t in the 
exponential is a decreasing function of x for i > 0, so that smaller clusters decay more 
slowly. We now argue that for E. < 0, c ( x , t )  - e-a', with the coefficient a 'sticking' at a 
value of unity. This feature is the source of the differing scaling forms for i > 0 and 
A < 0. 

Our argument is based on showing that e-"', with a = 1, represents both an upper 
and a lower bound to the decay of c ( x ,  t ) .  To show first that c ( x ,  t) 2 e-', let us assume 
the opposite and derive a contradiction. An obvious lower bound for c ( x ,  t) is attained 
by neglecting the gain terms in equation ( l ) ,  leading to c ( x ,  t )  decaying as e-X"'. Since 
2 < 0, faster decay would occur for smaller values of x ,  so that c ( 1 , t )  = e-' is the 
slowest decay mode in the system. This slowest mode feeds in to the gain term in 
equation (1) via c ( 1 , t ) .  Now if c ( x , t ) ,  and hence the loss term, were to decay faster 
than e-', then the gain term will eventually dominate. This would lead to i ( x , t )  > 0, 
which contradicts our original assumption. Therefore we conclude that c ( x ,  t) 2 e-'. 
Now we also show that c ( x , t )  cannot decay slower than e-'. Assuming the opposite, 
then for some x < 1 the loss term in equation (1) will dominate. However, if the gain 
term in equation (1) is negligible, there would be a faster than e-' decay for c ( x , t ) ,  
invalidating the assumption that c ( x , t )  2 e-'. Thus we conclude that the controlling 
time dependence of c ( x . i )  is e-' for any x in the long time limit. 

Notice that the initial condition sets the timescale of the bound for c ( x ,  t )  and this 
can be generalised to an arbitrary initial condition. If g ( x , t )  is the Green function 
for the initial condition 6 ( x  - I ) ,  then one can verify that I-' g ( x / I ,  tl") is the Green 
function for the initial condition 6 ( x  - I ) ,  and that 

is the solution for an arbitrary initial condition c ( x , t  = 0) = f ( x ) .  Consequently, the 
time dependence, c ( x ,  t )  - e--', for the monomer-only initial condition translates to 
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the asymptotic time dependence c(x, t )  - exp(-l-121 t )  for an arbitrary initial condition 

On this basis, and also by comparison with available exact solutions [12], we now 
propose the following ansatz for the long-time behaviour of c(x, t )  in the E. < 0 regime, 
forc( .x , t=0)=6(x- I ) :  

c(x, t = 0) = 6 (x - 1). 

c(x, t )  = T(cl -~ ;~~)~(x / l ) .  (33) 

This resembles the conventional scaling ansatz, except that s ( t )  is replaced by I in the 
scaling function 4. In the original scaling ansatz, the mass and time dependence in the 
cluster size distribution is separated as c(x, t )  = T(t)+(x/s(t)), in the long-time limit, 
by the use of an appropriate scaled mass variable. For E. > 0, one of the separation 
equations yields the time dependence of the typical mass s ( t ) ,  and mass conservation 
fixes T ( t )  to be ~ - ~ ( t ) .  In contrast, for i -= 0, the initial mass, I, plays the role of 
a (time-independent) typical mass. Since mass is not conserved for 2 < 0, a direct 
examination of the rate equations is needed in order to determine the form of T(t) .  

We now show that 4(x) has the universal form xlil-*. By the properties of the 
Mellin transform, this is equivalent to showing that there exists an a, = 1 - 121 such that 
M ,  = CO for U < a, and M ,  < CO for a > a,. We show this by demonstrating that 1 - 121 
represents both an upper and a lower bound for the value of a,. First, to show that 
1 - 121 I a,, we use the result from the next section that Ml-lAl is infinite. Together with 
the fact that M ,  is a non-increasing function of a, we conclude that there exists an a, 
which satisfies 1 - IRI I a,. Since M ,  is a decreasing function of time, one also has the 
trivial bound a, I 1. To show that 1 - 1 %  2 a,, we write a moment relation analogous 
to equation (30) for the cut off moments M,(t; 6) introduced in equation (8b) 

Equation (34) is valid for any a and e > 0, and it reduces to equation (30) if 
lim,,oM,(e/y)/M,(e) = 1 for 0 < y I 1. This limiting behaviour occurs whenever 
M,(e = 0) is finite. 

Since 
M,(t./y)/M,(e) I 1 for 0 < y < 1, the denominator in equation (34) can be bounded 
from below by 

Consider this generalised moment relation for arbitrary a > 1 - 121. 

(Recall from subsection 2.1 that si dyypb(y) < 1 for fi  > 1.) Thus the limit of e --+ 0 
in equation (34) is well behaved, so that M ,  = lim,,oM,(e) must be finite. This shows 
that a, I 1 - 11.1, and we therefore conclude that ac = 1 - 11.1. Since our discussion 
has been independent of (33), we have therefore justified the validity of this modified 
scaling ansatz in the long-time, small-mass limit, and have also obtained the leading 
behaviour 

(36) 

This result has a simple physical interpretation which clarifies the role of the initial 
mass as the characteristic scale in the system. By invoking the scaling ansatz (33), one 

c(x, t )  - e-' xIj.l-2, 
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may write Ma(€) as the product f ( t )m , ,  where ma is time independent. Substituting 
this in equation (34), taking E = 0, and a x 1 - 11.1, reduces (34) to 

1 
“‘a+ 

a 
(37) 

On the other hand, if one includes a constant source at x = 1 in the rate equations, 
then the corresponding moment reletion is identical to equation (37). The physical 
interpretation of this coincidence between the the irreversible and steady-state solutions 
is that when A e 0, the reaction between small clusters is so rapid that the initial mass 
distribution is ‘left behind‘. This residue reacts at a negligible rate asymptotically, and 
thus plays the role of a constant source in the ensuing fragmentation process. 

5.2.  Shattering transition 

An intriguing aspect of fragmentation processes is the possibility of a ‘shattering’ 
transition, in which mass is ‘lost’ to a phase of zero-mass particles. This transition 
occurs when very small clusters break up sufficiently rapidly to dominate the entire 
fragmentation process asymptotically. This is reminiscent of gelation, where mass 
within the population of finite-size particles is lost to an infinite gel molecule by the 
very rapid aggregation of large molecules. Both gelation and shattering are signalled 
by the condition, &Il e 0. As first shown generally by Filippov [9] and discussed 
by McGrady and Ziff [12] for specific fragmentation models, shattering occurs when 
2 < 0. 

We now give a simple general argument which shows that 2 < 0 is the necessary 
and sufficient condition for shattering in a homogeneous fragmenting system. (For 
a general non-homogeneous system, Filippov has written a condition analogous to 
A -= 0 as the necessary and sufficient condition for shattering.) To locate the shattering 
transition, we write equation (30) for a = 1 + E 

As E + O+, La approaches 1 from below (mass conservation), so that Ad, can be 
non-zero only if MA+,+, diverges as e + 0. Without loss of generality, suppose that the 
largest initial cluster mass is unity, so that will be no cluster with a mass larger than 
unity for t > 0. Then Ma is non-decreasing as a decreases, at any fixed time. This fact, 
together with M ,  < CO, implies that M ,  can diverge only for a < 1. Thus a necessary 
condition for shattering is A < 0. 

To show that A e 0 is also a sufficient condition for shattering, let us assume the 
converse and derive a contradiction. For I e 0, equation (30) gives 

Under the assumption of no shattering, M ,  remains fixed, so that the right-hand side is 
a negative constant. This implies that Mi+lAl, and consequently c(x, t )  would vanish at 
a finite time. On the other hand, from equation (l), c(x, t )  must decay exponentially in 
time, or slower, for any value of x. This contradiction implies that a sufficient condition 
for shattering is A > 0. 

A characteristic feature of shattering for linear fragmentation is that the mass loss 
starts immediately at t = 0. This is in contrast to the complementary situation of 
gelation, where mass loss does not occur until a non-zero finite gelation time. 



1246 Z Cheng and S Redner 

6. Scaling solutions for collision-induced fragmentation 

For collision-induced fragmentation, we anticipate that the cluster size distribution will 
evolve into a scaling form in the long-time limit, for general homogeneous reaction 
kernels. Thus substituting the scaling ansatz in equation ( 2 ) ,  one arrives at the scaling 
equations for #(x) and for the typical fragment size 

w[t$’(t) + 2$(4)1 

= - $ ( 5 )  Ix K ( 5 ,  r t )$(r t )  drt + d i  sx K(rt, i)B(51rl, i ) $ ( r t )$ ( i )  drl 
0 0 5 

(40) 

s ( t ) s ( t ) -”  = 0-1 (41) 

where o is a separation constant. The solution for s ( t )  is 

for i. > 1 and t + CO 

for 3. = 1 and t + x 
for i. < 1 and t < t , .  l /( i .- l)  

These behaviours arc valid only if scaling holds. From equation (42), shattering is 
anticipated when i. < i,, = 1. In contrast to linear fragmentation, the critical value of 
I,, is unity, corresponding to a situation where smaller particles are relatively less likely 
to collide. This diminished small-particle collision rate is more than compensated, 
however, by their rapid production by two-body collisions. 

To understand the qualitative features of nonlinear fragmentation, we turn to the 
splitting models defined in equations (4)-(6). For a monomer-only initial condition, we 
write the mass, x,  as x = 2-” with integer n to simplify the form of the rate equations. 
We will focus on asymptotic solutions to the resulting rate equations in the scaling 
regime. Numerically, this obtains when 1. > &, where i,, is model dependent and less 
than one in general. 

Before presenting mathematical details, we summarise our primary results graph- 
ically (figure 2). The basic classifying feature is whether reactions of small fragments 
with large fragments dominates over, or is dominated by, small-small reactions. (In 
any case, large-large reactions are irrelevant asymptotically.) In models I and 11, the 
larger of the two colliding fragments always splits. Therefore large-small reactions 
eventually dominate, since large clusters become effectively the most reactive as the 
system evolves. As we shall derive, this yields a peaked fragment size distribution, as 
illustrated in the phase diagram for collision-induced fragmentation (figure 2 ( a ) ) .  On 
the other hand, in model 111, small-small reactions eventually dominate. Consequently 
large clusters become ‘frozen out’ of the fragmentation process at long times, and are 
left behind as an appreciable residue. These qualitative features have strong parallels 
with the corresponding phase diagram of aggregation processes (figure 2(b)). 

6.1. Model I .  Both particles split upon collision 

With the homogeneous collision kernel K ( x ,  y )  = (xy)’:l2 and the breakup kernel 
B(xly ,  z )  = 26 ( x  - y / 2 ) ,  the rate equations become 
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Of some pedagogical interest is the case i. = 0, where both colliding clusters split at a 
mass-independent rate. For the initial condition cfl(0) = Md,,, the exact solution for 
this model is 

where t, is determined from the initial conditions via t, = 1/M. Mass is conserved for 
t < t,, but the cluster concentrations of all sizes vanish at t,. 

Model I can be mapped to a linear fragmentation process by defining the rescaled 
time variable 
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which leads to the linear rate equations 

This transformation is well behaved only for E. > 0. As a result, model I is not 
defined for E. < 0. In this mapping, the parameters that characterise the breakup 
kernel in the linear model are related to those of the corresponding nonlinear model 
by Ielinear = (E,/2)non,inear, b(~)~,,, , ,  = 2 6 (x - 1/2). From previous results for the linear 
model, we therefore conclude that scaling is valid for I. > 0, and that shattering occurs 
for E. < 1. This shattering transition is of a different character than that in the linear 
model, as mass loss does not occur until a finite shattering time t,. 

In the scaling regime (E. > 0), we exploit the mapping to the linear model to write 
thz asymptotic form of the cluster size distribution for model I 

Here x = 2-"/s(t), and s(t) is given by equation (42). From the scaling ansatz, the 
following limiting behaviour for cn(t) can be deduced : 

6.2. Model 11. Larger particle splits upon collision 

Substituting the kernels ( 5 )  into equation (2) gives the rate equations 

j=n-1 
X 

j = n  

CT 

= -'in c, cj + 2yn-1 C n p 1  cj 
j=n j=n-1 

where y = 2Z'. In the long-time limit, c, decays to zero for any fixed n, while the total 
number of clusters increases indefinitely. Consequently the lower limits on the sums 
in equation (48) can be extended to 0, leading to equations which are very similar to 
equation (43) of model I. Linearising the resulting equations by defining the rescaled 
time variable r = j' dt'M,,(t') gives 

By this device, model I1 is now mapped to a linear fragmentation problem whose 
behaviour is known, in principle. 
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However, we give a more direct approach which also serves as a check of the 
scaling ansatz for model 11. By elementary methods, the solution to equation (49) can 
be written as 

where 

is positive. We have used the boundary condition that all the cluster concentrations of 
finite mass are equal to zero at infinite time. One reason for specifying the boundary 
condition in this manner is that the contribution of the integral in equation (5Oa) 
becomes vanishingly small as t -+ 00, and this facilitates the construction of the 
asymptotic solution. Since c,(z) is non-negative for any n, equation (50a) provides the 
upper bound 

Employing this bound for c,-~ in equation (50u) gives the lower bound c,(z) 2 a,e-ynT. 
Thus we conclude that for 2 > 0 and large t 

The amplitude a, cannot be determined merely by substituting equation (52) into 
(50b), since equation (52) is valid only for large t. However, since the recursion relation 
for a, involves the Laplace transform of C,-~(T), we define the Laplace transform 
C,(a) = f: dt c,(z)e-'?, to reduce equations (49) and (50b) to the linear recursion 
relations 

a, = C,(O) + 2y"-'?,-,(-y"). (536) 

For a monomer-only initial condition, the leading contribution to ( -y " )  varies as 
(2/y)"-I, for I > 0 and for large n. Consequently equation (536) gives a, x 2", from 
which 

Up  to an overall constant factor this asymptotic solution is independent of the initial 
condition. We now determine t ( t )  by noting that scaling gives M,,(t) - l/s(t). Using 
the time dependence for s ( t )  given in equation (42), t = f'M,(t') dt' can be identified 
with s(t)-'.. Thus we can express c , ( t )  in the scaling form 

c,(t) - 2" exp - L ( 5 5 4  
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in the long-time limit. Since equation ( S a )  is obtained independent of the scaling 
ansatz, we have shown its validity at large x when j. > 0. Numerical simulations also 
indicate that scaling is valid for all x when i. > 0. 

To find the small-mass (large-n) behaviour of c,(t), we have numerically inte- 
grated the rate equations. This calculation indicates that c,(t) has a controlling factor 
exp(-c/2-") for some positive ]*-dependent constant c. We can justify this form through 
an analysis of the scaling equation. Substituting kernels ( 5 )  into equation (40) yields 

Since in model I1 only the larger particle breaks in a collision, we anticipate that 
+ ( x ) ~ ~ ~ ~ , ~ ~  I in the limit x + 0. Thus 4(x) decays faster than any power law 
for small x. Consequently, we can neglect the loss term in equation (56) and determine 
the small-x behaviour of @(x) by the gain term. If there is a faster-than-power-law 
decay in 4(x), differentiation or integration does not alter the asymptotic behaviour of 
the controlling factor. Therefore this factor satisfies 

with the condition $(O) = 0. This has the solution exp(-c/x), in agreement with our 
numerical calculations. 

Recasting equation ( S a )  in terms of scaling and combining this with our result for 
small x limit, we have 

where x = 2-"/s(t), c1 and c2 are positive constants, and s(t) is determined by equa- 
tion (42). 

6.3. Model I l l .  Smaller particle splits upon collision 

For a homogeneous system, the rate equations for model 111 are 

n- 1 
-- 

j =O j =O 
dt 

The rate equation for co( t )  immediately leads to the asymptotic solution 

co(t)  - l / t .  (59) 

We now exploit this result to find the long-time behaviour of cn( t ) .  First, define the 
variables 
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and recast equation (58) as 

dRn(r) = -y"(Ri(r) - ,4 , (r)R, , (~)  - B,(r))  dr  

where 

n- I 

A, (T)  = y-" - Rj(r) 
j=O 

n- 1 

I 1  > 0 

Since A,(T)  and B,(T)  involve only the Rj(r) with j < n, it is not difficult to show 
inductively that the ratio &(T) converges to a positive constant r ,  for any n in the 
long-time limit. Thus we conclude that 

where r ,  is determined iteratively by 

rn = i ( d a :  + 4b, + a,) 

j=O j =O 

Here a, = A,(? = 00) and b, = B,(r = CO). 

To analyse these recursion relations, recall that if scaling holds, then c,(t) - r,/t 
can be cast in the discrete-mass scaling form, S - ~ ~ ( X / S ) .  This implies that r,,/y-" 
approaches a finite positive constant for n + CO. Consequently, it is natural to 
introduce two 'dimensionless' variables 

in terms of which equation (64) can be rewritten as 

The validity of scaling is equivalent to the existence of a stable finite fixed point for z ,  
and s,. For E. > 1 ,  equation (66) has two fixed points. A stable fixed point is located at 

Z ( l )  = (1 - y) / ( l  - 2.1) s(:j = y/ ( l  - 2 y )  ( 6 7 4  

while an unstable fixed point is located at 
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For i, < 1, only the second fixed point exists, and we need to determine the rate at 
which this fixed point is approached in order to calculate z,. For large z ,  and large s,, 
equation (66) can be approximated by 

where we have defined U,, = z,/s,. Now there are two fixed points for U,, namely, 
u ( l )  = y-'(l - m), which is the attractor for i. > -1, and d2) = 0, which is 
the attractor otherwise. Thus z ,  increases as 2"(1-i)/2, or as 2" for these two cases, 
respectively. Accordingly, the asymptotic large-time solution for c, ( t )  is 

We see that scaling breaks down for i < 1 in the large-time limit. Thus for model 111, 
the two ranges of E. for which scaling breaks down and for which shattering occurs, 
coincide. 

From the above analysis, the asymptotic behaviour of c,(t) results results from 
balancing the terms on the right-hand side of equation (61); neither the gain nor the 
loss term can be neglected. This is in contrast to models I and 11, where the loss term 
eventually dominates. This situation is similar to linear fragmentation for A < 0, as the 
decay rate of the initial monomer sets the time dependence for any other mass. This 
is because the initial monomer has the slowest decay mode, and it acts like a steady 
source for small mass. 

The properties of model 111 in the large-n limit can again be obtained by mapping 
the system to a linear model. In the large-n limit, the upper bounds of the sums in 
equation (58) can be replaced by CO. We can then linearise the rate equations by the 
same procedure used in models I and 11. By this mapping, we also infer that scaling 
holds for i > 0 when n -+ 00. Since scaling holds for E. > 1 in the large-t limit, and 
for i > 0 in the large-n limit, we expect that scaling holds generally for i > 1. The 
asymptotic form of the scaling function is 

where x = 2-"/s(t). 

7. Numerical integration of the rate equations 

For the three splitting models, we have performed numerical integration of the rate 
equations, with the initial condition cn(t = 0) = CS,,~. From these calculations we 
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determine the range of values for A which lead to scaling and to shattering for the 
splitting models, and verify the asymptotic behaviours of the scaling functions. 

To determine the range of 1. for which shattering occurs, we study the time 
dependence of the total number of fragments, Mo(t )  (figures 3(a-c)). It does appear that 
M , ( t )  grows at a power-law rate for i. > 1 and diverges in a finite time whenever ,I -= 1, 
indicating that i. = 1 delineates the shattering transition. Furthermore, equation (42) 
predicts that if i = 1 is in the scaling regime, then Mo( t )  = s- ' ( t )  grows exponentially 
in time. This point is investigated in figure 3fd). For models I and 11, it appears that 
Mo( t )  does grow exponentially. For model 111, scaling does not hold for ,I = 1 and 
M,( t )  grows more slowly. 

I n  t In t 

Ln f t 

Figure 3. Plots of total number of clusters, M o ( t ) ,  against time t for models I, 11, and 111 
on a double logarithmic scale, for various values of i. in (a)-(c), respectively. Shown are 
the cases i. = 0.75 (0).  i. = 1.0 (A), 1 = 1.25 (U), A = 2.0 (.). In (4, we plot InMo(t) against 
t on a linear scale for models 1-111 (A, 0, and ., respectively) for the case 1 = 1. In models 
I and 11, the linear behaviour indicates that Mo(t )  - ecr for the three models. 

Next, we test the scaling form for the cluster size distribution for various values 
of 1 by plotting the scaled concentration ( s ( ~ ) ~ / x )  c,(t)  against x / s ( t ) ,  where x = 2-" is 
the cluster mass (figure 4). For each value of 1, selected data for c,( t )  with n ranging 
between 2 and 100 are taken, for approximately 100 time values t i .  The ti  were chosen 
to keep the ratio Mo(ti)/Mo(ti+,) approximately a constant, independent of i. This 
leads to M&) ranging between lo2 to lo9. In general, the particle size distributions for 
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various times can be collapsed onto a single universal curve when i > 1. However, for 
smaller values of i., the scaling function becomes progressively sharper, and the quality 
of the data collapsing gradually deteriorates until eventually the scaling form breaks 
down. This breakdown of scaling appears to occur when E. <, 0 for models I and 11, 
and when E. <, 1 for model 111. 

Finally, we present in figure 5 the asymptotic limits of the cluster size distributions 
given in equations (47), (55) and (69). We generated data for the cases i.=1.5, 2.0 and 
2.5, which is well within the scaling regime for all three splitting models. In order 
to isolate the large-mass behaviour of the distribution, we plot In I ln[#(x)x2]1 against 
lnx for models I and I1 (figures 5(a) and (b) ,  respectively), and ln#(x) against lnx 
for model I11 (figure 5(c)). These data are well fitted by straight lines of slope i./2 in 
(a), 3. in (b),  and 3. + 1 in (c), in accord with our theoretical predictions. Analogous 
graphical results for the small-size behaviour of the cluster size distribution are shown 
in figures 5 ( d - f ) .  The small-x behaviour appears to obey scaling, although the quality 
of the agreement between theory and simulations is not as good as in the large-size 
limit. Generally, for a larger value of I., there is a faster approach to the asymptotic 
limit, and better agreement between theory and simulations. 

8. Discussion 

A general treatment of linear and collision-induced fragmentation processes has been 
given within the framework of the rate equations. This is an approach of a mean-field 
character, as fluctuations in the spatial positions of the clusters and in cluster shape 
are ignored. The microscopic details of breakup events are accounted for by the overall 
breakup rate, which that specifies the likelihood for a fragment of a given mass to 
break (either by an external agent or by collisions), and by the relative breakup rate, 
which gives the size distribution of products from a single breakup event. 

For a linear, homogeneous fragmenting system scaling solutions exist when the 
homogeneity index, E., of the overall breakup rate is positive. Within the scaling regime, 
the value of i is the crucial parameter which characterises the large-mass behaviour 
of the cluster size distribution. In the small-mass limit, the cluster size distribution 
is determined by whether or not the relative breakup rate is cut off in the small-size 
limit. With a cutoff, the cluster size distribution is sharply peaked, while in the opposite 
case, there is a considerable population of very small dust-like particles. When 1. < 0, 
a shattering transition occurs in which mass is lost to a shattered phase consisting of 
zero-mass particles. For this case, it is possible to write a scaling ansatz for the cluster 
size distribution, but one in which the initial mass plays the role of a characteristic 
mass scale. Owing to the rapid breakup of very small clusters, the initial mass decays 
away extremely slowly, so that this component of the distribution acts as a steady 
source. 

To gain some insight into the behaviour that can occur when nonlinear effects play 
a role in particle breakup, a class of collision-induced ‘splitting’ models was introduced, 
in which a fragmenting cluster always breaks into two equal-sized pieces. These models 
exhibit the essential nonlinear nature of collision-induced breakup, but are simple 
enough to analyse. In model I, both colliding fragments split in two upon collision, 
while in models I1 and 111, only the larger, or only the smaller, respectively, of the two 
colliding fragment splits in two. For these models, scaling is valid for different ranges of 
A. Model 111 is unique in that large clusters are ‘frozen out’ of the fragmentation process 
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Figure 4. Scaling plot of cn(r) .  Shown is the scaled quantity (s(t)*/x)c,(t) against x / s ( t ) ,  
where x = 2-", for various values of i.. In each plot s ( t )  ranges from approximately IO-' 
to lo-'. We show data for: (a) model 1 for i.=0.5 (*), and 0.25 (A), (b)  model I1 for i.=0.5 
(I) and 0.0 (A),  (c) model I1 for i = -0.25, and (d),(e),Cf) model 111 for i=1.5,  1.0, 0.75 
respectively. Data collapsing begins to fail for the smaller values of A, from which one can 
infer the end of the scaling regime. 
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Figure 5. Asymptotic behaviours of 4(x) in both (a)-(c) the large-mass limits for models 
1-111 respectively, and (6)-Cf)in the small-mass limits for models 1-111 respectively. Data 
for the cases 1=1.5 (0). 2.0 (A) and 2.5 (*) are shown. The full lines in (a)-(c) indicate 
the slopes predicted by equations (47a), (55b)  and (69a) for models 1-111 respectively. In 
(6) and U), the data are consistent with a log-normal tail. In (e), the line has slope -1  
(equation 55(b ) ) ,  and the data for the case of i = 1.5 are not shown. 
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at long time. This leads to a monotonic fragment size distribution, with a power-law 
tail at large masses, while the distributions in models I and I1 are non-monotonic and 
decay quasi-exponentially for large mass. Moreover, in model I11 the concentration of 
fragments of any finite size decays as a power law in time, and in models I and I1 the 
concentrations decay exponentially. 

While the rate equation approach provides a useful and comprehensive account 
of a wide range of fragmentation phenomena, there are interesting questions of po- 
tential experimental relevance that are worth addressing. It is important to develop 
approximations which can take inhomogeneities of various types into account. While 
the assumption of perfect mixing is probably appropriate for ball-milling types of 
comminution processes [7], it is clearly inadequate in many geophysical situations, for 
example, where fragments remain in fixed spatial positions throughout the breakup 
process. Attempts to account for this type of spatial inhomogeneity have been at- 
tempted, but primarily at a qualitative level [27]. It is also clear that the rate of 
fragmentation processes should generally depend on the cluster shape. Whether this 
shape dependence can be accounted for by averaging over fragment shapes is not 
understood. Finally, in many fragmentation processes there are various nonlinear and 
non-local effects. When breakup is driven by high pressures, there can be a transfer 
of stress across many fragments. When fragments possess considerable kinetic energy, 
nonlinear effects, induced by collisions may play a substantial role. The understanding 
of the kinetics in these types of systems should pose rich areas for new research. 
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