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Abstract. The dynamics of a monomer-monomer and a monomer-dimer surface catalytic 
reaction is investigated. From the mean-field solution, finite systems eventually ‘poison’ 
at an exponential rate to a fully occupied, non-reactive state. For the monomer-monomer 
process, this poisoning is driven by concentration fluctuations of a diffusive nature, leading 
to poisoning times which vary as a power of the linear system size L. A comparison of 
the Monte Carlo simulations with the mean-field result suggests that the upper critical 
dimension for the monomer-monomer model is d, = 2. For the monomer-dimer process, 
there is an effective potential that needs to be surmounted by fluctuations, leading to 
poisoning times which grow at least as fast as eL. This gives rise to an apparent reactive 
steady state. 

Heterogeneous catalysis is a fundamental kinetic process in which the rate of a chemical 
reaction is enhanced by the presence of suitable catalyst material [ 13. A typical example 
is where reactants adsorb on a catalytic surface which then promotes the bonding of 
reactants. Once a reaction occurs, the reaction product desorbs, thereby allowing for 
continued operation of the system. This type of catalytic reaction underlies a host of 
technological processes and a substantial fraction of all chemical production [ 11. 

It has only been very recently, however, that investigations of microscopic models 
have begun to identify the general principles underlying the dynamical behaviour of 
heterogeneous catalysis. Ziff et a1 [2] introduced a simple lattice model which appears 
to describe various features of the surface catalytic reaction of carbon monoxide 
(monomers, which adsorb onto a single lattice site) and oxygen (which are deposited 
as dimers and disassociate upon adsorption). Depending on the relative deposition 
rate of the monomers and dimers, there may be ‘poisoning’, where the surface eventually 
becomes covered by only one species, or there may be an apparent reactive steady 
state. Novel kinetic phase transitions demarcate these two possibilities. This intriguing 
behaviour has stimulated further work on this and a simpler monomer-monomer 
process to be defined below [3-71. 

Our goal, in this letter, is to show that the mean-field solution, together with 
numerical simulations of very small systems, provide a rather complete description of 
the dynamics of idealised surface catalytic reactions. For the monomer-monomer 
process, we show that the final state of a finite system is always poisoned and that 
poisoning is approached at an exponential rate in mean-field theory. These facts are 
actually quite difficult to establish in numerical simulations of large systems [ 5 ] .  
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However, by extrapolating our numerical results from small systems, we can deduce 
the behaviour in the thermodynamic limit. Our simulations suggest that mean-field 
theory holds when the spatial dimension of the catalytic substrate is greater than or 
equal to 2. This value is identified as the upper critical dimension, d,, of the monomer- 
monomer process. (Interestingly, for the monomer-dimer process, an analogy with 
Reggeon field theory [ 6 ]  suggests that d,=4.)  For the monomer-dimer process, we 
show that the putative reactive steady state is actually a transient phenomenon, and 
that the time for eventual poisoning varies exponentially in the system size. The origin 
of this long poisoning time stems from an effective bias away from the poisoned state 
due to the reaction process itself. 

The monomer-monomer process consists of the following steps: 

A+S+A,  

B + S + B ,  ( 1 )  

As+Bs+(AB)+2S. 

Here S represents an unoccupied surface site and A, and Bs denote A and B particles, 
respectively, adsorbed on the surface. In the deposition step, an A is chosen with 
probability p or a B is chosen with probability q = 1 -p. An attempt is then made to 
adsorb the chosen particle onto an arbitrary lattice site. If the site is already occupied, 
there is no adsorption and a new deposition is attempted, while if the site is unoccupied, 
adsorption occurs. After adsorption, if there happen to be AB nearest-neighbour pairs, 
then one such pair immediately bonds into an AB molecule which desorbs from the 
lattice, thus freeing two adjacent sites for subsequent adsorption. 

We now derive the solution for the kinetics of this process in two versions of 
mean-field theory of increasing degree of applicability: 

(i) Complete graph. For a complete graph of N sites (all pairs of sites connected) 
only A, or only B particles can exist at any time. The evolution of the system upon 
the attempted addition of a single particle can be represented by the stochastic process 
shown in figure 1. For a graph containing n A particles, the probability of no transition 
is n / N  (i.e., deposition attempt on a previously occupied site), the probability of a 
step to the right is p(1- n / N )  (corresponding to adsorption of an A) ,  and the 
probability of a step to the left is q(1 -  n /  N )  (corresponding to B adsorption and 
subsequent AB desorption). The corresponding master equations are: 

for J n l s N - 1 .  Here we employ the convention that a graph occupied by nB’s 
corresponds to the state -n. Since the transition probability out of a state is proportional 
to the number of empty sites in that state, the points n = * N  are absorbing, and the 
stochastic process terminates when it reaches either of these poisoned states. Thus 

n n + l  * * e  N -N . . . n -1 

Figure 1. State space and transition probabilities of the monomer-monomer process on 
the complete graph. The sites * n  correspond to a graph occupied by n A, or n E particles, 
respectively. 
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similar equations hold for In1 = N, except for the modifications induced by f N being 
absorbing. Note also that the physical time unit corresponds to Nht ,  i.e. when one 
deposition has been attempted for each lattice site. 

Several facts can now be deduced. Because of the existence of absorbing states, 
the final state of a finite system is always poisoned, and the probability that a finite 
system is not poisoned decreases exponentially in time, asymptotically [8]. If the 
system is initially empty, then for each stochastic ‘path’ which leads to poisoning of 
the system with all A’s, there is a mirror image path which leads to poisoning of the 
system with all B’s. From this fact, the first passage probability to + N  (poisoning to 
all A’s) can be expressed as pNfN(pq), where f N ( x )  can be computed for arbitrary N, 
while the first passage probability to - N  is qNfN(pq). Consequently, the probability 
of eventual poisoning to all A’s is 

Because this argument depends only on the symmetry p f* q, A f* B, of the monomer- 
monomer process, (3) holds for any lattice of N sites. 

Using generating function methods, we have computed the first-passage probability 
to arrive at either the A poisoned or the B poisoned state starting from an arbitrary 
initial state [9]. We thus confirm that the probability of not being poisoned decays 
exponentially in time. Moreover, for an initially empty system and for p = q = f, the 
mean poisoning time requires 2 N 2  - N deposition attempts, i.e. 2N physical time 
units, asymptotically. 

A better intuition for the monomer-monomer process can be obtained by passing 
to the continuum limit [8] to obtain the macroscopic rate equation for #I = (n)/ N, the 
average fraction of occupied lattice sites (note that #I < O  means that the system is 
occupied by B’s). By inspection, the rate equation is 

In this equation, we make use of the relationship, (In) = I(n)l, which is valid when 
fluctuations are neglected. Equation (4) describes a Langmuir adsorption process, 
with poisoning to all A’s ( B ’ s )  for p > f ( p  < i). For p = q = 5, dJ is stationary, and the 
fluctuations in dJ become relevant. This leads to a diffusive process for P,,( t )  whose 
governing equation can be found by taking the continuum limit of the master equations. 
Defining x = n/ N and P,,( t )  = P(x ,  t ) /  N, we obtain for p = q =+ (from equation (2)), 

To determine the appropriate boundary condition for the continuous equation, we 
reconsider the master equation, (2). For n = N - 1, in order that there is no hopping 
from N to N - 1 ,  we require that the hopping probability q ( l  -In + lI/ N ) P , , + , ( t )  be 
zero. This yields the boundary condition P ( x  = 1 ,  t )  is finite. We also use the fact that 
P ( x ,  t )  = P ( - x ,  t )  for an initially empty system in restricting x to [0, 11, and flux 
continuity at x = O  also implies that P ( x ,  t ) l ,=o=aP(x ,  t)/axl,=,,. Equation ( 5 )  
describes the diffusion of the occupancy probability, with a state-dependent diffusion 
constant which vanishes linearly in the distance to the absorbing point. 
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P k t l  

1 x1~-3 -  

0 

To solve ( 5 ) ,  we write the eigenfunction expansion 

complete 

- graph \ - 

M- - 

simulation 

I 

and perform the transformation q A  (x) = (1  - x ) p ,  (1  - x)  to arrive at the standard form 
[91 

with the corresponding boundary conditions q A  (z)I,=O < and dq, (z)/dzl,= = 0. 
Equation (7) has the general solution q,(z) = A&J,(A&)+ B f i  Y , ( A f i ) ,  where J ,  
and Y, are the Bessel and Neumann functions of order one, respectively. The boundary 
condition on q, gives B = 0, while the condition on q: gives the eigenvalue A, as the 
nth zero of the Bessel function of order zero, Jo .  

A plot of P ( x ,  t )  at long times arising from this solution is shown in figure 2 .  In 
order to compare with data from finite-dimensional systems, we now identify x with 
( nA - ns)/ N, where n, is the number of particles of type i. Both the complete graph 
solution and the simulation data for a three-dimensional ( d  = 3) substrate show an 
enhancement of probability near the absorbing point. For the time dependence of the 
survival probability S ( t )  (the probability that the system is not poisoned) we find 
numerically, that S( t )  -e-‘” for d 3 2 ,  where T o t  N, as in the exact solution on the 
complete graph. For d = 1 there is a substantial time regime where S (  t )  - t - ’ I2  before 
the asymptotic exponential decay sets in, and the mean poisoning time increases as 
N 2 .  These facts suggest d , = 2  as the upper critical substrate dimension for the 
monomer-monomer process. 

(ii) Single-site mean-jield theory. A deeper insight into the monomer-monomer 
process is provided by positing that each lattice site coincides with the average 
environment [3]. This allows for the coexistence of A’s and B’s. Within this approach, 
we have derived the master equation for P(nA, n8; t ) ,  the probability of having nA A’s 
and nB B’s at time t.  More simply, the average concentrations of adsorbed particles, 
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x = nA/ N and y = nB/ N respectively, evolve as 

dx 
dt  
-= (1 - x  - y ) [ p (  1 - y y d  - q ( l -  (1 -x)'")] 

dY - = (1  - x - y)[q( 1 -X)'" - p (  1 - (1  - y )2d )1 .  

(80) 

(86) dt 

The first term in ( 8 a )  accounts for the adsorption of an A with no nearest-neighbour 
E's present, while the second term accounts for the loss of an A due to the deposition 
of a B with at least one nearest-neighbour A. When p # q, the system flows to a 
poisoned state in a time of order unity, while for p = q = 4, there is a two-state evolution 
process (figure 3). First, there is a relatively rapid initial flow to the curve of fixed 
points (1  - x)'" + (1  -y)'" = 1, determined by dx/dt = dy/dt = 0. This corresponds to 
the initial filling of the system. 

Figure 3. Evolution of an ensemble of initially empty d = 3 systems with N = 1 l 3  at various 
stages of the reaction process. Subsequent stages are shown offset. The straight line 
represents the curve ( 1 - x ) ~  + ( 1 - Y ) ~ .  

Once the fixed curve is reached, only concentration fluctuations drive the system. 
This evolution can be determined from the master equation [9]. We find diffusive 
motion on the fixed curve, leading to the eventual poisoning of the system, in much 
the same manner as on the complete graph. In the limit d+w,  the fixed curve 
degenerates to the right-angle line segments consisting of the vertical and horizontal 
axes; this reproduces the solution on the complete graph. These mean-field predictions 
agree with numerical simulations for substrate dimensionality d 2 2. For d = 1, the 
initial filling stage leads to essentially complete occupation, i.e. the fixed curve is now 
the line x + y  = 1, and there is non-trivial interfacial dynamics between A-rich and 
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B-rich regions. This anomalous behaviour supports the assertion that d ,=2  for the 
monomer-monomer process. The possibility that d,  = 2 would be a nice illustration 
of an upper critical dimension that can be realised in a physical system. 

The phenomenologically richer monomer-dimer process [ 21 can be usefully ana- 
lysed by an approach in the same spirit to that employed above. The monomer-dimer 
process consists of the following steps: 

A2 + 2s + 2As 

B + S + B s  (9) 
As + Bs + ( A B )  +2S. 

In the deposition step, an A2 is chosen with probability p,  or a B is chosen with 
probability q = 1 - p ,  and an attempt is made to adsorb the chosen molecule either 
onto a pair of nearest-neighbour sites ( A 2 ) ,  or onto a single site (B). If adsorption 
does occur, then if AB nearest-neighbour pairs are created, one such pair immediately 
bonds into an AB molecule which desorbs from the lattice. 

Again, the states of being poisoned by all A’s or by all B’s are absorbing. Thus 
the apparent reactive steady state is actually a transient, albeit very long-lived, 
phenomenon in a finite size system. To determine the nature of this transient, consider 
the macroscopic rate equation for the monomer-dimer process on the complete graph 
(in analogy with (4)), 

For p < 5 the system ultimately poisons to all B’s, i.e. 4( t + 00) = - 1  unless the system 
is initially poisoned with all A’s. However, for p > 1, there is a stable non-trivial fixed 
point at 4* = 1 - q/2p  which is the attractor if +(O) > -+*. The point +* is the reactive 
steady state for an infinite system in the mean-field limit. However, because the 
poisoned states are the only true absorbers, fluctuations will ultimately drive a finite 
system away from 4* to the poisoned states. In the monomer-monomer process these 

I I 

0 0.2 0. G 0.6 0 . 8  
P 

Figure 4. Plot of the mean poisoning time against the dimer deposition probability p for 
an 8 x 8 square substrate. The exponential variation of the peak value of the poisoning 
time with linear system size is shown in the inset. 
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fluctuations had to overcome only a state-dependent diffusion constant which vanished 
monotonically as the poisoned state is approached. However, in the monomer-dimer 
process these fluctuations must also overcome a potential ‘well’ induced by the presence 
of a stable fixed point, in order to reach poisoning. Thus while the mean poisoning 
time (T) increases as a power-law of the system size L for the monomer-monomer 
process, (T) increases at least as fast as eL for the monomer-dimer process (figure 4). 
The anomalously long poisoning time manifests itself as the observed reactive ‘steady- 
state’ in simulations of large systems [2]. Analysis of this behaviour is also being 
performed by exploiting an analogy between the monomer-dimer process and directed 
percolation [ 101. 
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