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Abstract. We investigate the dispersion of a dynamically neutral tracer Rowing in a 
self-similar, hierarchical model of a porous medium. We consider a purely convective limit 
in which the time for tracer particles to traverse a given bond is strictly proportional to 
the inverse of the Rux in the bond; the effect of molecular diffusion is neglected. Our 
hierarchical model contains an adjustable 'asymmetry' parameter which controls the width 
of the distribution of transit times for a tracer to traverse the multiplicity of paths in the 
network. We derive a functional recursion relation for this distribution, from which exact 
expressions for the moments can be obtained. We find two regimes of behaviour which 
are governed by the value of the asymmetry parameter. In one regime, the transit time 
distribution is characterised by a single timescale, so that a localised pulse of tracer spreads 
out at the same rate at which the pulse is convected downstream. In the second regime, 
the small fraction of tracer passing through the slowest bond of the network dominates in 
the moments of the distribution, leading to highly enhanced dispersion. The consequences 
of these results for the dispersion coefficient are discussed, both for self-similar and 
homogeneous systems. 

1. introduction 

Hydrodynamic dispersion is a fundamental transport process in which a localised 
pulse of dynamically neutral tracer disperses in a flow field under the combined action 
of convection and molecular diffusion (for reviews see, e.g., Bear 1971, Fried and 
Combamous 1971, Scheidegger 1974). The subtle interplay between these two 
mechanisms gives rise to a transport phenomenon which is considerably more compli- 
cated, but richer phenomenologically, than that of either simple diffusion or biased 
diffusion. This is particularly true when the background flow is in a randomly porous 
medium where the typical length scale of the heterogeneities, which plays the role of 
a correlation length, is very large. In such a situation, the dispersion process can be 
dominated by the small fraction of tracer that is caught in relatively rare, stagnant 
regions within the flow field (Saffman 1959,1960, de Gennes 1983). The understanding 
of dispersion is therefore of fundamental theoretical interest, as well as being of 
relevance for applied fields such as oil recovery, hydrology and chromatography. Very 
recently, there have been a variety of numerical simulation studies of dispersion in 
porous media models, both in the convective limit (Sahimi er a1 1983,1986, Leitzelment 
er a1 1984), and with the effects of diffusion included (de Arcangelis er a1 1986, Michel 
1986, Roux er a1 1986). These latter studies indicate that stagnation effects are important 
and that considerable effort is required to treat them properly. 
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Given the difficulties inherent in accounting for both convection and molecular 
diffusion in dispersion phenomena within porous media, it is worthwhile to consider 
simpler situations which are tractable analytically. In this paper, we consider dispersion 
in a self-similar hierarchical model in the absence of molecular diffusion-i.e. in the 
purely convective limit. We introduce an adjustable 'asymmetry' parameter for the 
model which controls the width of the distribution of transit times for tracer to pass 
through the multiplicity of fluid paths through the network. (A related model with a 
fixed asymmetry, a Koch curve, has been introduced by Mandelbrot and Given (19841.) 
Since the hierarchical model provides an excellent description of the geometry of the 
percolating backbone near the percolation threshold (de Arcangelis er al 1985), we 
expect to be able to use our model to describe basic aspects of dispersion on systems 
with percolation-type disorder in the convective limit. 

In 0 2, we begin by developing a correspondence between the flow problem in a 
random network of tubes and the electrical current flow problem in a random resistor 
network. We next introduce the asymmetric hierarchical model as a description of 
dispersion phenomena in a self-similar random medium. A number of very simple 
results for the average rate of transport of tracer particles across the network are given 
and an exact connection between the average transit time and the critical properties 
of the conductivity and the backbone density is made. 

In 0 3, we calculate the distribution of transit times that arises when an ensemble 
of tracer particles is convected through the network. Due to the relative simplicity of 
the hierarchical model, we can derive an exact formal expression for the moments of 
the transit time distribution. As the asymmetry of the hierarchical model is varied, the 
width of the transit time distribution also varies in a corresponding manner, and this 
leads to two generic classes of behaviour. For a relatively narrow distribution, we find 
( T h ) -  f&(TN)k, where ( T h )  is the kth moment of the transit time distribution on the 
Nth-order hierarchical structure and c k  is a numerical coefficient. This implies that a 
localised pulse of tracer spreads out at the same rate at which the pulse is convected 
downstream. On the other hand, for a sufficiently broad distribution, we find 
( T L ) / (  TN)* + 00 as N + 00, leading to an enhanced dispersion process which is domi- 
nated by the small fraction of tracer that passes through the slowest bond in the network. 

In 0 4, we use the results derived for the moments of the transit time distribution 
to make predictions for the longitudinal dispersion coefficient, Dll. We first consider 
Dil for a homogeneous system, obtained by superposing many hierarchical structures 
in a linear sequence. Thus the system length can be made much larger than the 
correlation length (the length of one hierarchical structure), and this should provide 
a useful picture for dispersion in a percolating system above the percolation threshold. 
For such a system, the hypotheses of the central limit theorem will apply, so that the 
tracer distribution ultimately becomes a Gaussian. When the transit time distribution 
on one hierarchical structure is sufficiently narrow, Dll is found to be proportional to 
UL, where U is the average flow velocity, and L is the effective length of the hierarchical 
model. Thus Dll has the same qualitative form as in porous media with microscopic 
disorder, where it is well known that DIl - Ul, with 1 being a characteristic pore or 
grain size in the medium. In the case of a broad transit time distribution, we show 
that Dll is proportional to UL", where the exponent a may take on any value greater 
than unity. In addition, we address the question of how long the system must be before 
Gaussian behaviour will set in 

Next we consider dispersion in the self-similar regime, i.e. at the scale of a single 
hierarchical structure. This should provide a valid picture of dispersion on a random 
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medium which is at the percolation threshold. In this regime, D,, is scale dependent, 
and this leads to anomalous dispersion, in close analogy with anomalous diffusion on 
self-similar systems (Gefen er a1 1982). The consequences of this phenomenon for the 
critical behaviour of the dispersion coefficient are discussed. 

A brief summary and discussion is given in 9 5 .  

2. Transport properties of the asymmetric hierarchical model 

To model dispersion in random media, we appeal to the analogy between Poiseuille 
flow in a random tube network and current flow in a random resistor network. In 
terms of the random resistor network, when an external potential is applied across the 
system, the steady-state currents in the bonds define the background flow field for the 
corresponding fluid flow problem. 

In the flow problem, it proves to be most convenient to adopt a parametrisation 
which gives a bond transit time varying exactly as the inverse of the flux in the bond, 
and in which all the bonds in the network have the same volume. As we shall see, 
this ensures that tracer spends an equal amount of time, on average, in each bond of 
the network. For a resistor with conductance E,  we choose the radius r and the length 
1 of the corresponding tube by r2  - E ” ~  and 1 - E - ” ~ .  This gives a flow conductance, 
g - r 4 / l ,  varying as E.  In addition, when a unit pressure drop is imposed across the 
bond, the average fluid velocity U - g / r 2  varies as E * ’ ~ ,  and the transit time 7- l / u  
therefore varies as 1 / ~ .  Thus we have constructed a model in which the bond transit 
time is strictly proportional to the inverse of the flux in the bond. 

We now exploit this construction to describe dispersion on an asymmetric hierar- 
chical model where an adjustable parameter E controls the width of the distribution 
of transit times for tracer particles to convect across the network (figure 1). Topologi- 
cally, the model is a hierarchical embedding of both singly corrected bonds and blobs; 
this appears to capture many of the essential geometrical features of the percolating 
backbone at the percolation threshold (de Arcangelis et a1 1985). A new aspect of the 
asymmetric version of the model is that the curved bonds at a given level have a 
conductance decreased by a factor E (and hence a transit time increased by a factor 
1 / ~  j, compared to the straight bonds at the same level. 

In the convective limit, the tracer can enter a particular bond with a probability 
proportional to the flux in the bond, and then the tracer moves with the cross-sectional 
average velocity until  reaching the next node (Sahimi et a1 1983, 1986, de Arcangelis 
er a1 1986). When E = 1 (symmetric limit), both paths of the first-order structure have 
the same transit time and there is no dispersion, while as E + 0, one fluid path will 
have a diverging transit time while the other transit time remains finite. For a general 
Nth-order structure with E f 1, the variety of distinct paths available for the tracer 
causes a delta function input of tracer at one end of the hierarchical medium to evolve 
into a broadened distribution at the outlet end. 

Before discussing dispersion, let us first outline some basic geometrical and transport 
properties of the hierarchical model. For an Nth-order symmetric structure, it is 
straightforward to verify that the conductance, G, equals (ij”, that the number of 
bonds in the backbone, N B B ,  equals 4 N  and that the number of singly connected 
bonds, N,,, equals 2 N .  In order to make contact with critical exponents, it is necessary 
to infer an effective linear dimension for the Nth-order model. One natural assignment 
is based on the fundamental exact result for percolation clusters at the threshold, 
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N=O 1 

Figure 1. (a)  The self-similar hierarchical model. Shown is the lattice at N = 0, 1 and 2 
levels of iteration. ( b )  In the hierarchical construction, a bond of conductance g at level 
N is replaced at level N + 1 by four new bonds with conductances as shown. 

N,, - L1/’,  with L being the linear dimension of the system and Y being the correlation 
length exponent (Coniglio 1981, 1982). Since N,, = 2N in the Nth-order model, we 
therefore identify an effective linear dimension through L = 2”’. Eliminating N in 
favour of L we thereby find that G varies as L-‘/’ with a conductivity exponent r 
equal to in $/ln 2 = 1.3219 . . . , while the backbone fraction, i.e. N B B  divided by the 
volume Ld, varies as L - B ~ ~ ” ,  with P B B  = dv - In 4/ln 2 = 2( Y - 1). In the last relation, 
d is the spatial dimension which we have taken to be equal to 2. These exponents are 
consistent with known results, assuming the generally accepted value of Y = in two 
dimensions. This provides a useful check on the validity of our model as a description 
of the geometry of the backbone near the percolation threshold. For the asymmetric 
model, however, the relation L = 2Nu, and the exponent results which follow, may no 
longer have the same degree of plausibility as in the symmetric model. 

Let us now consider the average time required for tracer to traverse the Nth-order 
structure, ( T N ) ,  when a unit potential difference is imposed across the two endpoints 
of the model. By decomposing the Nth-order structure into the four ( N  - 1)th-order 
structures as indicated in figure 2, the transit times on each of the lower-order structures, 
relative to the transit time when a unit external potential drop is applied across each 
structure, will be rescaled by the factors a = (3 + 2.5)/(1+ E), b = 3 + 2.5, a and c = 
(3 + ~ E ) / E ,  respectively. Since the tracer takes the straight path with probability 
pst = 1/( 1 +E),  and the curved path with probability pcu = ~ / ( 1 +  E), we find a simple 
relation between ( T N )  and ( TN- , ) :  

( T N ) = p ~ ~ ( 2 a + b ) ( ~ N - l ) + P ~ ” ( 2 a + c ) ( T N - l ) ~  Ul(TN-1)  ( l a )  

( T N )  = ( W N  = (all”. 

with a1 =4a. Using (To)= 1, we thus obtain 

(1b) 
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Figure 2. Decomposition of an Nth-order structure into four ( N  - 1)th-order structures. 
The labelling of the times used in the integral recurrence relation (2a) is indicated. Also 
shown are the fluxes across each of the lower-order structures. 

Our derivation of the average time has fundamental ramifications which hold for 
any random network of tubes. These features appear to be sufficiently interesting SO 
that a brief digression is worthwhile. For the hierarchical model, notice that from the 
relation between the entrance probabilities and the transit times, the tracer particle 
spends an equal amount of time in each bond, on average, independent of the value 
of E.  More generally, for an arbitrary tube network in which each bond has a distinct 
volume ai, the average amount of time that a tracer particle spends in the bond is 
proportional to R i .  To show this, suppose that the total current passing through the 
network is Z, and that a current Zi is passing through bond i ,  which has length li and 
cross-sectional area a i .  In the convective limit, the probability of tracer entering this 
bond is simply ZJZ. Since the flow velocity in bond i is I i / u i ,  the average tracer 
residence time will be (Zi/Z)(li/(Ii/ui)) = Ri/Z, that is, the residence time is proportional 
to the volume of the bond. Then the total average time that the tracer spends in the 
system, ( T ) ,  is Q/Z, where R is the total volume of the system. 

For a percolating network, R can be identified with NBB, while for a unit potential 
drop, I can be identified with the conductance G, leading to (T} scaling exactly as 
NBB/G. This very basic result does not seem to have been mentioned or appreciated 
previously in the percolation literature. As a useful check of these results, it can be 
straightforwardly verified that the above relations hold on the asymmetric hierarchical 
model. 

More generally, one might inquire if there is a relation between the higher moments 
of the transit time distribution and the current distribution in the bonds of the network. 
While we have been unable to prove a general result, it can be seen on simple networks, 
on which dispersion occurs, that there is a qualitative relation between the two types 
of moments. From considering a number of simple examples, we find that the dominant 
contribution to the kth moment of the transit time is given by the moment of order 
1 - k of the current distribution. 
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3. Transit time distribution on the hierarchical model 

Let us denote by PN( V; t )  the probability density for traversing an Nth-order hierar- 
chical structure in a time t when a voltage V is applied across the system. From figure 
2 ,  it is easy to see that P N (  V; t )  satisfies the integral recurrence relation 

By introducing the Laplace transform, F N (  V; z) = J PN( V; t )  e-" dt, and expressing 
all the pN with respect to a unit voltage, we obtain the functional recursion relation 

F N  ( = [ F N  - 1 ( a z )  12( pst F N  - 1 ( bz)  + pcu P N  - 1 ( cz ) ( 2 b )  

where the argument V ( = 1 )  has been dropped since it is identical in all factors of P. 
On the other hand, we can write the Laplace transform as a moment generating 

function 
F N ( z )  = (e-") = 1 - z( T N )  + f z 2 (  TZ,)- . . . ( 3 )  

so that by expanding (2b) in a power series, we find the following recursion relation 
for the moments 

Thus the kth moment on the Nth-order structure can be decomposed in terms of all 
moments up to order k on the ( N  - 1)th-order structure. To appreciate the con- 
sequences of this decomposition, consider the special case k = 2. From (4) we obtain 

b2= IO(-) 3 + 2 ~  * . 
1 + E  

If we iterate ( 5 ) ,  we ultimately arrive at 

( T Z , )  = ( I - c2)a2 + c2( a:) 

b2 10E 

N 

with 

c 2 = z =  a t - a 2  I ~ E - E ' - ~ '  

(7) 

When a:> a2 ,  which occurs when E > 0.083 9, .  . . = e 2 ,  the second term in (7) 

( T % ) -  c , (a: )N = C*(T,,,)'. (8) 
Notice, in particular, that ( T k )  = ( TN)' when E = 1 ,  since there is no dispersion in this 
case. Thus we have found that when E > E ~ ,  both ( T N )  and (Tk) are governed by a 
single characteristic time as N + 00. 

dominates and we have, as N -03 
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However for E 4 E ~ ,  the first term in (7)  dominates, so that as N +  03 

(T3-(1--2)aZN (9) 

i.e. (T5)>>(TN)’. The limiting behaviour for the second (and higher) moments as 
N + o o  and E + O  can be interpreted simply in terms of the small fraction of tracer 
which enters the slowest bond of the network. That is, taking the time required to 
traverse the slowest bond in the network and multiplying by the probability of entering 
this bond gives a contribution to the second moment equal to ( 9 / ~ ) ~ .  This coincides 
with (9) as E + 0, demonstrating that the second moment is indeed dominated by the 
tracer which passes through the slowest bond in the network. Moreover, as E + 0, 
( T N )  - 12N, so that the ratio ( T L ) / (  TN)’ diverges as ( 1 6 ~ ) - ~ .  This demonstrates that 
there is more than one typical timescale that characterises the transit time distribution. 

Very similar, but progressively more tedious, considerations can be applied to the 
higher moments. As in the case k = 2, we can decompose the kth moment in terms of 
lower-order moments, by following steps similar to those given in (4)-(7), to give an 
expression of the following form 

N (Tk,) = ck( a t ) N  + dk(a:-2a2)N f . . . + wk( a2ak-2) 

+Xk(a:ak-2)” + yk (alak-1 ) N  + ZkakN (10) 

with 

where ck, dk, . . . are numerical coefficients, and in each term in (lo), the sum of the 
values of the subscripts of all factors of ai must equal k. The asymptotic N+co 
behaviour (Tk,) will be given by the largest term in (lo),  and we can determine which 
of these terms dominates by comparing ak with U : .  Thus define &k to be the root of 
the equation ak = a:, i.e. the zero of 

4 k - 2 - ( 1 + ~ ) k - ’ -  - ( 5 - I .  

The &k form an increasing sequence with = 

0.188 003 . . . , etc, with limk+,, &k = f .  In terms of the &k, we find that either the first 
term in ( lo)  dominates, for E > E k ,  or that the last term dominates for E S & k .  While 
we have not been able to construct a general proof of this fact, it has been verified 
explicitly for k = 2 and k = 3 and verified numerically for larger values of k. 

Thus the general picture that emerges from our analysis is that for E > f ,  the relation 

(13) 

holds for all k. That is, there is a single timescale, ( T N ) ,  which characterises all the 
moments of the transit time distribution. We term this regime of behaviour the weakly 
asymmetric limit. For Ek < E G Ek+l, moments of order j < k,  continue to behave as in 
(13), namely 

(TJN)- c,(u:)” = C j ( T N Y  (140) 

= 0.083 92.  . . , = 0.147 27 . . . , 

( Tk,) - ck ( TN ) 

while moments of order j ”  k, behave as 

(TL)  - zju;” (14b) 
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i.e. (T&)>>(TN)'. Thus only at a sufficiently high order does each moment scale 
independently. As in the case of the second moment, this independent scaling behaviour 
arises solely from the small portion of the tracer which enters the slowest bond in the 
network. When E + 0, this tracer fraction gives a contribution to the kth moment which 
vanes as 

N (A) (15) 

and this coincides with the behaviour of a: in the limit E + 0. Finally for E < E ~ ,  all 
the moments scale independently, as moments beyond the first are dominated by the 
contribution of the tracer which traverses the slowest bond in the network. We term 
this regime of behaviour the strongly asymmetric limit. 

In the weakly asymmetric limit, the single timescale relation (13) permits us to 
Write a general recursion relation for the coefficients ck. Using (13) in (4), and defining 
Dk = Ck/ k ! ,  we find 

By moving those terms where one of a, p or y equals k to the left-hand side, we obtain 

(17) 
We see that the condition for the denominator to temain positive for all k coincides 
with the condition a: > ak which is required to give (Tk,) scaling as ( TN)'.  

The single timescale relation (13) may also be used to simplify the form of the 
Laplace transform of the transit time distribution. Thus using (13) in (3) yields, for 
large N 

FN(z)=(e-Lt)=1-z(TN)+tc2z2(TN)2- . .  . 
= i ( 4 T N ) ) .  (18) 

That is, FN(z)  is a function only of the combination z(TN)= ~ ( 4 a ) ~ .  Using (18) in 
( 2 b ) ,  we find the following functional relation for the scaling function g"(z) 

with asymptotic solution as z + CO 

i ( z )  - A exp(-(z/zo)") (20) 

where A = (1 + E ) ' ' ~ ,  zo is arbitrary?, and a is determined by the root of 4" = 2 + ( 1  + E ) ~ .  

When E = 1,  this gives a = 1 ,  which corresponds to a delta function for the transit time 
distribution. On the other hand, for E < 1,  a is also less than 1,  and this quasi- 
exponential decay in z implies a broadened distribution of transit times. 

From the large-z behaviour in the Laplace domain, we can obtain information 
about the small-time behaviour of the transit time distribution. Using the scaling form 

t To determine zo,  we match this asymptotic solution to the small-r behaviour g ( z )  = 1 - z +  . . 
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(18) in the inverse Laplace transform, we find that PN( t )  behaves as 

where g is the inverse Laplace transform of g. By steepest descents, we find that for 
tcc 1, g(t) varies as 

and 
q-= [( - a )'-a-( - a )-a]-'+ 

1 - a  1 - a  

The large-time behaviour of the transit time distribution is more difficult to deter- 
mine. However, it is possible to establish that the distribution decays faster than any 
power law as t + W. A quasi-exponential decay of the form g(  t )  - BtY exp( -( t /  to) ')  
was found to give moments which very roughly approximated those of the hierarchical 
model for appropriate values of B, /3, and y. Because this fitting procedure was not 
entirely successful, it suggests that the functional form of the transit time distribution 
is more complicated than a single quasi-exponential decay. 

4. The dispersion coefficient 

Let us now relate our results for the moments of the transit time distribution to the 
dispersion coefficient. For a one-dimensional homogeneous system, the macroscopic 
description for the spreading of tracer in a flow field is provided by the convective- 
diffusion equation (CDE), 

where c is the tracer concentration, U is the average flow velocity, defined to be in 
the x direction and Dll is the (macroscopic) longitudinal dispersion coefficient. In the 
convective limit, Dll is related to the transit time moments by 

D~~ = ( u 3 / 2 ~ ) ~ :  (24) 

where L is the system length, uf = ( t Z )  - (t) '  and ( t k )  is the kth moment of the transit 
time across the system (see, e.g., Sahimi et all983,1986). According to this macroscopic 
description, a point source of tracer will ultimately evolve into a Gaussian wavepacket 
as it is convected downstream. This Gaussian behaviour is predicated on the 
homogeneity of the system, so that for a sufficiently long sample it will be possible to 
invoke the central limit theorem. 

A single hierarchical model is not described by a convection-diffusion equation, 
however, since the model is self-similar on all scales, and the correlation length 5 
coincides with the system length L. To achieve a homogeneous system, therefore, we 
consider a linear sequence of hierarchical structures. We can view this linear chain 
as one of the sequences of macrolinks that comprise the nodes and links picture of 
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the percolating cluster. Now the system length can be made much larger than the 
correlation length, so that Gaussian behaviour will ultimately set in with a finite 
dispersion coefficient, whose value is correlation length dependent. This series con- 
struction should be appropriate for accounting for dispersion in a percolating medium 
above the percolation threshold. 

Thus consider M hierarchical lattices of order N in series (figure 3 ) .  The transit 
time distribution p(  t )  across the composite structure is a convolution of M distributions 
PN(z i  - fa-,) from a single Nth-order hierarchy, and the Laplace transform satisfies 

p(z) = [PN(Z)IM. (25 )  

The first two moments of the transit time distribution are then 

( t ) = - p ’ ( O )  = M ( T N )  ( 2 6 a )  

(26b)  ( t 2 )  = p”(0) = M [( T L )  - ( T)2] + M 2 (  TN )2 

so that U: = Mu$&,  where is the dispersion on one hierarchical model. Note from 
(24 )  that the dispersion coefficient of the linear structure shown in figure 3 is simply 
given by 

Thus, provided that the CDE (23 )  applies to the series structure, the dispersion coefficient 
can be correctly computed from a single hierarchy alone. 

From (27 ) ,  there are two possible forms for the dispersion coefficient, which depend 
on the degree of asymmetry of the hierarchical model. For the weakly asymmetric 
model, we have ( T ; ) -  C k ( T N ) k  with ck  z 1, so that a$, - ( T ~ ) * .  Using u(T,)= L, 
we obtain from (24 )  

DIl- UL. (28 )  
This should be compared to the relation Dli-  UZ which describes dispersion in the 
convective limit for a homogeneous porous medium with an average grain size equal 
to 1 (see, e.g., Bear 1971). Thus to find the dispersion coefficient in a random medium 
in which the scale of the heterogeneities is L, the replacement 1 + L is indicated. This 
is analogous to the result given by de Gennes (1983) for dispersion on the percolating 
backbone with the effects of molecular diffusion accounted for, where a naive replace- 
ment of a microscopic length with the correlation length suffices to give the desired 
result. 

On the other hand, for the strongly asymmetric hierarchical model, we have 
(T; )  - ( TN)* / (  1 6 ~ ) ~  >> <TN)2  as E + 0. Using this relation, we can now write the 
dispersion coefficient as 

We can compare this expression to (28 )  more clearly by 

(29 )  

using ~ = 2 ~ ”  to write 

B 
M 

Figure3. A linear sequence of hierarchical models which yields a system that is described 
by a one-dimensional convective-diffusion equation. 
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( T h ) / (  TN)’ as L”/” with y = -In 16&/ln 2 >> 0. This then yields a non-linear dependence 
of Dll on L: 

(30) D,, - UL(l+Y/Y) 

Therefore useful information about the nature of the microscopic transit time distribu- 
tion can be obtained from the L dependence of the macroscopic dispersion coefficient. 

As a test of the validity of the macroscopic description for dispersion on a linear 
sequence of hierarchical models, we now examine the skewness of the transit time 
distribution: 

(r3)-3(t)~:-(r)3 
(a:)3’2 ’ 

S ( M ,  E )  = 

This quantity is identically zero for a Gaussian distribution, and it should therefore 
vanish when the series structure is long enough. In our series construction, we find 

( r3) = M (  TL)+ 3M( M - 1)( Th)( T N )  + M ( M  - 1)(M - 2)( TN)3 (32) 

so that 

This quantity vanishes as M + w ,  but there is a non-trivial dependence of S on E. 

More generally, the deviation of the kth moment from its Gaussian value will be of 
the form M - ( k - 2 ” 2 f k ( ~ )  and hence these deviations will vanish as M + w .  Thus the 
higher moments eventually coincide with those of a Gaussian distribution, so that a 
linear sequence of M hierarchical structures can be described by a one-dimensional 
CDE, when M is sufficiently large. 

From (33), we also deduce the number of hierarchical structures needed before 
Gaussian behaviour is evident. For the weakly asymmetric hierarchical model, the 
temporal moments in (33) are all of the same order, so that M >> 1 is required for 
Gaussian behaviour to set in. On the other hand, for the strongly asymmetric model, 
the skewness varies as  ME^)-"', so that a much more stringent condition, M >> E - ~ ,  

is required for Gaussian behaviour to set in. 
Now let us consider dispersion in the self-similar regime for the weakly asymmetric 

limit. Since the dispersion coefficient is length scale dependent, anomalous dispersion 
will occur, which is closely analogous to the previously discussed phenomenon of 
anomalous diffusion in self-similar systems (Gefen er a1 1982). We can give a heuristic 
treatment of how this occurs by first writing how U and Dll vary in a random medium 
as the percolation threshold is approached. For a unit potential gradient (as opposed 
to the unit potential drop considered above), the flow velocity U, in (28), scales as 
L 2 / (  T ) ,  where ( T )  is the average transit time for a unit potential drop, and this latter 
quantity scales as N B B /  G. Writing the critical behaviour of these quantities in  terms 
of the length scale, we find that as L + CO 

- L - ( ‘ - P B B ) / U  E L-* 

Now applying scaling arguments, similar to those given by Gefen er a1 (1982), to 
describe the critical behaviour of the displacement and spread of a localised pulse of 
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tracer, we have 

d 
-(AX*) - Dll- L1-* 
dt  

(35) 

where (x) is the average position of the tracer, and (Ax’)=(x~)-(x)~ measures the 
spatial spread. From our discussion of the homogeneous limit, these results are 
expected to hold for x >> L. For arbitrary spatial scales, (35) should generalise to the 
scaling forms 

dt  

where the scaling functions g ( z ) ,  h ( z ) +  1 for z >> 1, and g(z ) - z -+  and h(z)-z’-* 
for z<< 1. The latter two behaviours follow because dispersion must be insensitive to 
the value of L when the tracer has traversed a distance which is much less than L. 
For x<< L, we can then integrate (36) to obtain 

Thus we have both anomalous displacement and anomalous dispersion. 
For the displacement, using the known values of the exponents t, P B B ,  and v, we 

find that the tracer always moves downstream more slowly than linearly in t. The 
tracer is also found to spread at the same rate as the tracer displacement, in accord 
with our calculations of the transit time moments. However, from the numerical values 
of the exponents, we find that the spread of tracer is faster than the t’” rate of a 
Gaussian process in two dimensions, while above two dimensions, the rate is slower 
than that of a Gaussian process. 

5. Summary and discussion 

We have introduced a self-similar hierarchical model to describe dispersion in random 
media in the convective limit. Our model has an adjustable parameter, E, which controls 
the relative transit times for different fluid paths across the system. The symmetric 
version of the model provides an excellent description of the geometry of the backbone 
of percolation clusters in two dimensions, and we believe that the asymmetric version 
of the model also has a use in describing geometrical aspects of percolating backbones. 

We have found that the average transit time across the system scales exactly as 
N B B /  G, where N B B  is the number of bonds in the backbone and G is the conductance. 
In calculating the moments of the transit time distribution, we have found two very 
different classes of behaviour. In the weakly asymmetric case, E > i, all moments of 
the transit time distribution are governed by a single timescale. This ultimately leads 
to a dispersion coefficient, Dll, which scales as UL, where U is the flow velocity and 
L is the effective system length. This result is reminiscent of Dll - U1 for a homogeneous 
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system, where I is the average grain or pore size. Thus to obtain the dispersion 
coefficient in a self-similar system, the naive replacement 1 + L is indicated. 

For the strongly asymmetric model, a very different type of behaviour is predicted. 
Dispersion is now dominated by the small fraction of tracer that enters the slowest 
bond in the network. This leads to Dll varying as UL multiplied by a diverging function 
of E as E + 0. This form of the dispersion coefficient is somewhat suggestive of the 
logarithmic dependence of Dll found by Saffman (1959, 1960) for dispersion in a 
homogeneous network model. In such a model, there is a singular correction term 
modifying the UL dependence which arises from the contribution of the slowest bonds 
of the network. However, in the Saffman model there is a continuous distribution of 
very slow bonds, rather than a well defined slowest bond as in the hierarchical model, 
and integrating over this distribution of slow bonds ultimately leads to a logarithmic 
correction to Dll. In the hierarchical model, however, the well defined value of the 
slowest traversal time of the network leads to a non-linear power law dependence of 
Dll on L. While a definite value of the slowest bond traversal time is an artificial 
feature of the model, our results do suggest the interesting possibility that the dispersion 
coefficient does not merely follow from a simple replacement of a microscopic length 
by a correlation length. Dispersion turns out to be crucially sensitive to the low end 
of the current distribution in the network, and any correct description of dispersion 
phenomena on networks with percolation-type disorder will need to account for these 
details correctly. 
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