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Abstract. We introduce and study the kinetics of ‘cluster eating’, in which a cluster of 
mass i and a cluster of mass j react to form a lighter cluster of mass Ii-jl. We write the 
rate equations for this process, which describe the kinetics in the mean-field limit, where 
spatial fluctuations in cluster density and in cluster shape are neglected. An asymptotic 
solution to these equations is derived for the particular case in which the reaction rate is 
independent of the masses of the reacting clusters. At long times, we find that the density 
of clusters of mass k, c, ( t )  decays as A h / ( 7  logk--’ T), where T is proportional to the time, 
A,, = ( N - l ) ! / ( N - k ) !  and N is the largest cluster mass in the initial state. This very 
unusual behaviour is checked by numerical simulations. A more general situation where 
the reaction matrix depends on the panties of the masses of the two incident clusters is 
also discussed briefly and a wide variety of possible kinetic behaviours is delineated. 
Finally, we study cluster eating below the upper critical dimension, where fluctuations in 
cluster density give rise to a non-classical kinetic behaviour. 

The investigation of the kinetics of reacting systems is an area of study that has recently 
been the focus of considerable attention (see, e.g., Noyes 1961, Calef and Deutch 1983, 
Kang and Redner 1985a, Zumofen et a1 1985 and references therein). In  addition to 
the obvious practical and technological applications of a variety of reaction schemes, 
many such processes are also of considerable intrinsic theoretical interest from the 
viewpoint of understanding non-equilibium phenomena at a fundamental level. One 
very important example of a reacting system is the phenomenon of coagulation, in 
which clusters irreversibly bond, upon colliding, to form clusters of perpetually increas- 
ing size (Ernst 1985, van Dongen and Ernst 1985, Leyvraz 1986). This process can be 
described by the mass conserving scheme, ci + c, + c,+,, where c k  denotes a cluster of 
mass k. From a biological description, coagulation can be regarded as a cooperative 
pairwise merging of two separate population centres to form a single larger centre. 
Coagulation has been found to exhibit a wealth of kinetic behaviour, both at the level 
of a rate equation approximation, and also when spatial fluctuations in cluster density 
are taken into account (Kang and Redner 1985b). 

In this paper, we introduce a very simple kinetic process, which we term ‘cluster 
eating’, in which two population centres react in a destructively interfering manner. 
This model was inspired, in part, as an attempt to formulate models of competing 
biological species which were as simple as possible. While our model is perhaps too 
crude to have immediate practical applications, the kinetics of the model is quite 
intriguing, and therefore appears to possess intrinsic theoretical interest. On a very 
superficial level the mathematical description of cluster eating has some resemblance 
with that of coagulation, but there are important differences between the two models 
which are the source of a variety of novel kinetic phenomena. 
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Our model is defined by the reaction scheme, c, + c, + ck, with k = Ii - j l  as illustrated 
in figure 1. When two clusters meet, individual members of the two clusters can be 
regarded as annihilating in pairs, leaving behind a residue consisting of the difference 
of the masses of the two incident clusters. We are interested in the kinetics of this 
process, primarily in the mean-field, or rate equation, approximation. For the generic 
case where the reaction rates are independent of the masses of the reacting clusters 
(constant matrix of reaction rates) we show that the density of clusters of mass k at 
time t ,  c k ( t ) ,  varies at long times as A k / ( T  logk-’ T), where T is proportional to the 
time, and the amplitude Ak is equal to ( N  - l ) ! / (  N - k ) ! ,  with N being the mass of 
the largest cluster present initially. This peculiar behaviour, replete with logarithmic 
corrections, is quite unlike that found for the kinetics of the more familiar bimolecular 
reaction processes such as coagulation and  recombination. We have verified this novel 
behaviour by numerical simulations. 

We also consider a more general version of cluster eating in which the reaction 
rate depends on the relative parity of the masses of the two incident clusters. A wide 
variety of kinetic behaviours can occur and  we briefly outline the range of possibilities. 
We also investigate the kinetics of cluster eating in a system of spatial dimension d 
less than the upper critical dimension d , ,  where fluctuations in cluster density will 
influence the reaction kinetics. In one dimension, the total cluster density is found to 
decay as t -”* ,  as expected on the basis of appealing to analogies with closely related 
reactions, A + A + A and A + A -, inert (see, e.g., Torney and  McConnell 1983a, b, 
Toussaint and  Wilczek 1983). The temporal behaviour of each of the c k ( t )  is also 
discussed. 

The mean-field rate equations for cluster eating are 

where the dot denotes time differentiation. The first summation accounts for the 
production of clusters of mass k due to the reaction of two clusters whose mass 
difference is equal to k, while the second summation accounts for the loss of k clusters 
due to their reaction with other clusters in the system. The matrix of rate constants, 
K (i, j ) ¶  describes the dependence of the reaction rate on the masses i and j of the two 
incident clusters. We shall primarily be interested in the relatively simple case of a 
constant reaction matrix. 

There are several features of the rate equations that are worth noting. First, unlike 
the case of coagulation, the upper limits in both sums are finite, corresponding to a 
finite value, N, of the maximum cluster mass in the initial population distribution. 

Figure 1. Typical reaction in the cluster eating model. 
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Also notice that the cluster eating process does not conserve mass and the production 
term is not of the form of a convolution. As a consequence, standard generating 
function or Laplace transform methods, which are of great utility in mass-conserving 
processes (see, e.g., Drake 1 9 7 2 ) ,  have limited utility in cluster eating. 

Before presenting our asymptotic solution to the rate equations for cluster eating, 
we discuss a number of interesting general aspects of the problem. For the case of a 
constant reaction matrix, one can easily show from the rate equations that the total 
density of clusters, p (  t )  = Z k  c k (  t ) ,  obeys the differential equation 

where the reaction rate has been chosen to be equal to unity. Since Z C k ( t ) ’  satisfies 
the obvious bounds 0 s  &k( t ) *  S (&k( t))’, we can use this in ( 2 )  to conclude that, at 
long times, p (  t )  obeys the bounds, l / t  < p (  t )  S 2 /  t .  A decay of the total cluster density 
proportional to l / t  is to be expected since, when two clusters of mass i and j meet, 
the product may be either a single cluster of mass / i  - j l ,  when i Zj, or there may be 
no product cluster if i = j .  On this basis, cluster eating can be thought of as a 
superposition of the single-species reaction schemes, A + A + A and A + A + inert, and 
the kinetics of cluster eating should mirror the kinetics of these two reactions. 

A second interesting point is that the total density of odd clusters in the system, 
&dd( t )  = Z k o d d C k ( t ) ,  can be obtained exactly. From the rate equations, we find 

with solution 

This simple result reflects the fact that when two odd clusters meet they both disappear 
from the system and an even cluster is produced. This is the only mechanism available 
for changing the density of odd clusters. 

Let us now turn to the asymptotic solution of the rate equations. Suppose that the 
mass of the heaviest cluster in the initial distribution of clusters is N. Then the 
concentration of clusters of mass N satisfies the equation 

Thus we can write a formal solution for + ( t )  

c N ( t )  = c N ( 0 )  exp - c i ( t ’ )  dt‘  c N ( 0 )  e-‘ ( I:z 1 
Since Z i  c , ( t )  is inversely proportional to the time at long times, we conclude that x 
will vary as In t as t + 00. 

To solve the rate equations for C k ( t )  when k <  N, we observe that there is an 
integrating factor equal to exp(@ c , ( t ’ )  dt’), and from ( 6 ) ,  this is simply equal to 
c N ( O ) / C N ( ~ ) .  Using this result, the rate equations can now be cast into the form 

By introducing the scaled concentration, & = C k ( t ) / C N ( t ) ,  and also rescaling the time 
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in terms of the auxiliary variable dy = c,(t) dt, we can rewrite (7a)  as 

i = l  

where the prime denotes differentiation with respect to the variable y. In this form, 
the rate equations possess only production terms and this simplification facilitates an 
asymptotic solution. The general philosophy underlying this approach to solving the 
rate equations has already been well established for the coagulation problem (Lush- 
nikov 1973, 1974, 1975, Leyvraz 1984). It is also worth mentioning the possibility of 
writing the rate equations in terms of a different scaled concentration, namely $k = 
C k / P , d d ( t ) ,  rather than in terms of the 4. This approach has the advantage that the 
corresponding timelike variable, dy = Podd( t)/dt, is simply equal to In( 1 + Podd(0)f) 
from (4).  However, the transformed rate equations are not as simple in form as those 
of (7b). 

By inspection of (7b), one finds that the 4 k  must exhibit power law singularities 
at a finite value of v which depends on the initial conditions. If one therefore substitutes 
the asymptotic form 

into (7b), one finds that the most singular contribution to c$L arises from the term 
4l&+l. At this level of approximation, it is then straightforward to show that the 
exponent ffk is 

and that the corresponding amplitude A k  is given by 

More generally, there will be a series of correction terms in (8) which are all less 
singular as y + a. 

To find the actual time dependence of the cluster density, we must now write the 
variable y as a function of time. To accomplish this, note that from the definitions, 
dx = X ci( t )  dt  and dy = cN( t )  dt, we have 

In the same spirit as the approximation that led to (8), we approximate the sum in 
(10) by its largest term, to give 

Since we know that x varies as In t as t + 03, we conclude that y must vary as a - E (  t )  
with 

~ ( t )  -(In t ) - ( N - 2 ) .  (12) 
With this information, we can now find the asymptotic behaviour of the cluster 

density. We have 

1 
CN ( I )  = J j  = - & - 

t(ln t ) , - '  
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while from ck = f$kCN we obtain the general result 

Here Ak = ( N  - l)!/( N - k ) ! ,  as can be verified by explicitly keeping track of prefactors 
in the foregoing analysis and using the expression for the ti,. Strictly speaking, the 
time t in (13b) should be the quantity T =  l+podd(0)t. Thus we conclude that the 
density of k clusters decays as l / t  but modified by a k-dependent logarithmic factor. 
This very peculiar feature suggests that the model with a constant reaction matrix is 
in some sense marginal. We shall return to this point below. 

One very simple check of this asymptotic solution is to consider the special case 
N = 2 for which the exact solution can be found. When N = 2, the rate equations are 

c l (? )  = -c , ( ty  

& ( t )  = - C l ( t ) C 2 ( t ) - C z ( t ) Z .  

By elementary methods, we obtain 

in agreement with the asymptotic form given in (13). While the presence of a logarithmic 
correction term is perhaps unexpected, a priori, its effect is rather weak. For example, 
for the N = 2 case, consider the situation where c,(O) = c2(0) .  If one measures time in 
units of cl(0)-', then when 10" time units have elapsed, c , ( t ) / c , ( O )  is approximately 
equal to lo-", but the ratio c,(t)/c,(t) has decayed to only -&. 

The asymptotic solution given in (13) is replete with logarithmic correction factors, 
in a manner analogous to the logarithmic factors appearing in the description of critical 
phenomena at the upper critical dimension. A related behaviour in a coagulation 
model has also been found by Leyvraz (1985). This suggests that cluster eating with 
a constant matrix of reaction rates is in some sense marginal. Indeed, from the exact 
solution ofthe N = 2 case with an arbitrary matrix of reaction rates, i.e. K (  1,l)  # K (  1,2), 
we see that this is precisely the case. For K(1 ,1 )>  K(1,2), cz(t) decays as l / t ;  for 
K (  1 , l )  < K (  1,2), c z ( t )  decays as l / tK( l*z ) 'K( '~ l ) .  The logarithmic corrections appear 
as the two reaction constants become equal. In general, we expect logarithmic correc- 
tions to arise only when there is some special symmetry in the form of the reaction 
matrix. 

On this basis, we are led to consider a more general situation where the reaction 
matrix is not a constant. The generalisation that we consider is motivated in part by 
the very rich and intriguing behaviour found in a closely related coagulation model 
(Leyvraz and Redner 1986, see also Djordjevic and Meakin 1986). We note that the 
density of odd clusters changes only when two odd clusters meet to form an even 
cluster. On the other hand, even clusters are produced by the reaction of two odd or 
two even clusters (with unequal masses), while they are destroyed by both odd-even 
or even-even (of equal mass) reactions. Therefore it seems natural to classify the 
various reactions according to the relative parity of the masses of the reacting clusters. 
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Thus, suppose that the reaction rate depends on the incident cluster masses as follows: 

K ( i ,  j )  = K 

= L  

= M  otherwise. 

for i and j odd 

for i and j even 

Although such a model should ostensibly be in the same universality class as a model 
with a constant matrix of reaction rates, the imposed modulation of the matrix evidently 
breaks, to some extent, the marginal behaviour of the constant matrix model. 

Just as in the corresponding coagulation problem, we find a very wide range of 
possible kinetic behaviours. For K < M we find even weaker logarithmic corrections 
than in the constant reaction matrix case, namely, both c~~ and C Z k + l  decay as I/ t( ln t ) k ,  
while when N is even, cN decays as l / tMiK.  For K > M we have not yet succeeded 
in exploring all the possibilities. Depending on initial conditions, as well as on the 
relative value of L, the ck might all decay as l / t ,  or there might even be cases where 
at least one of the species decays algebraically slower than l / t .  We hope to report 
more details of the kinetics for this interesting region of the (K, L, M )  space. The case 
of K = M is very much alike that of the constant rate matrix, only that cN - 
l / t ( ln  t )" -2 'K 'L  when N is odd and L < [ ( N - 2 ) / ( N - l ) ] I (  and c N -  

I /  t(ln t)"-2'L'K when N is even and L > [ ( N - l ) / ( N - 2 ) ] K .  
In order to test the validity of the asymptotic solution, we h$ve performed numerical 

simulations of cluster eating in the mean-field limit. The approach employed is quite 
similar to that used in previous studies of coagulation (Kang et a1 1986). A basic 
feature of this method is that a cluster is defined to occupy a single lattice site and 
the mass is retained as a scalar variable associated with each occupied site. Initially, 
clusters are randomly placed on a lattice according to a specified initial mass distribu- 
tion. To simulate the kinetics of the rate equation, or mean-field approximation, 
clusters are moved at random to any other site of the lattice with a uniform probability. 
When two clusters of mass i and j happen to occupy the same lattice site, a new 
single-site cluster is defined with mass equal to / i  - j l .  If i = j ,  the two clusters annihilate, 
leaving nothing behind. Note that the lattice structure is irrelevant for this infinite 
mobility transport mechanism, and therefore we use a linear chain, as it is the most 
convenient. This general simulation procedure can be straightforwardly extended to 
study the kinetics of diffusing clusters in low-dimensional systems by replacing the 
infinite mobility rule with nearest-neighbour hopping. 

For most of our simulations, we have considered the specific initial condition of 
C k ( 0 )  all equal to a common constant for k N and C k ( 0 )  = 0 for k > N. Typical results 
for the mean-field limit are shown in figure 2. The full lines were plotted using the 
asymptotic result, equation (136). Notice that the densities of the larger clusters 
converge rather quickly to the behaviour of the asymptotic regime. This phenomenon 
is explained by the fact that the decay of small clusters is influenced by correction 
terms which are of the order of the sum of the density of all other larger clusters. Also 
plotted is the decay of podd( t ) ,  the sum of odd clusters, for which an exact decay law, 
valid at all times, is known (equation (4)). The agreement between theory and 
simulations is extremely good. 

Now we consider the kinetics of cluster eating for diffusing clusters in a system of 
spatial dimension d less than the upper critical dimension. By appealing to the analogy 
between cluster eating and the single-species reactions A + A + A and A + A + inert, 
for which the upper critical dimension is known to be 2, we deduce that cluster eating 
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Figure 2. Typical simulation results in the mean-field limit. Shown is the case of a linear 
chain of 500 000 sites in which the initial number of particles of mass i, N,(Oj, is 50 000 
for 1 s i S 5 .  Plotted are Xodd N , ( t )  (+), N,(r j  (O) ,  N,(t) (0). N , ( r )  ( A ) ,  N4(rj  (0 )  and 
N,( r j  (0 j .  The full lines are the results from the asymptotic solution of (13). 

also has an  upper critical dimension equal to 2. Above two dimensions, fluctuations 
in cluster density can be ignored and the kinetics can be described accurately by the 
rate equation approach. Below two dimensions, however, fluctuations give rise to 
kinetic behaviour which is distinct from that of the mean-field limit. From the analogy 
with the single-species reactions, we now expect that the total density of clusters will 
decay as t C d r 2 .  

To obtain more complete information, we turn to numerical simulations. Since the 
upper critical dimension is equal to 2, we shall consider only the case of one dimension 
and  typical results are shown in figure 3. From the data we find that the total cluster 
density evidently decays as as expected from the analogy with single-species 
reactions. Clusters with mass greater than 1 decay faster than t - I r 2 ,  but we cannot 
find the asymptotic decay law from the numerical data alone. Work on theoretically 
predicting this decay is currently being done. 
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Figure 3. Simulation results for clusters undergoing nearest-neighbour hopping on a one- 
dimensional chain of 500 OOO sites. Shown is the case of N = 5 .  The initial number of 
particles of mass i, Ni(0), is 50 000 for 1 G i G 5 .  Plotted are: N,( I )  (O),  N I (  I )  (O), N3(  I )  
( A ) ,  N 4 ( t )  (0) and N , ( I )  (U). The full line has slope f and is shown for comparison. 
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