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Abstract. We investigate the persistency of self-avoiding walks on the square lattice by 
studying the distribution of endpoint displacements, projected in the direction of the first 
step. Exact enumeration and the constant-fugacity Monte Carlo data indicate that the 
mean displacement after N steps, ( x N ) ,  increases logarithmically with N, while the higher 
odd moments (x%+’) vary as N2k’ In N, where Y is the correlation length exponent. This 
unusual behaviour for the moments is found to arise from a simple scaling behaviour of 
the asymmetric component of the displacement distribution, which in the constant-fugacity 
ensemble can be written in the form A ( x ) -  A-”In Aexp(-bx/N’), where N is the 
average number of steps in the walk at a fixed value of the fugacity and b is a coefficient 
of order unity. 

The salient feature of the self-avoiding walks (SAW) is the infinite memory that they 
possess as a result of the excluded volume constraint. This infinite memory raises the 
fundamental question of whether a walk will ‘remember’ the direction of its initial 
step as the number of steps, N, tends to infinity. To quantify this ‘persistency’, one 
may investigate the N dependence of the mean displacement of the walk after N steps 
along the direction of the first step, ( x N )  (figure 1). This problem was first apparently 
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Figure 1. A self-avoiding walk with the first step fixed in the +x direction. The distribution 
of endpoint displacements along the x axis is measured. 
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considered by Grassberger ( 1982), who used exact enumeration to conclude that for 
SAW in two dimensions (xN) increased as N", with w Î 0.063, although a logarithmic 
growth in N could not be excluded. This power law growth, if correct, is quite 
surprising as it indicates that there is a new length scale in the SAW model, independent 
of the correlation length, which governs how the walk retains memory of its starting 
direction. 

In this letter, we reconsider this persistency problem from the scaling point of view. 
We have used both exact enumeration and constant-fugacity Monte Carlo simulations 
to obtain numerical information about the nature of the underlying distribution of 
endpoint displacements projected along the direction of the first step. We then investi- 
gate the behaviour of the odd moments of this distribution, as they provide a natural 
way of quantifying the asymmetry of the displacement distribution induced by fixing 
the direction of the first step. These moments are found to exhibit rather unusual 
behaviour. For the first moment, our analysis suggests that 

(xN) - In N (1) 

(Xgk+l)) - ~ Z k u  In N (2) 

where Y is the correlation length exponent of the SAW model. 
We also address the question of what type of distribution of displacements can 

yield this peculiar behaviour for the moments. For this purpose, it proves to be useful 
to decompose the distribution into symmetric, S(x),  and antisymmetric, A(x), com- 
ponents, as they govern the behaviour of the even and odd moments, respectively. 
The antisymmetric component is found to have a surprisingly simple form in the grand 
canonical ensemble, from which we can account for our numerical data of the moments 
with very good accuracy. We find that for x > 0, A(x) may be written as 

while for the odd moments of higher order, 

A(x)- A-2u In 15 exp(-bx/A") (3)  

where = ( N (  p ) )  is the average value of the number of steps in the walk for a grand 
canonical ensemble of SAW when the fugacity is equal to p ,  and b is a constant. Note, 
however, that A(x = 0) = 0 by construction, so that as a function of the scaled coordinate 
XI"', A(x) appears to be discontinuous at the origin. 

For concreteness, we consider only SAW on the square lattice in this letter. We first 
report our numerical results based on enumeration of all walks of up to 24 steps, in 
which the direction of the first step is kept fixed. Since we record the complete 
distribution of displacements, any moment of the distribution can be calculated. As 
indicated in table 1, the behaviour of the odd moments is quite striking. The first 
moment increases only very slowly with N, and by 24 steps in the walk, (x,)-2.08. 
On the other hand, the higher moments increase at a much faster rate and in fact 
(xZ+l) >> (x,,,)'~+'. Based on rudimentary analyses, the data for ( x N )  are consistent 
with a logarithmic growth law, i.e. (xN) - log N, while the higher moments appear to 
obey the scaling behaviour (x%+') - NZku, where v is the correlation length exponent 
of two-dimensional SAW. 

In order to understand this unusual behaviour of the moments, and to establish 
more convincingly the logarithmic behaviour of the first moment, it is important to 
extend the enumeration data to larger values of N. The constant-fugacity Monte Carlo 
method is ideally suited for this purpose. In addition, the distribution of displacements 
takes on an extremely simple form in the constant-fugacity ensemble, while the 



Letter to the Editor L859 

Table 1, Enumeration data for the first three odd moments of the distribution of endpoint 
displacements along the x axis for SAW on the square lattice, when the first step is fixed 
in the +x direction. 

N (XN) ( X ? d  (A) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

0.133 33d+01 
0.14444d+01 
0.160 OOd + 01 
0.16479d+01 
0.173 33d+01 
0.175 87d+01 
0.181 74d+01 
0.183 55d+01 
0.187 74d+01 
0.18921d+01 
0.19237d+01 
0.193 62d+01 
0.196 12d+01 
0.197 19d+01 
0.19924d+01 
0.200 16d+01 
0.201 89d+01 
0.202 71d+01 
0.204 19d+01 
0.204 92d + 01 
0.206 20d + 01 
0.206 86d + 01 
0.208 OOd + 01 

0.333 33d+01 
0.677 78d + 01 
0.1 16 80d + 02 
0.171 97d+02 
0.24041d+02 
0.312 17d+02 
0.396 92d+ 02 
0.483 54d + 02 
0.58228d+02 
0.682 39d + 02 
0.793 79d + 02 
0.906 23d + 02 
0.102 93d+03 
0.115 32d+03 
0.128 72d+03 
0.142 18d+03 
0.156 61d + 03 
0.171 08d+03 
0.186 49d + 03 
0.201 92d+03 
0.218 26d+03 
0.234 60d +03 
0.251 84d+03 

0.113 33d+02 
0.414 44d + 02 
0.109 60d + 03 
0.226 44d + 03 
0.418 50d+03 
0.689 60d + 03 
0.107 83d+04 
0.157 75d+04 
0.223 78d + 04 
0.304 16d+04 
0.405 08d + 04 
0.523 75d+04 
0.667 49d + 04 
0.832 38d+04 
0.102 70d+05 
0.124 62d + 05 
0.149 98d+05 
0.178 15d+05 
0.21024d+05 
0.245 47d + 05 
0.285 13d+05 
0.328 26d +OS 
0.37631d+05 

corresponding distribution in the constant-N ensemble arising from enumeration is 
much more complicated. Moreover, the form of the distribution in the constant-fugacity 
approach turns out to be very helpful in guiding more detailed analysis of the enumer- 
ation data. Thus use of the constant-fugacity ensemble appears to be crucial in 
elucidating the basic physics of the persistency problem. 

The constant-fugacity method generates a grand canonical ensemble of SAW in 
which the fugacity per step, p ,  is fixed, while the number of steps in each walk of the 
ensemble can fluctuate (see, e.g., Redner and Reynolds (1981) and Fisher et a1 (1984) 
for applications, Dhar and Lam (1986) for a nice explanation of the method, and 
Berretti and Sokal (1985) for a comprehensive discussion of a related approach). The 
constant-fugacity approach is closely based on the algorithm used to enumerate SAW: 

in enumeration, all SAW of up to N steps can be viewed as forming a genealogical 
tree, in which the nodes represent a particular SAW and the branches represent the 
ways in which an n-step SAW can grow to ( n  + 1)-step SAW by adding a single step. 
The process of enumeration corresponds to constructing a complete tour on a tree of 
N levels, in which all nodes are visited. 

In the constant-fugacity method, the genealogical tree now has infinitely many 
levels, as there is no restriction on the number of steps in the walk. However, the 
enumeration tour is incomplete in that steps in the enumeration algorithm which lead 
further into the tree are taken with probability p ,  while steps leading to the root of the 
tree are still taken with probability unity. This method therefore builds an ensemble 
with no a priori bias, except for that mandated by weighting each step in the SAW by 
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the fugacity. It is worth emphasising that the modifications needed to convert an 
enumeration program into one that performs constant-fugacity Monte Carlo are trivial 
if enumeration is based on a tree-like algorithm (Martin 1974, Redner 1982). 

As p + p E  from below, where p c  = 0.3790. . . , the average number of steps in the 
SAW, fi = (N(  p)), diverges as yp,( p c  - p ) - '  (Fisher et al 1984). Thus by considering 
a range of p values in the vicinity of p c ,  we can study the persistency of long SAW. 

Typically, fluctuations in ( N ( p ) )  are extremely small, so that we have written the 
average number of steps simply as fi throughout the letter to emphasise that constant- 
fugacity Monte Carlo serves to extend enumeration data in a meaningful fashion. We 
have used the constant-fugacity method for p ranging from 0.3 to 0.3735, corresponding 
to fi approximately in the range 5-90, to obtain numerical data for the distribution 
of displacements. 

The odd moments in the grand canonical ensemble continue to reflect the striking 
pattern found in the enumeration data (table 3), namely the first moment grows only 
very slowly with fi, in a manner consistent with logarithmic growth, while the higher 
moments all grow at a much faster rate. As mentioned previously, the origin of this 
behaviour is the surprisingly simple form that the distribution of displacements turns 
out to possess in the grand canonical ensemble. Let us define X ( x , p )  as the (nor- 
malised) probability that a SAW ends at a distance x away from its starting point, along 
the direction of the first step (the +x direction). The symmetric part of this distribution, 
S(x,  p )  = i (X (x ,  p )  + X(  -x, p)), corresponds to averaging X(x,  p)  over the initial step 
being in the + x  and - x  directions. This results in a distribution that corresponds 
closely to the classical probability distribution function of endpoint displacements for 
SAW. 

Table 2. Results of a least-squares fit of A(x, p )  to an exponential form, A( p )  exp( - a (  p)x) ,  
for various values of the fugacity p .  

0.330 0.254 0.370 
0.350 0.103 0.240 
0.365 0.0320 0.131 
0.3675 0.0245 0.112 
0.370 0.0210 0.098 
0.372 0.01 10 0.076 
0.3735 0.0093 0.065 

On the other hand, the odd moments are determined by the antisymmetric part of 
the distribution, A(x, p )  = (X (x ,  p )  - X(-x,  p)), i.e. 

( x * ~ + ' )  = 1 A(x, p ) x Z k + ' .  
x>o 

(4) 

Our numerical data reveal the striking fact that this distribution is a pure exponential 
function to an excellent approximation for all values of x > 1, i.e. 

A(x, p )  - A( p) e-'(p)x ( 5 )  
as illustrated in figure 2. There is a very slight deviation from exponential behaviour 
at x = 1 for the range of fugacities considered here, while the condition A(x = 0, p) = 0 
is built in. By a standard least-squares fitting procedure, we determined the parameters 
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Figure 2. A semilogarithmic plot of the antisymmetric component of the displacement 
distribution, A(x, p),  at fugacity p = 0.3735, corresponding to A 292 .  The insert shows 
details of this distribution near x = 0. 

A( p )  and a ( p )  as given in table 2. We can then reconstruct phenomenological values 
of the moments based on this fitted exponential distribution. The comparison between 
this 'theory' and the actual data is remarkably good, given the very simple assumptions 
and analysis used for obtaining the fitted distribution for A(x, p )  (see table 3) .  

It now remains to establish the dependence of A ( p )  and a ( p )  on p c - p ,  or 
equivalently, on 13. Based on plotting these quantities against p c - p  on a double 
logarithmic scale, and substituting 13 in favour of ( pc  - p ) - ' ,  we find that to a good 
approximation 

A( A)  - I?'" a ( R )  - A-" (6) 

where Y = 0.75. I f  these forms for the parameters in equation ( 5 )  are used, one obtains 
a first moment that is 0(1) ,  while the higher moments vary as power laws in (or 

Table 3. Comparison of 'theoretical' values for the first three odd moments of the endpoint 
distribution function based on the fitted exponential form, for A(x, p ) ,  with the numerical 
data. 

0.330 1.85 1.77 81.3 81.6 11 880 12 180 
0.350 1.79 1.89 186.3 193.2 64 689 66 288 
0.365 1.865 2.06 652.2 668.4 759 840 767 280 
0.3675 1.96 2.1 1 937.8 929.4 1495 560 1 434 960 
0.370 2.19 2.17 1366.2 1344 2 844 720 2 937 960 
0.372 1.90 2.23 1978.2 2118 6 850 080 6 987 000 
0.3735 2.20 2.30 3126 3162 14 797 320 15 150000 



Letter to the Editor 

p c - p ) .  Thus to obtain a more complete representation for the moments either A or 
a, or perhaps both quantities, must be modified by a logarithmic correction factor. 
Unfortunately, the Monte Carlo data for A and a are not sufficiently accurate to permit 
the detection of a logarithmic correction factor directly. However, if A contained a 
single factor of in N, then ( x N ) -  In 13, consistent with the available data, while 

instead (or in addition), then the higher moments would be each modified by different 
powers of In N. 

We therefore reconsider the enumeration data in order to ascertain the possible 
existence of such logarithmic correction factors. To this end, we have examined the 
series for various moment ratios. It appears that the most useful test is obtained by 
studying the series y (  N, k) = ( ~ ~ ~ + " ' ) / ( ~ x ~ ~ - - ' ' ) ( x ' , > , .  If ( x E k + ' ) )  scales as NZk" In N, 
then as N +  CO, the y ( k ,  N )  will approach a limiting k-dependent value yk.  On the 
basis of various Nevill-type extrapolations for the y ( k ,  N ) ,  this indeed appears to be 
the case, We also find that the Y k  appear to fit the simple relation yk = (9+ k ) / 4  to 
within an accuracy of several per cent, up to k = 11. Although this analysis for 
logarithmic correction factors is not definitive, it does suggest that only the parameter 
A in equation (5) is multiplied by single power of the logarithm of N. We therefore 
propose that the asymmetric component of the displacement distribution has the form 
written in equation (3), and this accounts for most of the features of our numerical data. 

It is worth pointing out that the persistency phenomenon observed in the SAW 

model appears in almost the same form for other related stochastic walk models. For 
example, for pure random walks with no excluded-volume constraint, a system corre- 
sponding to the SAW persistency problem may be defined by considering a random 
walk which starts out one lattice spacing away from a site which is a perfect trap. This 
trapping site plays precisely the same role as the fixed starting direction in the SAW 

model. For this random walk problem in two dimensions, Weiss (1981) has shown 
that ( x N )  increases logarithmically in N, while the higher moments increase as a power 
law in N. Furthermore, there also appears to be a multiplicative logarithmic correction 
to the higher moments (Weiss 1987), so that the overall behaviour is closely analogous 
to that found for the SAW problem. 

Another instructive example, where the persistency can actually be solved exactly, 
is the case of a partially directed SAW (Fisher and Sykes 1959). For example, consider 
a two-dimensional model in which the allowed step directions are either + y  or ix, 
and in which the first step is specified to be in the +x direction. For this model, an 
explicit calculation shows that ( x N )  + 1 + 1/d2 as N + CO. In addition, both the second 
and third moments of the displacement vary linearly with N, and it is possible to 
convince oneself that an analogous pattern of behaviour continues for the higher 
moments. In this case, the behaviour is similar to the conventional SAW model, except 
that the logarithmic factors in the moments are missing. 

In conclusion, we have studied the persistency of two-dimensional self-avoiding 
walks induced by fixing the direction of the first step. On the basis of enumeration 
and constant-fugacity Monte Carlo data, we have shown that the first moment of the 
displacement along the direction of the initial step grows logarithmically with N, while 
the higher odd moments grow as a power law in N. This behaviour arises from a 
simple exponential form for the antisymmetric component of the distribution of 
projected endpoint displacements in the constant-fugacity ensemble. The unusual 
behaviour found here suggests that it will be interesting to consider the persistency of 
self-avoiding walks in greater than two dimensions. 

( X ( 2 k + l )  ) -  N 2 k v  In N. On the other hand, if there were a logarithmic correction to a 
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