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Abstract. We explore the connection between the higher moments of the current (or voltage) 
distribution in a random linear resistor network, and the resistance of a nonlinear random 
resistor network. We find that the two problems are very similar, and that an infinite set 
of exponents are required to fully characterise each problem. These exponent sets are 
shown to be identical on a particular hierarchical lattice, a simple model which accurately 
describes the geometrical properties of the backbone of the infinite cluster at the percolation 
threshold and also the voltage distribution on this structure. 

The critical behaviour of random resistor networks has been extensively studied in the 
past few years (see e.g., Zabolitsky 1984, Herrmann er a1 1984, Hong et a1 1984, Lobb 
and Frank 1984, and references therein). However, it has been only very recently that 
attention has turned to the distribution of voltage drops across each conductor in a 
resistor network (de Arcangelis et al 1985). The importance of this distribution is that 
it provides detailed microscopic information about the structure of the network, in 
addition to providing fundamental information such as the network conductivity. Our 
goal, in this letter, is to point out a connection between the higher moments of the 
voltage distribution on linear resistor networks and the resistance of nonlinear 
networks. 

To define the voltage distribution on a linear network, consider a hypercubic cell 
of linear dimension L which contains a random resistor network at the percolation 
threshold. If a unit voltage drop is applied across opposite faces of the network, a 
total current I,,, will flow. Since the voltage drop V between opposite faces is unity, 
I,,, simply equals G, where G is the conductance of the system. Furthermore, notice 
that I,,, coincides with the current flowing through the links, or cutting bonds of the 
backbone. These are defined as the bonds, which, if cut, cause the opposite faces of 
the network to become disconnected. 

Each bond of the network can be characterised by the fraction of the total current 
flowing through it, a = Z/ZtOt. For example, the cutting bonds are characterised by 
a = 1, while bonds which belong to very large blobs are mostly characterised by very 
small values of a. An interesting feature of this bond characterisation is that an infinite 
set of independent lengths, &, and corresponding exponents, &., can be defined at the 
percolation threshold via 

s k = c  akN(a)-Lik (1) 
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where N ( a )  is the number of bonds corresponding to the value CY, and the tilde refers 
to a critical exponent measured in terms of the correlation length, i.e., [k = &/ v. n u s  
L f k  is related to the moments of the current distribution, or equivalently, by the linear 
relation between the current and the voltage; (1) is also related to the moments of the 
voltage distribution. From the basic distribution defined by ( l ) ,  several connections 
with familiar physical quantities can be made. For example, Lf2 equals the resistance, 
while Lfa is the number of cutting bonds. Therefore f2 = f R ,  where tR is the resistance 
exponent, and the latter is related to the conductivity exponent ?through ? = d - 2 + f R ,  

while la= 1/v.  Furthermore, Rammal et al (1985a, b) have shown that l4 is related 
to the amplitude of the noise in a random resistor network. 

In a previous paper, we have demonstrated the independence of the exponents fk 

and the lengths Lfk both by analytical calculations on a hierarchical model (figure l ) ,  
and by numerical simulations in two dimensions (de Arcangelis et al 1985). This is a 
rather striking result since it is customary in critical phenomena that the higher moments 
of a microscopic distribution, such as the cluster size distribution in percolation, are 
described in terms of only one ‘gap’ exponent. Only in the mean-field limit do all the 
exponents fk coincide, because in this limit the backbone of the percolating cluster is 
made of links only, and therefore a = 1 for all bonds. 

N = O  N t l  N =  2 

Figure 1. Hierarchical lattice for the case A = 1, corresponding to two dimensions. Starting 
with a single bond (level N = 0), it is replaced by the unit cell shown at level N = 1.  This 
procedure is then repeated indefinitely. 

For the hierarchical lattice, the explicit expression for l k  is (de Arcangelis et a1 1985) 

l&= ~fk=l+ln( l+A/2k) / ln2 /A (2) 
where A is the ratio of the number of bonds in the blobs to the number of bonds in 
the links within one unit cell of the hierarchical lattice. If the hierarchical lattice is 
used as a description of the percolating backbone, then clearly A must go to zero for 
spatial dimensions d + 1 and for d + 6, and A should achieve a maximum in d = 2 
where blobs are relatively most important. These conditions can be satisfied by the 
simple choice A = a(6 - d )  for d 3 2, and A = d - 1 for d < 2: With this connection 
between the hierarchical lattice structure and the spatial dimension d, exponent predic- 
tions can be given for all d. In figure 2, we have plotted l k  against k for spatial 
dimensionality 1-6, and the agreement between the best available numerical data and 
the predictions of the model are quite good (see, e.g., table 1 of de Arcangelis et al 
1985 and references therein). 

A problem which is reminiscent of the voltage distribution is the nonlinear resistor 
network, in which the relation between the voltage drop across a particular bond z j  
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Figure 2. Plot of the exponent rk as a function of k for spatial dimensions d = 1-6, based 
on the predictions ofthe hierarchical model. - d = 1 ,6 ; .  . . . d  = 5 ; - - - d  = 4 ; - .  . - d  = 
3 ; - . - . -  d = 2 .  

and the current is given by 
v.. = ,I? 

0 V ‘  

The critical behaviour of a random network of such conducting elements was first 
investigated by Kenkel and Straley (1982) and more recently by Blumenfeld and 
Aharony (1985). For such a nonlinear network of linear dimension L, one can define 
a generalised resistance, R ( P ) ,  through 

V =  R(P)I’p 

where V is the voltage difference between the opposite faces of the network, and I is 
the total current flowing. If the concentration of conducting bonds is at the percolation 
threshold, a family of exponents for the nonlinear network can be defined by 

R ( P )  - L“’p’ 

where i ( 1 )  coincides with the resistance exponent tR, ?(a) = 1/v, and i ( 0 )  is the 
exponent characterising the length of the shortest path or chemical distance in the 
backbone (Blumenfeld and Aharony 1985). 

The question that we now address is whether the higher moments of the voltage 
distribution in the linear network are somehow related to the p Cependent resistance 
of the nonlinear network. We note that the exponents, Z ( p )  and Lkr coincide for p = 1 
and k = 2, and for p = k = CO. Furthermore, both sets of exponents tend to 1/ v as the 
spatial dimension approaches 6 from below (the mean-field limit). 

To test for a general connection between the exponents, we solve the nonlinear 
network problem on the hierarchical lattice. To calculate the critical exponent i ( p )  
on the hierarchical lattice, we first evaluate R ( P )  on the unit cell of the model using 
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the following combination rules for series and parallel nonlinear resistors, 

rseries = r1+ r2 

rparallel 
- 1 / P  = r;l/P + p 

This gives 

R(P)=2/A+2- '  

if it is assumed that each conductor has a unit value of nonlinear resistance. It is 
possible to generalise this calculation for an Nth-order hierarchical lattice in order to 
obtain x'(p), but this procedure is unnecessarily complicated. For obtaining the critical 
exponent x'(p), it is much more convenient to use a simple renormalisation procedure 
which is exact for the hierarchical lattice. We use as a rescaling parameter, L,,  the 
number of singly connected bonds. Then we formally can write the following connec- 
tion between R ( P )  and L1 for the unit cell of the hierarchical lattice 

Since in the unit cell, there are 2/A links, we can easily solve for the critical exponent 

x(p) = ln(2/A +2-P)/ln 2/A. (3) 
Using the exact relation between the number of links and the linear size of the lattice 
(Coniglio 1981, 1982), L1 - L1", we can also obtain ? ( p )  = x ( p ) / v .  

As a result of this line of reasoning, we find 

Although the correspondence of (4) is exact for the hierarchical lattice, it is dependent 
on the high degree of symmetry for this model. That is, the current flowing along each 
side of any bubble within a blob is the same. Clearly such an exact symmetry will not 
hold in general, but we do expect it to hold on the average. Thus we believe that the 
predictions (3) and (4) arising from the hierarchical model should be quite close to 
the exponents of the appropriate nonlinear resistor network. The largest discrepancy 
is expected for d = 2 and p = 0, where the influence of blobs with large non-symmetric 
current paths, should be the largest. 
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