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Abstract. We employ exact enumeration methods to study a number of configurational 
properties of self-avoiding random surfaces embedded in a three-dimensional simple cubic 
lattice. Self-avoiding surfaces are defined as a connected set of plaquettes in which no 
more than two plaquettes may meet along a common edge, and in which no plaquette can 
be occupied more than once. Based on enumeratingsurfaces containing up to 10 plaquettes, 
we find: (a) the number of n-plaquette surfaces, c,, vanes as p n n 7 - ' ,  with p = 13.2*0.2 
and y=0.22*0.06, (b)  the average number of perimeter edges of n-plaquette surfaces, 
( p " ) ,  varies linearly with n, and (c) the mean-square radius of gyration of n-plaquette 
surfaces, ( R g ( n ) ) ,  varies as n2", with 2 v =  1.075*0.05. 

In this letter, we consider a number of simple configurational properties of self-avoiding 
random surfaces (SASS). A SAS is defined as a connected set of elementary plaquettes 
on a regular lattice in which at most two plaquettes can meet along a common edge. 
In addition, the surface can occupy each plaquette only once, thereby imposing an 
excluded-volume constraint. Such a model represents a natural generalisation of the 
self-avoiding random walk model to a situation where planar elementary units are 
used to build an object which is topologically two dimensional. 

At present, there is a limited amount of information on the properties of SASS. 

Most of the available results are confined to the properties of closed SASS, defined as 
a self-avoiding surface with no perimeter, because they arise naturally in the high- 
temperature expansion of lattice gauge theories (see, e.g., Drouffe et a1 (1979) and 
references therein : for numerical simulation results of closed surfaces, see, e.g., Sterling 
and Greensite (1983) and Billoire er a1 (1984)). In addition, there have been studies 
of open SASS in which free perimeters may exist (see, e.g., Parisi 1979, Durhuus et al 
1983, Maritan and Stella 1984), and also of random surfaces in which the excluded- 
volume constraint is removed (Duplantier 1984, Gross 1984). In addition to the purely 
intrinsic interest of the geometry of surfaces, the SAS model may be relevant to a 
number of physical problems governed by interfacial phenomena, such as wetting and 
melting. 

Because of the relatively large number of degrees of freedom for surfaces and the 
corresponding analytical and numerical difficulties, several basic issues are still not 
resolved. For example, there still exists some controversy about the connection between 
free random surfaces and the mean-field limit of SASS. Arguments have been presented 
for both a finite upper critical dimension, do equal to eight for SASS and a fractal 
dimension of 4 for SASS above the upper critical dimension (Parisi 1979), and also for 
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d, = 03 and an infinite fractal dimensionality of free random surfaces (Duplantier 1984, 
Gross 1984). The rather incomplete understanding of SASS is one of the motivations 
for the present study. A second motivating factor is the similarity between the questions 
that can be asked for the self-avoiding random walk and the SAS models. Given the 
wealth of information that has been discovered for self-avoiding walks, and given the 
richness of the geometry of surfaces compared to the geometry of lines, it may be 
anticipated that SASS will prove to be a geometrical model of considerable interest. 

Here we study only the simplest geometrical properties of SASS which are amenable 
to investigation by exact enumeration techniques. We have enumerated all SASS of up 
to ten plaquettes on the simple cubic lattice by writing a program based on the Martin 
(1972) algorithm. Because the number of surfaces grows very rapidly with the number 
of plaquettes (cf table l ) ,  the enumeration to order 10 required approximately 80 h 
of CPU time on an IBM 3081 computer. Owing to the relatively small surface size 
accessible by enumeration, no attempt was made to distinguish between surfaces of 
different topological classes, e.g., closed versus open surfaces. The program used is a 
relatively straightforward generalisation of that used to enumerate lattice animals (see, 
e.g., Redner 1982 for a program listing), except that the elementary building blocks 
are plaquettes and the surface constraint that no more than two plaquettes can meet 
along a common edge is imposed. In addition to counting the number of n-plaquette 
surfaces, c,, the statistics of the perimeter of free edges for each surface was counted 
so that the average perimeter length, ( p , ) ,  could be calculated. The mean-square radius 
of gyration of n-plaquette surfaces, ( R ; (  n)), was computed as well. For this purpose, 
we used the centre of each plaquette to define its coordinate position, and we assumed 
a lattice spacing of unity. 

Table 1. Number of n-plaquette surfaces, the average perimeter and the average radius of 
gyration. 

n cn (P") ( R : ( n ) )  

1 3 
2 18 
3 146 
4 1332 
5 13 089 
6 135 307 
7 1451 118 
8 15 999 321 
9 180 244 790 

10 2055 946 265 

4.0 
6.0 
7.890 41 1 
9.792 793 

11.706 624 
12.622 532 
15.539 224 
17.456 483 
19.374 108 
21.291 919 

0 
0.666 667 
1.041 096 
1.434 685 
1.836 810 
2.243 318 
2.652 346 
3.063 043 
2.474 903 
2.887 598 

In table 1, the number of n-plaquette surfaces are given. Straightforward analysis 
of the resulting series indicates that the asymptotic behaviour of the c, is consistent 
with c, - p n n y - ' ,  with p = 13.2k0.2, and y = 0.22*0.06. Since the series are relatively 
short and not very well converged, it did not seem worthwhile to employ more 
sophisticated analysis methods. The value for y may be compared with the exact result 
y = -0.5 for lattice animals in three dimensions (Parisi and Sourlas 1981). This suggests 
that the surface constraint is relevant in three dimensions so that lattice animals and 
SASS belong to different universality classes. 



Letter to the Editor L725 

It is worth noting that an exponential increase in c, as a function of n has not yet 
been established rigorously. If the topology of the surface is fixed, i.e., the number of 
handles or holes in the surface is fixed, then it is known that the number of surfaces, 
subject to the aforementioned topological constraint, grows exponentially (Durhuus 
er a1 1983). In fact, closed self-avoiding surfaces in three dimension are identical to 
the external perimeter of site lattice animals. Numerical simulations for this object 
(Sterling and Greensite 1983) indicate that c, varies p n n y - ' ,  with p = 1.7 and y = 0.5, 
rather different than our estimates for self-avoiding surfaces of all topologies. However, 
rigorous bounds on the number of SASS of all topologies is not known. Interestingly 
the number of n-plaquette random surfaces of all topologies grows extremely rapidly, 
as n" (Weingarten 1980, Eguchi and Kawai 1982a, b). Questions related to the number 
of surfaces of a given topological type will require considerably more numerical work 
in order to arrive at definitive results. 

In table 2, the number of n-plaquette surfaces are further classified according to 
the number of perimeter edges (both internal and external). From this information, 
the average perimeter of n-plaquette surfaces, ( p , ) ,  may be calculated, and this quantity 
is listed in the second column of table 1. Already by order 10, the data strongly suggest 
that ( p , )  is proportional to n, with a proportionality constant approximately equal to 
2.3. Such a proportionality constant is consistent with a surface structure which is very 
tree-like and stringy rather than a compact membrane-like structure. 

Table 2. Perimeter distribution of self-avoiding surfaces. Listed are the number of n- 
plaquette surfaces which have a perimeter consisting of m lattice edges, c,,,, in the form 
c,,,xm. 

10 

3x4 
18x6 
8x6+ 138x8 
12x6+114x8+ 1 2 0 6 ~ ~ '  
6x4+ 180x8+ 1536x"+ 11 3 6 7 ~ ' ~  
1 +48x6+84x8+2682x"+ 19 722x12+ 112 77Oxi4 
24x6+540x8+2304x1'+38 2 2 0 ~ ' ~ + 2 4 8  688xI4+ 1161 3 4 2 ~ ' ~  
60x6+483x8+7O32x1'+45 498xI2+53 3 0 7 0 ~ ~ ~ + 3 1 1 4 4 1 4 x ' ~ +  12 298 7 6 4 ~ ' ~  
30x4+960x8+8808x1'+ 105 213x1*+779 592xl4+7348 344xI6+38 900 S16x1'+ 
133 101 327x2' 
3+240x6+576x8+ 1 6 5 7 2 ~ ~ ' + 1 5 6 3 1 2 x ' ~ +  1638 774xI4+ 12 502 1 3 4 ~ ~ ~ + 1 0 0 4 7 9 6 0 0 x ' ~  
+485 521 476x2'+ 1465 630 5 7 8 ~ ~ '  

Finally, the average radius of gyration of n-plaquette surfaces is given in the third 
column of table 1. An analysis of this quantity indicates that it diverges as n'", with 
2v = 1.075 * 0.05. For purposes of a qualitative comparison, the value of 2v for lattice 
animals in three dimensions is exactly equal to unity (Parisi and Sourlas 1981). 

In conclusion, self-avoiding random surfaces pose a new and interesting geometrical 
problem. By using enumeration methods, several basic configurational properties of 
SASS on the simple cubic lattice were calculated and their asymptotic behaviour was 
estimated. The numerical evidence suggests that SASS are in a new universality class, 
distinct from that of lattice animals. It is hoped that the present study, though rather 
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limited in scope, will help stimulate more comprehensive and detailed studies of 
surfaces. 

I am grateful to J L Cardy, M Cates, J and L Chayes, H Levine and V Privman for 
helpful comments and discussions during the course of this work. 
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