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Abstract. We present a scaling approach to investigate the kinetics of the diffusion- 
controlled multiparticle reactions A ,  + A,  +. . . + AN + inert, and NA + inert, for a random 
initial distribution of particles. For the first reaction, if the initial densities of all the particle 
species are equal, the particle density decays with time r as t - - ,  where a = i d ,  and d is 
the spatial dimension. This exponentevalue is independent of N below an upper critical 
dimension of d,  = 4/( N - I ) ,  while for d z d,, a assumes the mean-field value of I / (  N - 1). 
For the decay NA + inert, (I = i d ,  again independent of N, for d < d,  = 2/( N - 1 ). These 
universal decays stem from the reaction kinetics being governed by the decay of spatial 
fluctuations, an effect which is insensitive to the details of the reaction. Our predictions 
are tested by extensive computer simulations. We also examine in detail the reaction 
A ,  + A ,  + A ,  + inert for arbitrary initial densities of the three reactants and elucidate a 
number of interesting asymptotic properties. 

Recently, it has been recognised that irreversible diffusive recombination processes 
exhibit anomalous decay laws for a random initial distribution of particles. The reaction 
is defined by allowing particles to move by diffusion, and when reactive species meet, 
an inert particle is irreversibly created. Due to the initial randomness, spatial fluctu- 
ations in density exist on all length scales, and these play a fundamental role in 
governing the reaction kinetics. 

For the two-body reaction A + E  + inert, the particle density is found to decay with 
time t as t -d ’4  for equal initial densities of A and E, and as e ~ p ( - t ~ ’ ~ )  for unequal 
initial densities (see e.g., Toussaint and Wilszek 1983, Kang and Redner 1984, Meakin 
and Stanley 1984). On the other hand, the rate equation predicts a decay of l / (kt)  or 
exp(-kt), respectively, for these two initial conditions (see e.g., Blumen et a1 1983, 
Calef and Deutch 1983). The apparent shortcoming of the rate equation stems from 
the neglect of spatial fluctuations in the initial random distribution of the particles. 
The rate equation is valid only if the particle distribution is spatially homogeneous at 
all times, a situation which would occur if the mobilities of the reactants were infinite. 
This may be viewed as the mean-field limit of the decay law. 

The inadequacy of the rate equation for two-body reactions motivates us to consider 
its validity for more general diffusion-controlled reactions. In this letter, we apply 
scaling to study the kinetics of the N-body reactions A,  + A2 +. . . +AN + inert, and 
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NA+ inert, and computer simulations are employed to test our predictions. Our 
primary interest is the relatively simple situation where the initial densities of all the 
reactants are equal; however, we also give a brief analysis of the decay for arbitrary 
initial densities. It should be noted that Fisher (1984) has given an exact analysis of 
N-body decays in one dimension when the initial number of particles is specified; this 
is complementary to the ensemble that we consider in which the initial density is 
specified. 

To begin our discussion, we first consider the rate equation appropriate to describe 
the reaction A, +A2 +. . . +A, + inert 

a t J l ( t ) l a t  = -kPl(t)pz(t) * .  . P N ( f )  ( 1 )  

Here p l ( t )  is the density of the ith species at time t ,  and k is a rate constant. When 
the initial densities of all the reactants are equal, the asymptotic form of p , ( t )  is 

PI(?) - ( k t ) - ” ( N - l ) .  (2) 

That is, a progressively slower decay law is predicted as the number of reactants needed 
to initiate the reaction is increased. This decay also describes the asymptotic particle 
density in the reaction NA+ inert. 

In analogy with the recent insights gained from studies of the two-body decay, we 
expect, however, that the rate equation predictions will be drastically modified by 
spatial fluctuations. To account for their influence, we estimate the fluctuations in 
particle number in a spatial region of linear dimension 1 and volume I d .  The initial 
number of the ith species in this volume is 

N, = p , ( 0 ) l d  * J p , ( 0 ) l d  (3 1 
where the second term indicates the statistical fluctuations. Accordingly, the difference 
AIJ = N, - NJ is given by 

- pJ ( O ) )  I d  * (Jp,(o)* Jp,(o))1d’2* (4) 
In the absence of fluctuations, AI, (with i < j )  will always be less than zero for any 
size volume when p,(O) < pJ(0) ( i  < j ) .  However, the second term in equation (4) makes 
it possible to have small regions where some of the A V  ( i  < j )  are positive. The size 
of such a region can be estimated by considering the maximum positive fluctuation of 
the minority species (Al),  and the maximum negative fluctuation of the majority species 
(AJ), and then setting N, = N,. This condition determines the maximum length scale 
where fluctuations in NI and NJ are sufficiently large that either of the two species 
may be in the local majority. We thus find the length scale 

6) - (Jp,o- Jpt0)rd’*. ( 5 )  

Equivalently, there is a characteristic time scale tlJ proportional to .$, which is the 
time required for a particle to diffuse across a region of linear dimension &,. For t < t,, 
the reaction has not yet had enough time to eliminate relative local fluctuations between 
species A, and AJ in a volume V < et, while for longer times, & > NI with overwhelming 
probability in the volume V. This defines a crossover from fluctuation-dominated 
behaviour at short times, to fluctuation-free behaviour at long times. 

We now use the time scale defined above to the derive the decay law when the 
initial densities of the reactants equal. For simplicity, we treat the three-body reaction, 
but the generalisation to the N-body case is immediate. In analogy with the two-body 
reaction (Kang and Redner 1984), we write a scaling form for p l ( t )  by assuming that 
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the decay will be a power law for t less than the shortest time scale ( t 1 3  for the 
three-body reaction), 

p i ( t )  % Cit-a-6(X23, x13, x12) ( 6 )  

whereJ(x,,, ~ 1 3 ,  x12) is a scaling function of the dimensionless variables xu = t / t g ,  and 
C, is a constant which depends on the initial conditions. 

To fix the exponent a, it is now useful to consider the particular initial condition 
p, (O)  < p2(0 )  = p,(O), so that t23 diverges, while t 1 3  = t 1 2  = 7. Equation (6) can then be 
written more simply as 

pi( t )  --. Cif -q( t /  7) (7) 

where x ( t / 7 )  =h(O, t / t I 3 ,  t / f I 2 ) ,  and a is assumed to be independent of the initial 
conditions. 

From the conservation of the particle density difference, p I (  2 )  - p2( t )  = p l ( 0 )  - p2(0) ,  
and from equation (7), we have 

( P I ( 0 ) - - P 2 ( 0 ) ) t P  = cl~l(t/~)- C?f20/7) (8) 

Since x ( x )  is a function only of the scaling variable x, it follows that the left-hand 
side of ( 8 ) m t  also depend only on x. However p 1 ( 0 ) - p 2 ( 0 )  can be rewritten as 
( ~ + J P ~ ( O ) ) T - ~ / ~  (Kang and Redner 1984), from which we can immediately 
determine a and Ci to be 

- -  
(y = I d  4 ,  Cl = c 2  = ( J p m  +Jp2(0 ) ) .  (9) 

In the limit p 1 ( 0 ) + p 2 ( O ) ,  the t-" decay law will be recovered in equation (7). We 
therefore find, 

pi(?) = JpiO t - d / 4  (10) 
for the case of equal initial densities of three reactants. 

In two dimensions, this decay law is the same as the rate equation prediction for 
N = 3; this defines the upper critical dimension d ,  to be equal to 2. We therefore 
expect a t - d / 4  decay law below two dimensions, and a t - ' i2  decay for d 2 2 .  

To generalise to the N-body decay for equal initial densities of the reactants, we 
choose the initial condition p l ( 0 )  < p2(0) = p 3 ( 0  = . . = p N ( 0 ) ,  and follow the same 
steps of equations (7)-( 10). This gives pi( t )  = ?- p i ( 0 ) t - d / 4  below d ,  = 4/( N - l ) ,  while 
for d a d ,  the decay law has the rate equation form of The universal 
N-independent decay predicted for d < d,  stems from the fact that local fluctuations 
decay only by diffusion, and not due to the reaction (Toussaint and Wilszek 1983). 
Since these reaction-independent fluctuations govern the decay, we therefore expect 
that the decay rate will also be indepenent of the number of reactants needed to initiate 
the reaction. 

We can also apply scaling to the single-species reaction NA-, inert. This reaction 
is simpler than the decay with different species as there is only one time scale, 
7 2 the time required for a particle to diffuse a distance of the order of the 
initial particle separation. The scaling form of the particle density may be written as 

P A ( f ) ' : P A ( 0 ) f ( f / 7 ) *  (11) 

In analogy with the two-body reaction (Toussaint and Wilszek 1983, Tomey and 
McConnell 1983a, b), we postulate that PA( t )  will be independent of the initial density 
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as ?+a. This condition immediately fixes the decay law to be p A ( f )  - CdL2 for 
d < d, = 2/( N - l ) ,  while the mean-field decay of t - ' / ( N - ' )  should hold for d 3 d,. 

We may generalise further to treat the M-body reaction n l A I  + n2A2 +. . . + nNAN + 

inert, with XE, ni = M. A natural initial condition to consider is p , ( O ) / n ,  = p 2 ( 0 ) / n 2  = 
. . . = p N ( 0 ) /  nN ; this yields a final state of no particles. A direct generalisation of the 
approach given in equations (6)-(8) predicts the decay law 

pi( t )  = JPi(0) t - d / 4  

below d, = 4/(M - I), while for d 2 d,, the mean-field decay 

holds. Finally, one may consider N-body decays on self-similar structures, such as 
regular fractals or a percolation cluster at the threshold (Kang and Redner 1984, 
Meakin and Stanley 1981, Kopelman et al 1984). We predict that the asymptotic decay 
can be obtained by replacing the Euclidean dimension appearing in the decay laws, 
with the fracton dimension of the self-similar structure (Alexander and Orbach 1982), 
when the fractal dimension of the structure is less than the upper critical dimension 
for the reaction. A summary of the decay laws is given in table 1. 

Table 1. The exponent for N-particle decay processes: (a) the reaction A ,  + A ,  +. . . + A ,  + 
inert, (b) the reaction NA + inert, and (c) the reaction NA + B + inert. 

N d  I 2 3 4 a) 

To test our predictions, we have first simulated the reaction A,  + A 2  +A,  + inert for 
equal initial densities of all reactants. The simulation data are in good agreement with 
the prediction of a ?-'I4 decay for d = 1, and a decay of ? - ' I 2  for d 3 2 (figure 1).  
Unfortunately, it is not possible to obtain information on higher-body decays due to 
prohibitive computer time requirements. We have also simulated the reaction NA + 

inert in one dimension. For the case N = 2, d,  is greater than one, and the t - ' /2  decay 
predicted by scaling has been observed (Toussaint and Wilszek 1983, Torney and 
McConnell 1983a, b, Meakin and Stanley 1984). For N = 3, d,=  1, and one should 
therefore observe a t - ' /2  decay, possibly modified by a logarithmic correction (Meakin 
and Stanley 1984). However for N = 4, the upper critical dimension now equals f, 
and the decay in one dimension should now follow the rate equation result of 
This general picture is in excellent agreement with the results presented in figure 2. 
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Figure 1. Plot of the survival probability against time for the reaction A + B + C -* inerr in 
( a )  one and ( b )  two dimensions. The initial densities of the reactants are equal, and the 
slope of the lines are -4 and -4 respectively, indicating a r-'14 and a I-'" decay at long 
times. 
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Figure 2. Plot of the survival probability against time for the reaction NA+ inert in one 
dimension for the case ( a )  N =3,  and ( b )  N = 4. The data appear to follow a ? - ' I 2  decay 
and a ?- ' I3  decay respectively. 

We now turn to a discussion of the decay laws for arbitrary initial densities of the 
reactants. As before, we explicitly treat the three-body decay, and the generalisation 
to higher-body decays is straightforward. The decay begins with a short-time regime 
defined by t much less than any of the tij. In this short-time regime, relative fluctuations 
in particle number predominate. In analogy with the two-body reaction (Kang and 
Redner 1984), the decay should be the same as the case of equal initial densities of 
all three species. At longer times, the differences in the densities of the various species 
manifest themselves, and there are several possible asymptotic decays. 

To enumerate the possibilities, we first introduce a simple generalisation of the rate 
equation which appears to incorporate fluctuation effects (de Gennes 1982, Kang and 
Redner 1984). For equal initial densities of the reactants, the original rate equation, 
( 1 ), can be modified to give the correct asymptotic decay found by scaling by introducing 
a time-dependent rate coefficient, k ( t ) .  Such a modification is employed to account 
for the fact that the probability of reactive species meeting is not constant, but rather 
is decreasing with time due to the growth of large-scale inhomogeneities (see e.g., 
Toussaint and Wilszek 1983 for the two-body case). For the three-body reaction, we 
recover the decay law given in equations (7) and (9) by taking k( t )  in the rate equation 
to be proportional to td'*-'. 

Based on solving this time-dependent rate equation, there are three distinct 
asymptotic behaviours which originate from the following generic initial conditions: 
(a) one species in the minority, and the densities of the other two species otherwise 
arbitrary, (b) two species with equal density less than the density of the third species, 
and (c) equal densities. As already mentioned, all three initial conditions give rise to 



L670 Letter to the Editor 

a decay of t - a ’ 4  at short times. However, at longer times there is a crossover to an 
asymptotic decay of exp(-td’2) for case (a), and an asymptotic decay of t -d’2  for case 
(b). This general picture appears to be in agreement with our preliminary data. 

In summary, we have studied the kinetics of N-body irreversible diffusion-controlled 
reactions A ,  + A2 + . . . + A N  + inert, and NA + inert. From a scaling approach, we find 
that the asymptotic decay should be universal, independent of the details of the reaction, 
when the system is below the upper critical dimension. This results because the decay 
is determined by the decay of local fluctuations, an effect which is independent of any 
reaction details. We have also introduced a time-dependent rate equation to treat the 
multi-species reaction for unequal initial densities of reactants. A variety of asymptotic 
decays are predicted, determined by the number of distinct particle species which are 
in the minority. 
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