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Abstract. The problem of understanding the asymptotic statistical behaviour of the winding 
angle, ON, of a self-avoiding walk of N steps on a planar lattice is posed. Exact series 
expansion data for the square lattice up to N = 21 are reported. These data and Monte 
Carlo estimates up to N G 170 steps are fitted well by a logarithmic growth law for (06). 
The ratio (@,,)/(Oh)* appears to approach a limit of 2.9 to 3.2, which is close to the 
Gaussian value, 3. Heuristic scaling arguments are consistent with simple logarithmic 
growth (and also illuminate the logarithmic behaviour known rigorously for free Brownian 
motion). 

In recent years there has been an increasing interest in the geometrical interpretation 
of cluster growth properties on space lattices. In both the 'classical' problems, such 
as percolation clusters, lattice animals, self-avoiding walks (see Stauff er 198 1 and 
McKenzie 1972 for reviews), and in the newer' class of dynamic aggregation models 
(see e.g. Stanley et al 1983), one usually studies the 'size' of an object as a function 
of the number N of constituent 'monomers'. The radius of gyration is the most natural 
measure of mean cluster size (see e.g. Peters et al 1979 and Grassberger 1982a); for 
self-avoiding walks an appropriate quantity is the root-mean-square end-to-origin 
distance of N-step walks, which grows asymptotically according to R N  = J(&) - N", 
with, it is believed, Y = $ in d = 2 spatial dimensions (Nienhuis 1982). 

In this note we consider another geometrical property of two-dimensional self- 
avoiding walks, namely, the winding angle, 8, measured with respect to the direction 
of the first step. It is convenient to introduce a polar coordinate system with the origin 
at the starting point of the walk and the positive x axis directed along the first step. 
On the nth step the walk arrives at (r,, 8,) and 8, changes by increments, A@, = 8, - e,-,, 
each less than f .rr in magnitude. The final value after N steps, O N ,  may be positive or 
negative, and is unrestricted in magnitude. However, it is worth noting that for a free 
walk which does not revisit the origin on, say, the plane square lattice, 18NI is bounded 
by fn-N while for a self-avoiding walk one obtains a bound close to .rrN'12 (by 
considering a close-packed walk which spirals around the origin). 

By symmetry, the odd moments (e%-') (k = 1,2,3, . . .) vanish identically. However, 
the even moments, (e:), are positive and their asymptotic behaviour is the focus of 
this note. In table 1 we list the values of c N ( 8 k )  and C N ( 8 ; )  for N S 21 on the square 
lattice as found by direct enumeration of all walks by established methods (Redner 
1982 and references therein). Here cN is the total number of N-step self-avoiding 
walks, given by Sykes et a1 (1972); these are believed to vary asymptotically as 
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Table 1. Values of +.,(e%) x 
decimal places. 

and c,(&) x for the square lattice correct to 15 

N 

2 
3 
4 
5 
6 
7 
8 
9 
IO 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1.233 700 550 136 17 
8.246 235 188 499 53 
2.964 908 275 147 87 
1.105 575 468 731 20 
3.441 587 467 01 1 97 
1.119881 12985637 
3.301 262 906 043 03 
1.002 157 092 I74 98 
2.882 014 071 486 29 
8.424 207 855 257 78 
2.383 894 186 066 1 1  
6.812 280 327 IO7 98 
1.905 714 5 I8 863 43 
5.366 500 290 277 61 
1.488 506 221 881 86 
4.148 659 638 543 12 
1.143 283 847 34696 
3.162 262 736 780 55 
8.670 491 624 998 57 
2.38421471367827 

k 

0 
0 
I 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
8 
9 

h ( e 4 , )  k 

7.610085 237 031 44 - 1  
1.536 604 804 392 36 1 
9.397 021 962 112 68 1 
4.887 465 204 442 50 2 
1.843 647 644 022 20 3 
7.220 567 962 561 04 3 
2.385 I30 875 731 57 4 
7.953 307 275 941 86 4 
2.483 969 437 085 23 5 
7.697 343 548 208 59 5 
2.316 247 352 743 40 6 
6.902 367 602 289 42 6 
2.024 23 1 697 584 3 I 7 
5.890 71 I 369 044 07 7 
1.696 477 942 983 41 8 
4.857 467 697 099 09 8 
1.380 625 805 079 22 9 
3.906 657 682 640 3 I 9 
1.099 412 605 I53 97 10 
3.083 171 262 458 56 10 

C,N ' - ' p  when N + 00, where 

p = 11 z ,  = 2.638 1 * 0.0002 and y = 1% = 1.34375 (1) 
(Guttmann 1984, Nienhuis 1982). 

to postulate a power law behaviour, say, 
In analysing these data to estimate their asymptotic behaviour, it is natural, at first, 

(62) - N"L, (2) 
since power laws characterise many properties of both free and restricted random 
walks. However, Spitzer (1958) has analysed rigorously the winding angle distribution 
of Brownian motion on the plane, in continuous time t :  he proves that the cumulative 
probability distribution satisfies 

lim Pr[e(t)<x In ?]= T - '  
1-m 

(3) 

so that x = e(t)/ ln t is described asymptotically by a Cauchy distribution. It follows 
that the moments ( l O ( t ) ( ^ )  vary like (In t )^  although, owing to the long tail of the 
Cauchy distribution, they exist only for Ih I < 1. 

Although the behaviour of free random walks on a lattice seems not to have been 
answered analytically, Spitzer's result suggests that a purely logarithmic behaviour of 
the moments should be considered so that the exponents wk vanish. Indeed, if one 
contemplates some sort of real-space renormalisation group transformation, say of 
decimation type (see e.g. Shapiro 1978), being performed on a self-avoiding chain, one 
concludes that angular coordinates will rescale only as marginal variables since they 
remain unchanged under simple changes of length scale. This heuristic argument, 
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0 

which is supported by a more detailed scaling-type argument presented below, again 
suggests wk = 0 (all k 2 1). 

We have tested the conjecture (2) by studying the series (Ok) and ( 0 ; )  by the usual 
two-point-fit extrapolation and Pad6 approximant techniques. A clear downward trend 
of the exponent estimates, WE*(  N ) ,  which represent efectiue exponents, is observed as 
N increases and a vanishing limit as N+oo is indicated. A negative exponent, 
associated with Jinite limiting values, ( 6 5 )  and (e:), seems somewhat implausible on 
physical grounds (see further below) and is also in contradiction with the steadily 
increasing values observed, particularly in the Monte Carlo simulations reported below 
which run up to N = 170: see figure 1. 

- x x x  

- * x  x 

- 

' l ' l l l l l l l l -  

6 -  

- 

4 -  

- 

2- 1 

Accordingly, we have tested fits to the forms 

( e % ) =  ak[ln(N/bk)]2k", (4) 
which are suggested by analogy with the Brownian motion results and which represent 
some of the simplest divergences weaker than a power law. Note that the parameter 
bk is vital if a logarithmic form is contemplated; if 2kt,hk is not close to unity one might 
wish also to add a 'background' term, say ek, but this is not feasible for data analysis 
with a restricted range of data. (Corrections representable by replacing N by N +no 
are also important for small N :  see figure 1 and below.) Indeed, it is clear that in 
order to validate such a logarithmic growth law with reasonable certainty one really 
needs data over several decades of N. Nevertheless, we will demonstrate that the 
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relation (4) for k = 1 with +I and b, determined from the series data for N d 21 provides 
a very good fit to the Monte Carlo results up to N = 170. Even so, it must be pointed 
out that the moments grow very slowly with N and, even for the longest walks simulated, 
we find (e%)< r2. Thus we cannot rule out some qualitative change in behaviour 
setting in when a typical walk has a winding angle of order T at which stage one might 
be tempted to speculate that the angular self-avoiding constraint becomes more impor- 
tant: however, see the further theoretical discussion below. 

With these reservations in mind, we report briefly on our procedure for fitting the 
data of table 1 to the logarithmic law (4). For a trial exponent value IL we calculate 

Ak In(N/b!,), ( 5 )  pk)(+) = ( e 2 k  1 / 2 W  a 
N )  

where the expected variation indicated entails Ak = Then we form the 
approximants 

AiN)($) (T,v - TN-,)/ln[N/(N -2)], (6 )  

&"(+) [ TN h ( N  - 2 )  - T N - ~  In N]/ln[N/(N - 2 ) ] ,  (7) 

which should approach Ak and & = Ak In bk, respectively, as N - m .  Note that the 
use of index N - 2, in place of N - 1, serves to cancel some of the odd-even oscillation 
present for both k = 1 and 2 ;  this is a general characteristic of configurational data for 
loose-packed lattices like the square lattice. Plots of AiN)(+) and of B(kN)(+) against + for increasing values of N should both display intersections close to one definite 
value of + if the fits are consistent. Figure 2 shows how this analysis proceeds for 

0.4 0.5  0.6 0.7 0.8 
I I I I 

t/!/ 1 

;; 20 
._ 

14 
-0.31 113 I 1 I 

0.4 0.5 0.7 0.8 
o'6 JI 

Figure 2. Plots of the fitting deviations, AA:"(#) and (see equation (8)), for the 
mean fourth power of the winding angle for N = 14 to 21 in order to determine the optimum 
value of the exponent +h2 in the asymptotic form (4). 
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(6%) (k = 2). The range N = 14 to 21 is displayed and, for sensitivity, the deviations 

AA”) k = A ( N )  k - Ak, - A B ( N ) =  k k k ,  (8) 

are plotted where, for convenience, the mean values are defined by 
21 

A k ( $ ) = b  1 
N = 1 4  

and, similarly, for &($).  These mean values vary strongly with t,b, decreasing monotoni- 
cally and roughly exponentially with, e.g., A2 = 6.4, B2 2: 7.9 at $ = 0.40, and A2 = 0, 
B2 = 1.3 at I) = 0.72. 

The location of intersection regions of AA:” and AB$” in figure 2 appears to be 
internally consistent and suggests the exponent estimate 

$2 = 0.52 f 0.04, (10) 

where the confidence limits represent a necessarily somewhat subjective estimate based 
on the analyses described as well as on two-point fits of (6%) to the more primitive 
form a(ln N)2k”. In a study of the second moment series similar results are found. 
However, the spread of the intersection regions is somewhat larger and yields the 
estimate 

= 0.6 1 f 0.07. ( 1  1) 
The corresponding coefficient estimates are not very precise: thus we quote only the 
central values, 

b, = 1.4 and b2 = 2.3. (12) 

Both these satisfy bk 21 so that there is a reasonable hope that the onset of asymptotic 
behaviour is visible in the data. 

The estimates (10) and (1 1) do not exclude the possibility 1/11 = J12 which it is natural 
to expect on scaling grounds: on the contrary, they actually suggest the equality as 
the following argument shows! 

N - (e%)/(G,)2. 
Consider the ‘dimensionless’ ratio 

(13) 
By the Cauchy-Schwartz inequality this cannot be less than unity. Hence, if (4) is 
accepted with However, the estimates (IO) and (1 1) 
alone would suggest the reverse inequality: hence equality seems likely. To test this 
we have examined the ratios, %E), directly. They pass through a maximum value of 
about 3.3 at N = 12 and thereafter, allowing for a small, damped oscillation, decrease 
monotonically. Extrapolation against I /  N or l / N 1 ”  suggests a limit satisfying 

9 ( 4 )  - 

> 0 one must have I/12s 

2.9 9g)s 3.2. (14) 
In the light of this estimate it is worth recalling that for a Gaussian distribution one 
has the exact result a‘$ = 3. The apparent finiteness of 9g) again supports the equality 
and the natural speculation 

$1 = IC12=t  (15) 
then seems quite plausible. The quality of the resultant fits for ((II = 0.50 and 0.61 can 
be gauged from figure 1, which includes also the Monte Carlo data to be described 



L574 Letter to the Editor 

below. Note that one should take b ,  -2.35 if one accepts =i. Plot (iii) in figure 1 
embodies the shift from N to N +no  mentioned previously: see further below. 

In order to probe the validity of the asymptotic relation (4) for higher values of N, 
a constant-fugacity Monte Carlo simulation was performed (Redner and Reynolds 
1981, Redner unpublished). A grand ensemble of self-avoiding walks is generated with 
a constant fugacity, z,  per step. Thus the number of steps of a given walk in the 
ensemble is not fixed, but the average value, A ( z ) ,  should approach 

The reason for selecting this method of simulation lies in the delicate nature of the 
quantity being estimated. The variation of (0%) with N is sufficiently weak that any 
uncontrolled bias introduced into the simulation could easily yield seriously misleading 
results. On the other hand, some sort of systematic biasing procedures are necessary 
in order to extend a 'canonical' or fixed- N simulation to obtain samples with N 3 100. 
The constant fugacity approach has the advantage of being free of uncontrolled bias 
while being able to reach significantly larger values of N within a reasonable expen- 
diture of computing time. 

Now, when z increases towards the critical value z ,  = l /p (see equation (1)) the 
ideal mean value behaves as 

N o ( z )  = rzc / ( zc-  z ) .  (17) 

In table 2 the observed values of R ( z )  are compared with this asymptotic prediction 
for z +  z,. We conclude that the asymptotic form for R ( z )  suffices to describe the 
Monte Carlo data for ff b 20. (Recall that N = 21 is the largest N value reached in 
the exact enumerations.) 

In table 2 we also report the observed values of " ( z )  which should approach 

If one assumes the validity of the asymptotic expression (4) and approximates the 
sums by integrals one is led to 

Table 2. Results o f  the Monte Carlo simulation at fugacity L for " ( 2 )  and s(z). The 
values displayed for N,,(z) have been calculated from the asymptoricform (17) by using 
the values for z, and y given in ( I ) .  

- 
2 " ( 2 )  ~ ~ ( 2 )  2 "() No(z)  7 ( z )  

0.300 5.09 * 0.04 6.4 1.283 i 0.016 0.365 34.7 * 0.3 36.2 4. I83 k 0.068 
0.310 6.00*0.04 7.4 1.488i0.015 0.369 49.010.5 50.6 4 .84i0 .04  
0.320 7.28*0.05 8.6 1.712*0.014 0.370 54.810.6 56.2 5 .06i0 .06  
0.330 8.95 * 0.08 10.4 1.992 i 0.008 0.37 I 61.3 f 0.8 63.2 5.25 i 0.08 
0.340 11.63iO.06 13.0 2.366*0.019 0.372 70 .4 i0 .8  72.1 5.60fO.l 1 
0.345 13.44k0.09 15.0 2.587i0.024 0.373 8 2 i  1 84.0 5 .84i0 .10  
0.350 16.1 10.1 17.5 2.882i0.035 0.374 1 0 0 i 2  100.7 6.18*0.12 
0.354 18.9iO.l 20.3 3.122 f 0.036 0.375 121f3 125.4 6.65 i 0. I5 
0.360 25.1 * 0.1 26.7 3.657 i0 .042  0.376 1 6 3 i 2  166.4 7.15*0.10 
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as z + z ,  (or No+ CO), where the leading corrections may be of relative order l/(ln No)’, 
while the modified scale is given by 

61 = rb, exP[-r’(r)/uY)l, (20) 

in which T(x) is the standard gamma function and the prime denotes differentiation. 
Now the Monte Carlo data may be compared usefully with the exact enumeration 

results as shown in figure 1. For the latter (0%)”2J is plotted against ln(N/b) for 
N =2 ,3 , .  . . , 21 with (i) (I, taken as the central estimate (I,, =0.61, from ( l l ) ,  and 
b = b, = 1.4, from (12), and, (ii) with (I, = 4 and b = 2.35. The first choice yields a plot 
which is close to linear for N 3  5 while, to graphical accuracy, the choice (I, = 4 yields 
linearity only for N 3 9 .  The Monte Carlo data have been represented in similar 
fashion but with (8%) replaced by 0’(z), N replaced by the asymptotic form (17) for 
No(z), and b set equal to L1 as given by (20). The Monte Carlo results track the exact 
enumeration data, as far as they go, surprisingly well. For higher values of N - No 
they display no significant deviation from a straight line with the assignment (I, = 0.61 
and, at most, suggest only a slight upward curvature with (I, = 4. Thus it appears that 
the second moment of the winding angle is well described by a logarithmic growth 
law at least up to N s 170. 

As a further check on the plausibility of the simple value (I,, = 4 in the relation (4), 
we have allowed, in plot (iii) on figure 1, for a shift in the value of N to N + n o :  by 
scanning one discovers that no = 2 yields a remarkably linear plot for the full accessible 
range of N !  (For consistency, the shift in the Monte Carlo data is made by adding 
Go= no6, /b1  to N,( z ) ;  to avoid overlap of the plots, the value of b, has been replaced 
by b,e, which merely results in a shift of unity along the horizontal axis.) 

We present, finally, some heuristic considerations which, we believe, throw light 
on the observed logarithmic behaviour of 0% = (0%) and which support the conjecture 
$I =f. Let 

n 

rn ( rm e n >  = sm, (21) 
m = I  

be the position vector after n steps in a walk of a total of N steps and let s,, with 
Ism[  = a, be the nearest-neighbour step vector which brings the walk to rm. If R L  = (&) 
is the square end-to-end distance averaged over all allowed walks, one then has 

where the step-step correlation function is defined by 

g k ( I )  = ( S N  * s N - / ) / ( s % ) .  (23) 
If p n  and T,, are the radial and tangential components of the (reduced) step vector 
s,/a, this may be rewritten as 

gsN(I) = ( P N P N - I )  + t T N T N - / ) =  gpN(l) + g L ( l ) .  (24) 
In a free (or unrestricted) random walk one has g k ( 1 )  = 0 for I3 1 and the standard 

result R’, = A N  (or v = $) then follows immediately from (22). More generally, in a 
walk with only short-range restrictions which, e.g., allow self-intersections provided 
any polygons formed are of order exceeding k (Fisher and Sykes 1959), the correlations 
will decay exponentially with I so that the sum in (22) remains bounded as N + co; 
consequently, Y = 4 again follows. On the other hand, in a self-avoiding walk with 
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f < v < 1 the s tepstep correlation function must decay more slowly; however, a long 
walk forgets its origin eventually so that one expects g & ( l )  to approach a definite limit 
for fixed 1 as N + m .  A natural ansatz is thus 

g&( I )  = GI I “ ,  as N + m ,  (25) 

where G is a positive constant or, more realistically, a scaling function, G(w), of 
argument w = 11 N. If this is accepted, the sum in (22) dominates when a s 1 and, for 
consistency, one must have 

u=2(1-v) ;  (26) 

then U = i if v = f is correct (Nienhuis 1982). 
Now the separate radial and tangential correlation functions, gpN(1) and g L ( l )  in 

(24), are unlikely to be equal (since the statistics of sub-classes of walk will depend 
on the winding angle). Nonetheless it seems plausible that both will exhibit similar 
scaling behaviour with, moreover, the same exponent up = a, = 2( 1 - v). Even should 
this equality fail, however, it seems unlikely that one could have a? < 2(1- v) since 
that would imply a cancellation between gpN(l) and g L ( l )  in the sum yielding g k ( l ) .  

Let us now explore a similar line of reasoning for the mean square winding angle 
0% 3 (0%). We have, as before, 

N-l  

AO’,~O’,-O’,-,=(A0%)+2 C g&( l ) ,  (27) 
I =  1 

where the angular correlation function is 

g & ( I )  = ( A O N A e N  - I ) *  (28) 

Note also that when r, 3 3a one has, to good precision, 

A0, = ?,a/ r,, 

where a?, is the tangential step component; the bound IA0,lS a / rn  follows. 
Owing to the ‘mismatch’ between a polar coordinate system and a translationally 

invariant lattice, the angular correlation function does not, in general, vanish even for 
a free walk. However, it should decay exponentially rapidly for any walk with 
restrictions of finite range. In that case the behaviour of A@% should be dominated 
by (A&,) which, recalling (29), should be close to c (a2 / r%)  with, roughly, c =$. Now, 
accepting asymptotic Gaussian behaviour for a free walk we can write 

2 m  drexp( -ir2/  Na’) 
= i N - ’  ln(2N/eE) + O ( N - * ) ,  (30) 

2 T N  

where the lattice structure has been recognised by the imposition of a lower cut-off: 
this evidently dominates the behaviour for large N. Note that In eE = 0.5772 is Euler’s 
constant although the true coefficient here will be sensitive to the exact form of lattice 
cut-off. If one accepts (30) as characterising the behaviour of (A@%) one concludes, 
via (27), that 

0% = ao[ln( N /  bo)]’ (31) 
as N + m  with, roughly, ao=$  and bo=$eE. If, in order to examine the continuum 
limit, one sets N = t / a ’  one thus sees the scaling of 0 ( t )  with In r, as established 
rigorously by Spitzer (1958). But notice also the (logarithmic) divergence of the second 
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moment at fixed t when a + 0: this seems to reflect the Cauchy distribution of O(t)/ln t, 
found by Spitzer, which has a divergent second moment. 

For a self-avoiding walk the calculation of ( a 2 / & )  goes differently. First, the 
exponential factor in the integrand in (30) should be replaced by the corresponding 
self-avoiding scaling form, N - d ” X ( r / a N Y ) ,  with d = 2. It is recognised, however, that 
the scaling function X ( x )  vanishes like a positive power as x + 0 when d < 4 (see e.g. 
McKenzie 1972). Accordingly, the integral remains bounded when one removes the 
lattice cut-off by taking a + 0. More generally, in a self-avoiding walk of N steps the 
positions of intermediate locations, m steps along the chain, scale in similar fashion. 
We may thus anticipate the result 

as N + m .  
If one accepts this and assumes also that the reduced angular correlation function, 

g;(I) /g:(O),  decays rapidly, say faster than l / I ’ + E  with E > 0, one is led, via (27), to 

O’,=O&-Drr;/N2”-I+ ..., (33) 

where O &  is finite! This is a surprising result and one which is scarcely consistent 
with the numerical evidence (although one cannot actually rule out a large value, say, 
a$> 15). It implies a long-range directional correlation that, in effect, remembers 
forever the direction of the first step! But, in essence, that amounts to a self-contradic- 
tion since, to obtain (33), a rapid decay of angular correlations was postulated. Clearly, 
then, such a rapid decay is not plausible and the conjecture (33) is poorly founded?. 

To estimate the angular correlation function let us recall (29) and then suppose 
that the tangential step and overall radial distributions may, to sufficient accuracy, be 
factorised: this yields 

where the tangential step-step correlation function was introduced in (24). Now we 
may adopt (32) for the radial expectation and, as discussed before, postulate a scaling 
form like (25) for g;V(I) with = U = 2(1- v) by (26). By this route we arrive at 

where it is to be noted that the factors N u  have cancelled out! There seem no grounds 
for doubting that the integral over the scaling functions converges. Thus we finally 
conclude that O’, diverges precisely like a ,  In(N/b,) i.e. 

Physically, this result may be understood by realising, from (25), that the pre- 
dominant effect of the self-avoiding constraint is to bias a walk to keep growing in the 
same direction as the last step. (Compare with Grassberger (1982b).) If that step 
happens to have a significant tangential component, the bias translates into a growth 
of the winding angle: the step sizes must be rescaled by radial distance to obtain angles 
but no new process (or new exponent) is involved. By the same token, a deviation of 
U, from a seems implausible; but note that if ha = U, - 2(1- Y) were positive, so that 
g L (  I )  decays more rapidly than gpN( I ) ,  the exponent of N in (36) would exceed unity 

= f  (see (4) and (15)). 

t Attention should be drawn, in this context, to the study of the ‘persistence length’ of self-avoiding walks 
by Grassberger (1982b). In d = 2  dimensions, if the first step is directed along the positive x axis the mean 
end-coordinate ( x N )  appears to diverge weakly as N +. cc). 
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and one would be back to a result like (33) (although with 2 u  - 1 replaced by Au):  
but, as argued before, this seems to be almost self-contradictory! 

Finally, notice that our detailed heuristic analysis has mainly served to confirm the 
surmise stated originally on the basis of renormalisation group rescaling ideas, namely, 
that angles, being dimensionless, should behave as marginal variables with vanishing 
power-law exponents. Our detailed arguments suggest G I  = 4, so that (0%) = 
a ,  ln(N/ 6 , ) ,  but one knows from renormalisation group analyses in critical phenomena 
(see e.g. Wegner 1976) that more subtle powers of logarithms may appear in a marginal 
variable when nonlinear couplings to other variables are fully accounted for. It may, 
indeed, be possible to carry out such calculations here to lend further strength to the 
conjecture JI, = G2 = or, perhaps, to modify it. 
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