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Abstract. We study the kinetics of a diffusion-controlled reaction in which perfect traps 
(scavengers) diffuse and consume randomly distributed particles. We find that the number 
of particles remaining after time t decays as exp(-actd”), for spatial dimensions d 1 2 ,  
and as exp(-act) for d 3 2 ,  where U is a constant, and c is the trap concentration. These 
predictions are supported by Monte Carlo data in d = I and d = 2 .  We also discuss the 
differences between the scavenger reaction and the reaction of particles diffusing and being 
consumed by randomly distributed static traps. Finally, we treat the situation where both 
the particles and the traps diffuse. 

Very recently, there has been considerable resurgence in studying a variety of diff usion- 
controlled reactions. One important example is the ‘trapping’ reaction where particles 
diffuse in the presence of static, randomly distributed perfect traps. Although this 
problem has been studied for some time, it has only recently been recognised that the 
particle density p( t )  follows an anomalous long-time decay proportional to 

p ( t )  - exp(-ac2/d+2td/d+2) 

where d is the spatial dimension, c is the trap concentration, and a is a constant 
(Balagurov and Vaks 1974, Donsker and Varadhan 1975, Tanaka 1978, Grassberger 
and Procaccia 1982, Movoghar et a1 1982, Zumofen and Blumen 1982, Redner and 
Kang 1983, Havlin et al 1984). This unusual decay law stems from the presence of 
large (but very rare) trap-free regions. In such a region, the particle lifetime is 
anomalously long, and the contribution of these long lifetimes leads to the decay of 
equation (1). If such large fluctuations in the spatial distribution of the traps did not 
occur, the decay law would be exponential; this can be thought of as the mean-field 
limit of the decay law. 

While there is now a reasonable understanding of the trapping reaction, it appears 
that the general case where both the particles and the traps diffuse has not been 
considered in detail. Such a situtation may be useful to describe physical processes 
such as fluorescence quenching and catalysis (see e.g. Calef and Deutch (1983) for a 
review and extensive references). In this letter, we derive an approximate bound for 
the decay law of this general situation. In the extreme case of diffusing traps and 
stationary particles, which we term the ‘scavenger’ reaction, we argue that the decay 
law will be proportional to exp(-actd’2) for d < 2  and proportional to exp(-act) for 
d 3 2, where a is a constant. These predictions are supported by computer simulations 
in d = 1 and 2, where we also compare the decay laws of the scavenger and trapping 

0305-4470/84/08045 1 +05$02.25 @ 1984 The Institute of Physics L45 1 



L452 Letter to the Editor 

reactions. Finally we consider the general situation of both particle types diffusing 
and we argue that the long-time decay follows that of the scavenger problem. 

We begin by discussing the decay law of the scavenger and trapping reactions for 
short times. For the former reaction, the number of particles that are trapped after 
time t is proportional to the density of traps c and to the number of particles on the 
path of the moving trap. Hence 

P(0)-  A t )  - CP(O)(S(t)) (2) 

where ( S ( t ) )  is the mean number of sites visited by the scavenger after time t. For 
small times, we can rewrite this as 

(3) 

On the other hand, for the trapping reaction, the exact expression for the average 
survival probability is ((1 - c ) ~ ( ' ) )  (see e.g. Zumofen and Blumen 1982, Redner and 
Kang 1983). For short times, this average may be approximated by (1 - c) '~") ) ,  and by 
writing 1 - c = exp(-c), one sees that the decay laws of the two reactions coincide. 
This should hold until, in the scavenger reaction, the traps diffuse a distance of the 
order of their initial separation. This crossover time is given by c -* '~D; ' ,  where DT 
is the diffusion coefficient of the traps. For longer times, a particle can now be consumed 
by a trap which was initially very distant from the particle, and the decay in the 
scavenger reaction should be faster than that in the trapping reaction. Notice that the 
crossover time can also be obtained by equating the asymptotic decay laws of (1) and 
(3), and solving for the time. 

Now consider the long-time decay of the scavenger reaction. We first discuss the 
one-dimensional case and then generalise to higher dimensions. As in the trapping 
reaction, we focus on the rare events where a particle lies in a long trap-free region 
(Grassberger and Procaccia 1982). A particle is located at the origin, while the traps 
on one side of the particle are located at I , ,  1 2 ,  I,, . . . (figure 1). The probability for the 

A t )  - P(O)(l - c ( S ( t ) ) >  - P(0 )  exp(-c(S(t))). 

. Ir . 

Figure 1. Configuration of one particle (0) surrounded by traps ( X) in one dimension. 
The distances between the particle and the various traps are indicated. 

existence of the trap-free region from 0 to I ,  is simply exp(-cl,). In order that the 
particle lives until time t, we require that none of the traps can diffuse to the particle. 
For the ith trap to avoid the particle until time t ,  the trap must always remain to the 
right of the particle. This avoidance probability can therefore be bounded from below 
by the probability that the trap remain confined to an interval of length 21, centred 
about its starting point. This latter probability is (see e.g. Balagurov and Vaks 1974, 
Grassberger and Procaccia 1982) 

exp(- DTt/41f). (4) 
The survival probability of the central particle, f(t), may then be bounded from below 
by the probability that the initial trap-free region occurs times the probability that all 
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the traps avoid the particle. Hence 
a: 

f(t)a exp(-cI,) n exp -(&t/4lf) 

- exp(-cl,) exp( -oTtc  j,: d1/41’) 

- exp[-c(1, + DTf/411)]. ( 5 )  

To average this expression over all I ,  as t + 03, we need only maximise the value of 
the exponent. Taking this maximising value, and squaring to account for the traps 
lying to the left of the particle, we obtain 

To generalise this decay law for any d < 2 ,  it is now necessary to multiply the 
avoidance probability of (4) over all traps lying within a shell of thickness dl, and 
distance li from the central particle, and then multiply over all shells. This yields after 
a number of simple steps 

f ( f ) 3  eXp(-Clj’ - &fClf l -2)  (7) 

( f ( t ) )  3 ~ x P [ - c ( D ~ o ~ ’ ~ I ,  d < 2 .  t 8) 

and upon averaging over all trap-free regions, we obtain 

Even though this argument provides only a lower bound for (f(t)), we may expect the 
asymptotic dependence in the exponential to be exact in analogy with the situation of 
the trapping reaction. 

2, the derivation given above is no longer valid because a trap explores a 
non-compact spatial region (de Gennes 1983, Wafter et a1 1983), and the expression 
(4) for the avoidance probability is not correct. To find the correct expression for this 
probability, let us reconsider the situation of d <2 .  In this case, the trap explores a 
compact volume, and once a trap moves a distance of the order of the initial separation 
from the central particle, trapping is likely to occur. Thus the avoidance probability 
should be dependent on the initial particle-trap separation as is expressed in (4). For 
d 3 2, however, after time t, the density of points visited by a trap within a sphere of 
radius ( R ( t ) 2 ) ’ / 2  varies as (S(f))/f“‘2- , and this vanishes as t + 03. Hence if a 
trap moves a distance of the order of the initial separation from the particle, trapping 
is still unlikely to occur, and the avoidance probability should not depend on the initial 
separation. In the limit that DTt is much greater than the initial separation between 
the trap and the particle, the avoidance probability is simply 

For d 

1 - ( S ( t ) ) / t d ’ 2  - exp(-(S(t))/ td ’2) ,  d a 2 .  (9 )  

Since this expression does not depend on the initial separation, it is a simple matter 
to multiply this probability over all traps initially within a spherical shell of inner 
radius 1, and outer radius DTt, and then average over all trap-free regions. This gives 

(f(t)> exp(-CDTf), d > 2 .  (10) 

The reason that an exponential decay holds is that the main contribution to the survival 
probability for d > 2 comes from small trap-free regions. 



L454 Letter to the Editor 

Notice also that the decay laws of (8) and (10) can be written generally as 

( A t ) )  - exP[-c(s(o)l. (1 1)  

This is what was already obtained by the naive argument that led to (3). 
Evidently in the scavenger reaction, fluctuations play a relatively less important 

role than in the trapping reaction. In the latter case, for a particle initially in a trap-free 
region of radius 1 the average lifetime varies as 1 2 ,  and this ultimately led to the 
anomalous decay of ( I ) .  However, for the scavenger reaction, the average lifetime in 
a trap-free region of radius 1 is considerably shorter, and averaging over all trap-free 
regions does not modify the leading exp[-c( S(  t))] behaviour. 

The arguments given above can be straightforwardly generalised to the situation 
of diffusing particles and traps. For d < 2, an additional factor must be included in 
(7) to account for the probability of the moving particle to avoid the traps. This gives 

f ( t )aexp(-clf  -DTtclf‘-’- Dpt / l : ) ,  d <2, (12) 

where D p  denotes the diffusion constant of the particle, and the third factor accounts 
for the probability for the particle to avoid the traps. Upon averaging this expression 
over all I ,  we find that the third term is negligible compared with the first two terms 
at the optimal value of I ,  -(DTt)”’. The effect of this third term is to modify the 
amplitude of the decay given in (8). Thus we find 

( f ( t ) )  a exp(-DP/ DT) eXp[-C(DTt)d’2], d < 2 .  (13) 

For d 3 2, we use the mean-field expression for the avoidance probability, and we thus 
find that the optimal value of I ,  varies as ( D p t / ~ ) l ’ ( d + 2 )  just as in the static trapping 
case. This gives 

( f ( t ) )  3 exp(-cDTt) exp(-c2”d +2) td ’ (d+2)  1, d 2 2 ,  (14) 

i.e. exponential decay multiplied by the more slowly decaying factor of the static trap 
reaction. 

To test the predicted decay law of the scavenger problem, we have performed 
computer simulations in one and two dimensions and compared our results with the 
decay of the trapping reaction (figure 2). For short times the decay laws of the two 
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Figure 2. Results of a computer simulation for the scavenger reaction [O), and for the 
trapping reaction (+) in one dimension ( a ) ,  and in two dimensions ( b ) .  Plotted is the 
negative of the logarithm of the survival probability against the number of steps N .  For 
both cases the initial density of particles and traps was chosen to be 0.1. The simulations 
were performed on a chain of 2.5 x IOb sites in one dimension, and on a 1590 x 1590 square 
in two dimensions. 
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models are identical and in good agreement with the prediction of (8). However, after 
a time of the order of c - ~ ’ ~ ,  the decays deviate with the trapping reaction proceeding 
more slowly. 

In summary, we have studied the decay laws of a general reaction in which perfect 
traps and particles can both undergo diffusive motion. For any non-zero value of the 
trap diffusion coefficient, the decay is asymptotically the same as that of the scavenger 
reaction, exp(-c(S(t)}). Only for the case of static traps does the decay follow the 
long-time behaviour of exp(-c2/d+2fd’d+2). These predictions are in good agreement 
with our computer simulations. 

We are grateful to P Grassberger for stimulating correspondence in which he indepen- 
dently derived the decay of the scavenger reaction. 

Note added in proof: After this work was completed, we learned of work by M F Shlesinger and E W 
Montroll (1984 Proc. Narl Acad. Sci., Feb issue) in which some results, similar to those presented here, are 
given. We are grateful to Dr M Shlesinger for sending a copy of their paper prior to publication. 
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