
J. Phys. A: Math. Gen. 16 (1983) 1063-1071. Printed in Great Britain 

Monte-Carlo renormalisation group for continuum 
percolation with excluded-volume interactions 

E T Gawlinski and S Redner 
Center for Polymer Studies? and Department of Physics, Boston University, Boston, 
Massachusetts 02215, USA 

Received 6 May 1982, in final form 6 September 1982 

Abstract. The critical properties of a continuum percolation system with excluded-volume 
interactions are studied by Monte-Carlo position-space renormalisation group methods. 
The model system considered is comprised of oriented squares of unit side with concentric 
square hard-core regions of side L h c .  These elements are randomly distributed in a square 
planar region at a concentration x. For eight values of Lhc, the percolation threshold x *  
is estimated. Additionally, for two of these eight values, the connectedness-length 
exponent U is computed. A monotonic dependence of x *  upon Lhc is observed and our 
estimates are close to those of the lattice and freely overlapping continuum percolation 
problems. However, the accuracy of these estimates is not sufficiently precise to determine 
whether there is universality of continuum systems with respect to the size of the hard cores. 

1. Introduction 

Freely overlapping (or ordinary) continuum percolation has been found to have the 
same critical properties as lattice percolation, dispelling possible concerns that these 
two problems might be in different universality classes (Haan and Zwanzig 1977, 
Vicsek and KertCsz 1981, Gawlinski and Stanley 1981). A natural question arises as 
to what effects, if any, excluded-volume interactions may have on the critical properties 
of a continuum percolation system. In addition to this theoretical motivation, the 
study of such a model may also be of relevance for describing phenomena in nature 
that have both topological disorder and excluded-volume interactions. Two examples 
of such phenomena are conductivity in metal-insulator mixtures (Deutscher et a1 
1978) and gelation (Skal and Shklovskii 1974, de Gennes 1979). In this paper, we 
investigate the critical properties of a simple two-dimensional continuum percolation 
system with excluded-volume interactions and compare our results with those of the 
lattice and ordinary continuum problems. 

In the ordinary continuum percolation process, completely interpenetrable 
geometric elements (e.g. discs, squares, spheres, etc) are distributed randomly in space 
at a given concentration, x ,  and a bond is said to exist between two such elements if 
they overlap. At a critical concentration, x * ,  the onset of an infinite connected network 
of bonds occurs and the system displays a percolation threshold. 

To incorporate excluded-volume interactions, we define each element to contain 
a concentric hard core that cannot be penetrated by that of any other element. With 
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this additional constraint, the elements may resemble more closely the fundamental 
constituents (e.g. monomers, impurities, etc) of the particular system that we may be 
interested in representing. 

The model system we choose to study is comprised of oriented squares each with 
unit side, that is, squares whose centres are positioned randomly in a plane, but whose 
sides are constrained to remain parallel. Within each square, another concentric and 
aligned square with side L h c  < 1 is introduced to define the region of excluded volume. 
A square, rather than a disc or some other shape, was chosen for consistency in 
defining the renormalisation group transformation (see below) and for more economi- 
cal usage of available computer resources. By definition, the hard-core regions exclude 
only other hard cores but do admit the ‘soft’ external region of other squares (figure 
1). It is convenient to introduce a hard-core area fraction (hereafter called the ‘core 
fraction’), + = Lit, and our basic goal is to study the effects of varying this parameter 
on various quantities which typify critical behaviour, such as x *  and the connectedness- 
length exponent, v. 

The technique we use for determination of x * and v is the Monte-Carlo position- 
space renormalisation group (MCPSRG) (Reynolds et al 1978, 1980; for a recent 
review see Stanley et a f  1982). In the following section, we give a brief review of this 
technique and a description of how it was applied to the problem at hand. 

Figure 1. A ‘snapshot’ of a 5 x 5 system of oriented squares with the concentric hard 
cores shown shaded. Squares may overlap, and this overlapping defines the criterion for 
bonding. However, the hard cores may not intersect each other. $ = 0.10, x = 0.40, 20 
shuffles. 

2. MC PSRG method 

We begin by considering a b x b planar region within which N oriented squares of 
unit edge length and core fraction + are randomly distributed according to a procedure 
to be discussed below. A rescaling is performed in which a 6 x b cell is mapped into 
a 1 x 1 square with the same core fraction +. Thus we consider a one-parameter group 
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with 4 held fixed. One can easily envisage a two-parameter transformation in which 
the core fraction itself is renormalised. We have not yet explored in detail the 
possibility of treating +b as a relevant variable. However, in § 5 ,  we discuss what we 
anticipate to be the outcome of such a calculation. 

The most natural ‘rule’ for the one-parameter transformation is to occupy the 
renormalised square with probability equal to the overall area fraction s (not to be 
confused with the core fraction) covered by the squares in the initial b x b cell (Vicsek 
and KertCsz 198 1). Specifically 

s’= R ( s ;  b )  (1) 

where S I  is identified as the probability of a randomly chosen b x b area being occupied 
by a square of side b and core fraction $, and R (s ; b )  is the probability of spanning 
a b x b cell with squares of unit side covering an area sb2 .  From the fixed point s* 
of equation ( l ) ,  the eigenvalue A F’ is defined by 

from which we determine the exponent v through 

In A!) = ( l / v (* ’ )  In b +constant. (3) 

For our purpose, this formulation has a drawback in that s is not an easily 
controllable parameter; the independent variable for this problem is the concentration 
x = N/6* .  The exact dependence of s upon x is known only in the limit of $ = 0, 
where the spatial distribution is governed by Poisson statistics and the two variables 
are related by s = 1 -e-’. One can, in principle, compute the dependence of the area 
fraction on the concentration for +b # 0 from the pair-correlation function g ( r ) .  This 
function has been studied in great detail for the hard-sphere system (see, e.g., Barker 
aqd Henderson 1971 and references therein), but much less is known about the 
hard-square system, especially in the fluid phase. 

Thus we must resort to formulating the PSRG in terms of x. To accomplish this, 
we first define R (x; b )  to be the spanning probability. We then determine the 
underlying distribution L ( x ;  b )  from (Levinshtein et a1 1975, Reynolds et a1 1980) 

R ( x ; b ) =  J L(x’;b)dx‘ .  
0 

(4) 

It is easily seen that L ( x ;  b )  dx is the probability of first spanning a b x b cell when 
squares are being added to the cell continuously to bring the concentration to a value 
between x and x + dx. Provided that the cell is reasonably large, we can approximate 
the fixed point for the concentration by the maximum of L(x ;  b ) ,  i.e. the most probable 
concentration at which spanning first occurs. Therefore we approximate the fixed 
point by x *  = xmm, the concentration at which the derivative of L(x;  b )  with respect 
to x vanishes, and the eigenvalue by 

This alternative definition of the eigenvalue in terms of x does not affect the 
determination of the connectedness-length exponent v. We can see this most easily 
by returning to the standard formulation in terms of s. The area fraction, s(x), is an 
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analytic function of concentration near x * .  Thus from equations (2) and ( 5 ) ,  the 
eigenvalues in the two formulations are proportional. Therefore, from the logarithm 
of A r’, we determine v through equation (3) with only a shift in the additive constant. 

As the cell size becomes infinite, R ( x ;  6 )  and L ( x ;  6 )  approach a step function 
and a delta function respectively. If (T is the width of L(x ; b ) ,  we expect from finite-size 
scaling arguments (Levinshtein er a1 1975) that 

( 6 )  - b - l / d m ’ .  

The slope of lg U against lg b then gives another independent estimate of v. 

3. Monte-Carlo method and determination of R(x;  6 )  

For a particular concentration x and core fraction IL, we employ a Monte-Carlo 
simulation based on an importance-sampling procedure (see, e.g., Wood 1975, 
Levesque et a1 1979 and references therein). We begin by generating an initial state 
in which squares are positioned on the sites of a regular square lattice. 

In order to generate the desired hard-square fluid from the initial hard-square 
‘crystal’, one possibility is to attempt to move each square into a new position anywhere 
in the system with a probability equal to the Boltzmann factor for the particle at this 
new position. For the hard-core potential this sampling technique is trivial: all points 
in the system with both x and y coordinates within LhC of the centre of any other 
square are occupied with zero probability, while all other points are occupied with 
unit probability. Except at low concentrations, it is extremely inefficient to attempt 
to move particles entirely at random. It is more useful to move particles only a small 
distance of the order of the mean free path ro .  This is quite similar to the methods 
employed for simulating spin systems with continuous degrees of freedom where a 
spin flip is defined to be only a small angular deviation from an initial state (see, e.g., 
Binder and Stauffer 1979). 

In the course of moving particles from one position to another, it is possible that 
two cores may pass through each other. The occurrence of this event is of no concern 
as we are only interested in attaining the proper static distribution. 

To equilibrate in the fluid phase, we scan sequentially through the lattice and 
attempt to move particles one at a time. A trial move is made for each square by 
first moving it in a randomly chosen direction and by a distance chosen from a uniform 
distribution which is bounded from above by ro. This particular upper limit is chosen 
to increase the likelihood of a successful move. If the final position for a particular 
square is such that its hard core does not penetrate that of any other square, the move 
is accepted, otherwise the particle remains in its initial position. For the duratiion of 
this simulation process, periodic boundary conditions are in effect. 

We have varied ro so that the success rate for moving ranges typically from 10 to 
60% depending on the concentration and core fraction. One scan through the entire 
lattice, attempting to move each square, will hereafter be referred to as one ‘shuffle’. 

The first 20 shuffles at each concentration are used to allow for the decay of any 
transient behaviour. To test whether an equilibrium fluid state is reached within this 
time, the pair-correlation function was measured over a range of concentrations and 
core fractions. It was observed that after only a few shuffles, all memory of the initial 
crystalline structure was apparently eliminated (see figure 2). At this point, the system 
is tested for spanning. We continue to shuffle the particles and test for spanning in 
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Figure 2. The two-particle correlation function g(r) for a 50 x 50 system at various stages 
in the shuffling procedure. (a) The correlation function of the initial crystalline state, ( b )  
after one shuffle and ( c )  after 20 shuffles. The initial crystallinity appears to be entirely 
eliminated after 20 shuffles. Note the different vertical scales for the initial correlation 
function and those after shufRing has taken place. $ = 0.10, x = 0.8. 

sequential order for a large, predetermined number of times. The fraction of spanning 
realisations is then recorded for input to the PSRG calculation. 

As a check that the shuffling procedure generates realisations which are statistically 
independent, we tested for possible correlations in the spnanning states of different 
realisations (either yes or no). We observed that the movement of only a small fraction 
of the squares in a single shuffle was necessary to change the geometrical structure 
of the system significantly. Thus one shuffle, or at most two shuffles in the most 
extreme situations, is adequate to ensure statistical independence between realisations. 

Once a realisation has been generated, we ascertain whether a spanning cluster 
exists by employing a cluster multi-labelling scheme (Hoshen and Kopelman 1976) 
that can determine whether a connected path spans the system. Unfortunately, because 
of the necessity of storing the coordinates of all the squares for the purpose of shuffling, 
we are not able to exploit the full power of the Hoshen-Kopelman algorithm-that 
being the storage and manipulation of only a small fraction of the system at any given 
time. This limits us to a study of system sizes that are considerably smaller than those 
examined in previous work on lattice percolation and ordinary continuum percolation. 
However, by choosing a square as the percolating element, rather than a disc as has 
been done generally for continuum percolation, we were able to decrease both data 
storage space and computer execution time. This permitted the study of larger systems 
with more realisations than would have been possible with a system comprised of discs. 
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4. Calculations and results 

We examined eight core fractions between (I, = and i,b = 0.6 (higher core fractions 
lead to some interesting problems which will be discussed below). The run at 4 = 
was made to check whether the results of ordinary continuum percolation would be 
reproduced. Limitations in computer resources confined us to a detailed study of only 
two of these core fractions, (I, = 0.1 and (I, = 0.5. For these two, we took data at eleven 
concentrations, each for six different cell sizes ranging from b = 6 to b = 85. At b = 6, 
45 000 realisations were generated for each concentration, decreasing to 1500 realisa- 
tions for b = 85. In addition, for one cell size, b = 20, 1000 realisations were run at 
each of eleven concentrations for the six remaining core fractions in order to estimate 
x* .  Implicit in these estimates is the fact that, for b 5 10, x *  differs by less than 1% 
from its limit as b + 00. 

For the purpose of determining exponents, we assume that L(x ; b )  can be described 
accurately by a beta distribution. This is a two-parameter canonical form for nor- 
malised distributions defined on the unit interval-precisely the situation we encounter 
if we measure the concentration relative to the close-packing concentration. The beta, 
rather than the Gaussian, distribution was chosen because the former has been shown 
to be more representative of L ( x ;  b )  for small b where the distribution can be skewed 
(Reynolds er a1 1980). Raw data for R ( x ;  b )  against x for i,b = 0.1 and i,b = 0.5 have 
been fitted to the integral of the beta distribution as shown in figure 3 .  Expressions 
for x * ,  A and (T are easily found in terms of the fitting parameters, and the numbers 
reported here are calculated accordingly (see figure 4). Uncertainties in the fitting 
parameters are computed from the standard deviation taken over all realisations and 
these uncertainties are propagated down to the relevant quantities according to 
standard procedures. 

5. Discussion and conclusion 

In table 1, we list x *  and v for each core fraction investigated and compare these 
estimates, where possible, with previous results. The error bars on v indicate a slight 
discrepancy between systems with and without the hard-core interaction. However, 
our analysis does contain systematic errors which are hard to quantify, as well as the 
quoted statistical errors. 

Due to the lack of any reasonable estimates for such systematic errors, we are 
unable to arrive at a definite conclusion concerning the possible universality or 
non-universality between continuum percolation with and without excluded-volume 
interactions. The answer to this question appears to require further study. 

There are two interesting points that have not been fully addressed in this study. 
The first is that our investigations were limited to core fractions (I, G 0.6. For higher 
core fractions, x *  occurs above the concentration where the freezing transition for a 
gas of hard squares of side Lhc occurs; that is, at a concentration where percolation 
is expected to occur, there is little free volume available for particle movement. 
Consequently, the shuffling procedure becomes extremely inefficient in equilibrating 
the system. Starting with a crystalline initial state, it would take a prohibitive amount 
of time before a random distribution of particles was obtained. 

One possible solution is to start with an initial state which is in the fluid phase. 
To achieve this, one possibility is to start with the fluid phase at an intermediate 
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Figure 3. Raw data for the spanning probability R ( x ;  b )  for ( a )  core fraction i,b = 0.1 and 
( b )  @ = 0.5. The data for b = 6-85 are shown by the following symbols: b = 6, A; b = 10, 
cl; b = 17, ix; b = 30,& b = 50, 0; b = 85, 0. The smooth curves through the data 
represent best fits to the integral of the normalised beta distribution. Notice that as the 
cell size increases, R ( x ;  b )  approaches a step function. Furthermore, for $ = 0.5, the data 
appear to be considerably smoother than the data for i,b = 0.1. This appears to stem from 
the smaller available phase space at 6 = 0.5 which can be sampled more thoroughly using 
fixed computer resources. 

concentration. Thereby successively shuffling and compressing the system, it may be 
possible to arrive at the desired high concentration while still remaining in the fluid 
phase. 

A second point is that we have only considered a one-parameter renormalisation 
in which the core fraction remains constant. However, a two-parameter scheme in 
which both the concentration and the core fraction are renormalised could, in principle, 
be constructed easily. The inherent nature of the excluded-volume effect suggests the 
proper weight function for rescaling the core fraction. Since the hard cores do not 
overlap, the excluded-volume effect in any configuration should be additive. Thus, 
to find the rescaled core fraction, we should first add the areas of the cores for all 
particles in a configuration and divide by the rescaling factor. Since the ‘soft’ regions 
of the squares can overlap but the hard cores cannot, the above prescription suggests 
that the core fraction increases with renormalisation. Therefore, the critical point at 
(I, = 0 should be unstable in the (/I direction with a critical line emanating from the 
(I, = 0 fixed point and terminating at a stable fixed point located at (I, = 1. On these 
grounds, one should expect universality with respect to core fraction, with the critical 
behaviour controlled by a fixed point at (I, = 1. In the light of the difficulties encoun- 
tered with the presence of the freezing transition, however, it is not clear how one 
might study the (I, = 1 limit. Another difficulty with this limiting case is the extremely 
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'"j ( a )  

Figure 4. Double logarithmic plots of A, the eigenvalue of the renormalisation group 
transformation, and U,  the width of the underlying distribution, as functions of b. Data 
for two core fractions are shown: (I, = 0.1 (0) and (I, = 0.5 (A). A linear least-squares fit 
is shown in ( a )  for A and in ( b )  for cr. From the slopes of these lines we obtain the 
exponent estimates quoted in the text. 

Table 1. Estimates of critical parameters for continuum percolation with hard-core 
interactions, and comparison with results from freely overlapping percolation. Superscripts 
( A )  and ( U )  on the exponent U indicate that these values are determined from equations 
(3) and (6)  respectively. For comparison, recent estimates of U for lattice percolation are 
U = 1.333i0.002 (Blote et a1 1981), U = 1.342*0.004 (Eschbach et al 1981) and U = 
1.33*0.01 (Stanley et a1 1982). 
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0.74i0.01 
0.718 i 0.003 
l . l i O . 1  

- 
1.44 * 0.09 
- 

- 
1.39i  0.07 
- 
- 

- 
1.47*0.08 
- 

1.35 *0.07 1.33i0.05 
1.343 i0.019 

- - 

a Vicsek and KertCsz (1981); MC PSRG calculation for overlapping discs. 

authors determined only one estimate of U. 

tion for overlapping squares. 

Gawlinski and Stanley (1981); Monte-Carlo simulation for overlapping discs. These 

Pike and Seager (1974) and H Nakanishi (private communication); Monte-Carlo simula- 
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stringent bonding criterion due to the vanishingly small ‘soft’ regions. We hope to 
consider these interesting questions in the near future and also to explore the possibility 
of extending our method to three dimensions, where good agreement between 
exponents for three-dimensional lattice percolation and percolation of bound water 
molecules interacting through an ST2 potential has been found by Geiger and Stanley 
(1982). 
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