
J. Phys. A: Math. Gen. 15 (1982) L605-L610. Printed in Great Britain 

LE'ITER TO THE EDITOR 

Analogue experiments and computer simulations for 
directed conductivity 

S Rednert and J S Brooks$ 
+Center for Polymer Studies8 and Department of Physics, Boston University, Boston MA 
02215, USA 

Department of Physics, Boston University, Boston MA 02215, USA 

Received 15 July 1982 

Abstract. We study the conductivity in directed percolation by an analogue experiment 
and by computer simulations. In the experiment, the dependence of the conductivity on 
concentration of conducting diodes, p .  shows very large fluctuations. This reflects the 
topological constraints of directed percolation where conduction is very sensitive to singly 
connected or cutting bonds. We have checked this hypothesis by studying the underlying 
directed backbone of the experiment using computer simulations. From the dependence 
of the conductivity on the backbone fraction, and the dependence of the backbone fraction 
on p - p c ,  we infer a directed-conductivity exponent considerably less than unity, consistent 
with earlier theoretical work. 

In this letter, we study the conductivity in directed percolation both by an analogue 
experiment and by computer simulations. We are motivated in part by the recent 
theoretical work on directed conductivity (Redner 1982b, Redner and Mueller 1982, 
Dhar et a1 1982). The theoretical work predicts that the directed conductivity should 
vanish as @ -p$+, as p, the concentration of conducting bonds, approaches a critical 
concentration p c  from above. The numerical value for the directed conductivity 
exponent, t,, was found to be approximately 5, rather different from recent estimates 
of close to $ for the conductivity exponent of the isotropic random resistor network 
(see e.g. Fogelholm 1980, Lobb and Frank 1982, and references therein). Our study 
provides evidence in support of this small value of t+ by an analysis of our conductivity 
experiment in terms of the underlying directed backbone of the network. 

A typical network considered in this work is sketched in figure 1. Each bond is 
a resistor and diode in series so that its I-V characteristic has the form shown in 
figure 2. In our computer simulations, we have approximated this response by a 
simpler model in which a bond behaves like an ideal resistor if it is forward-biased, 
and like an open circuit if it is back-biased. As we shall see, this modification does 
not change the conductivity of the network significantly for the applied voltages at 
which the experiment was performed. 

A second feature of the networks is that they are rotated by 45" with respect to 
the applied field. Our reason for doing this is that directed percolating systems are 
anisotropic in structure near the percolation threshold. This anisotropy picks out two 
special axes, one parallel and one perpendicular to the direction of the applied field 
as shown in figure 1 (see e.g. Kinzel and Yeomans 1981, Klein and Kinzel 1981, 
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Figure 1. Schematic picture of the directed percolating system considered in this work. 
The parallel and perpendicular axes of the network are indicated. In the experiments, 
both free and periodic boundary conditions were employed in the transverse direction. 
For periodic boundaries, the points a and a' are identical. 

Redner 1982a, and references therein). Along these two directions, distinct correlation 
lengths diverge at different rates. Because of this anisotropy, the conductivity is a 
tensor. By orienting the lattice by 45". the conductivity tensor becomes diagonal, and 
our measurements examine only its largest component. 

Experimentally, we have studied networks of sizes l o x  10, 19 X 19 and 19 x 52 
sites. The largest lattice was chosen to be rectangular in shape as dictated by anisotropic 
finite-size scaling considerations for directed percolation (Redner and Mueller 1982). 
To perform the experiment, the coordinates of each lattice diode were generated and 
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Figure 2. Experimental current-voltage characteristic of a single bond consisting of a 
resistor and diode in series. We also show (broken line) the I-V characteristic of an ideal 
'ohmic' diode on which the computer simulation is based. 
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Figure 3. (a) Normalised conductivity as a function of concentration p for the l ox  
10 lattice. The values of p e  predicted by computer simulations and from the analogue 
experiment are indicated by the arrows. ( b )  Same as (a), but for the 19 x 52 lattice. The 
open circles are the results of the simulations which are concentrated in the vicinity of 
the conductivity jumps. 

stored in a random order,and the diodes were then cut sequentially according to the 
ordering of this list. For the smallest lattice (figure 3(a)),  the data for the conductivity 
as a function of p is quite linear for a large range of p, as would be predicted by an 
eff ective-medium theory. Close to p c ,  the conductivity shows downward curvature, 
qualitatively consistent with a directed conductivity exponent of t+ 6 1. 

When we look at the 19 x 52 lattice (figure 3(6) ) ,  the situation is more interesting. 
As a function of concentration, the conductivity shows several rather large jumps, 
one being approximately 22% of the normalised conductivity. These fluctuations are 
several orders of magnitude larger than those encountered in similar analogue experi- 
ments for a random resistor network (see e.g. Watson and Leath 1974). Identical 
jumps occur when our experiment is performed with either 60V or 150V across the 
network. This indicates that the finite voltage threshold (figure 2) for turning on each 
diode plays an insignificant role in the conductivity, and that the jumps arise from 
purely geometrical effects. We have therefore employed computer simulations in 
order to understand the origin of the jumps and to serve as a guide for interpreting 
the conductivity data. 
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For the computer simulations, we have used the stored list of randomly ordered 
bonds to repeat the analogue experiment, focusing primarily on the regions of the 
large jumps (figure 3(b) ) .  The network conductivity was calculated by a numerical 
relaxation method as outlined in Redner and Mueller (1982). In addition, we examined 
the geometry of the network directly. Figure 4(a) shows the backbone of the network 
after 465 bonds have been removed and all isolated clusters and dangling ends have 
been stripped away. In the figure, the next bond to be removed in the experiment is 
indicated by the arrow. Notice that in isotropic percolation, the removal of this 
arrowed bond would entail the stripping away of only four additional dangling bonds 
in order to obtain the new backbone. However in directed percolation, 140 bonds 
must be stripped in order to obtain the backbone (figure 4(6)). The normalised 
directed conductivity of the network is 0.371 before the arrowed bond is removed, 
and 0.294 afterwards. In sum, the simulations confirm that the jumps in the conductivity 
arise because of large changes in the size of the backbone. 

Figure 4. ( a )  The directed backbone of the 19 x 52 network after 465 bonds have been 
removed. The arrow indicates the next bond that will be removed. ( b )  The directed 
backbone after the arrowed bond in ( a )  is removed. 

The strong correlation between the conductivity and the backbone size suggests 
that we first examine the dependence of the conductivity on the number of bonds in 
the backbone, and then determine the backbone size as a function of (p - p c )  indepen- 
dently. From the 19x52 experiment, we plot the conductivity versus backbone 
fraction in figure 5(a). This data is much better behaved than the dependence of the 
conductivity on p, and it appears that the conductivity varies approximately linearly 
with the backbone fraction. 

In order to study the behaviour of the backbone fraction on p - p 0  we use 
anisotropic finite-size scaling which predicts that for a finite system at p = p c ,  the 
backbone fraction should vary as Lcp””I1. Here p’ is the directed backbone exponent, 
vlj = 1.74 is the parallel correlation length exponent of directed percolation, and LII is 



Letter to the Editor L609 

t i 
J 

1 I I 1 1 1 1 1 1 1  I I I  I I 
10’ 10’ rl 

LII 

Figure 5. ( a )  Plot of the conductivity against backbone fraction, and (b )  the backbone 
fraction against the network length, Lil. The latter data are based on anisotropically scaling 
a 1 x 1 lattice up to a 48 ~ 4 5 3  lattice. In ( b )  the broken line has a slope of -0.32. 

the length of the system. On a double logarithmic scale, a plot of backbone fraction 
versus Lli has an asymptotic slope of -0.32 (figure 5 ( b ) ) ,  or an exponent p ’ =  0.56. 

In summary, we have found that the large jumps observed in the conductivity of 
directed percolation arise from fluctuations in the backbone fraction. A much 
smoother variation results if the conductivity is plotted against the backbone fraction 
instead of the total number of bonds. Since the directed backbone exponent and the 
directed conductivity exponent appear to be fairly close, we therefore conclude that 
the latter exponent is considerably less than unity. This is in qualitative agreement 
with previous analytical and numerical work on this problem. 

We thank A Coniglio, C Lobb, P Leath and D Stauffer for helpful discussions, and 
D Stauffer for suggestions on the manuscript. We also thank A Agarwal, S Dickinson, 
A Flory, and S Samuels for their help in the assembling of the networks. 

Note added. As we were writing up this work, we learned that Dhar et al have also 
studied the directed conductivity problem. They obtain results similar to ours, and 
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an additional result that p' = 2p, where p is the exponent of the directed percolation 
probability. Our estimate for p' is in excellent agreement with this latter result. We 
are grateful to D Dhar for communicating his results prior to publication. 
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