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Abstract. We use the position-space renormalisation group and exact enumeration 
methods to study configurational properties of directed lattice animals. These are clusters 
made up of directed bonds in which the ‘tail’ of a new bond must be added to the ‘head’ of 
already existing bonds. Furthermore, the directed bonds have a net orientational order 
with respect to some preferred anisotropy axis. In the limit that the number of bonds 
N + CQ, directed animals become extremely anisotropic and two independent correlation 
lengths, one parallel and one perpendicular to the preferred axis, are required to describe 
their shape. Mean-field theory suggests that these lengths diverge with exponents of Y I I  = f 
and vl = $ respectively. Below seven dimensions mean-field theory breaks down, and we 
analyse our enumeration data to estimate the location of the critical point, the exponents YII  

and v l ,  and the exponent 0 characterising the singularity of the directed animal generating 
function. In two dimensions, we estimate that YH = 0.8, vl = 0.5 and 0 = 0.5, and our 
estimates interpolate smoothly with dimension to their respective mean-field limits. 

In two dimensions, we also apply a one-parameter position-space renormalisation group 
using small cells which gives reasonable estimates for the location of the critical point and q. 
In addition, we formulate a two-parameter renormalisation which allows us to study animals 
with a variable fraction of directed bonds, and thereby describe the crossover between 
directed and isotropic animals. We find that any anisotropy ensures that the critical 
behaviour belongs to the universality class of directed animals. 

1. Introduction 

Very recently there has been a considerable amount of interest in studying directed 
percolation (see e.g. Obukhov 1980, Kinzel and Yeomans 1981, Reynolds 1981, 
Redner 1981a, and references therein). This is a modification of the usual isotropic 
bond percolation problem in which a directionality constraint plays a fundamental 
role. In directed percolation, each occupied bond joining nearest-neighbour sites 
allows connectivity or information to ‘flow’ in only one direction along the bond. In 
this sense, a bond in directed percolation plays the role of a diode in an electrical 
network. Furthermore, the directed bonds are defined to have an overall orientation 
with respect to some anisotropy axis (see figure 1). Due to this global bias, the critical 
properties are considerably different from those of isotropic percolation. One of the 
more striking features is the existence of an anisotropy in which two independent 
diverging correlation lengths, one parallel and one transverse to the bias, are required 
to describe cluster shapes near the percolation threshold (Dhar and Barma 1981, 
Kinzel and Yeomans 1981, Klein and Kinzell981, Redner 1981a, Essam and De’Bell 
1981). 
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Figure 1. (a) A typical directed lattice animal on the square lattice. With respect to the 
origin, there is an anisotropy axis along which the cluster length, 611, may be defined. The 
cluster width, tL, is also shown along with the perpendicular projection, r l ,  that is calculated 
in our exact enumeration. ( b )  A typical partially directed animal on the square lattice. 

A variation of percolation that has been of great utility in describing various random 
cluster phenomena is the lattice animal problem (Domb 1976, see also Stauffer 1979 
and references therein). This is a lattice model in which each cluster of b bonds carries a 
weight of x b ,  where x is a fugacity for each bond. This may be thought of as a special 
limit of bond percolation in which the statistical weight for the perimeter of any cluster 
is set equal to unity. The properties of lattice animals have been studied extensively 
both for their intrinsic interest and for their relationship to percolation. 

In this letter, we shall study directed lattice animals in which the classical lattice 
animal problem is modified by the orientational constraint of directed percolation. We 
find that directed animals become extremely anisotropic in shape as the number of 
bonds N in the animal becomes infinite. Our goal is to study this anisotropy quan- 
titatively, and to calculate exponents that characterise various geometrical properties of 
directed animals. 

2. Isotropic and directed animals 

For isotropic lattice animals, there are two basic properties that are generally studied. 
The first is the generating function defined by 

where ab is the number of distinct animals containing b bonds per lattice site. It exhibits 
a power-law singularity of the form 

(2) 

as x + x i .  The exponent 8 appears to be universal, depending only on the lattice 
dimensionality d (see e.g. Gaunt 1980 and references therein). It is equal to unity in 
d = 2 (Parisi and Sourlas 1981), and it interpolates smoothly with dimension to the 

r (x )  - ( X  - xC)' 
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mean-field value of (Fisher and Essam 1961, Gaunt and Ruskin 1978) valid for d 3 8 
(Lubensky and Issacson 1979, de Gennes 1979). 

A second, more physical, property is the dependence of the mean animal radius 5 on 
N. This dependence is written as 

5-”, (3) 

with U a universal exponent that is approximately equal to 0.6 in d = 2 (Isaacson and 
Lubensky 1980, de Gennes 1980 and references therein), and interpolates smoothly to 
the value of f in the mean-field limit (see e.g. Lubensky and Isaacson 1979, de Gennes 
1979). 

For directed animals, equation (3) must be modified because two different cor- 
relation lengths exist (figure 1). Parallel to the anisotropy axis, a longitudinal radius 
diverges as 

h - Nr‘, 

while perpendicular to the anisotropy, there is a transverse cluster width whidh diverges 
at a different rate 

6L-N””. 

Our primary aim in this paper is to use both exact enumeration methods and the 
position-space renormali-mtion group (PSRG) to calculate the exponents 6, vll and vL for 
directed animals in dimensions below the upper critical dimension, and to understand 
the crossover between isotropic and directed animals. 

For purposes of calculatio:i, we consider two directed animal models on ddimen- 
sional hypercubic lattices. The first is fully directed animals in which directed bonds are 
constrained to point in the +x,  + y ,  +z ,  . . . directions (figure l(a)). Starting from an 
arbitrary origin, a fully directed animal ‘grows’ only into the first 2d-tant of the lattice, 
corresponding to an external bias along the diagonal (1,1,1, . . . ,1). We also consider 
partially directed animals, in which directed bonds can occur along only one Cartesian 
axis (Obukhov 1980, Redner 1981a), while isotropic two-way bonds occur along the 
remaining (d - 1) axes (figure l(b)). In this model, the external bias is parallel to a 
Cartesian axis. In some sense, the primary difference between the two models is the 
direction of the external bias. Thus one interesting question is whether the critical 
properties of directed animals depend on the direction of this axis. 

Before embarking on detailed calculations, we investigate the behaviour in the 
mean-field limit. This is helpful in order to determine whether anisotropy in the animal 
shape is expected. In addition, it is then possible to find the upper critical dimension d,  
and thereby ascertain the interesting range of dimensions where non-classical 
exponents should occur. To this end, we re-examine the mean-field theory of Lubensky 
and Issacson (1979) for isotropic animals, suitably generalised to account for directed 
bonds. 

In the mean-field expansion of the free energy, spatial fluctuations are accounted for 
by including even powers of gradients in the order parameter. Due to the bias inherent 
in directed problems, we expect that odd powers of gradient willnow appear (Obukhov 
1980, Redner 1981a). To lowest order, this leads to a term of the form a k multiplying 
the square of the order parameter. Here k is the wavevector and a is a vector which 
defines the orientational axis of the directed bonds. Thus, parallel to a, large-distance 
correlations are governed by a linear term in k, while in the transverse direction, the 
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correlations are governed by a quadratic term in k. This leads to a parallel correlation 
length, til, that should diverge at twice the rate of &, the correlation length perpen- 
dicular to a. Furthermore, since the terms involving odd powers of k vanish in 
directions transverse to a, the asymptotic behaviour of tL should be the same as the 
correlation length in isotropic animals. That is v L  = 4, and as a result, zq = t .  A typical 
directed animal is therefore shaped like a prolate spheroid of revolution with a major 
axis 611 and d - 1 minor axes t1 (figure 1). This leads naturally to a generalised Toulouse 
(1974) condition ford, of the form (dc- l ) v l  + = 2p + 'y, compared with d,u = 2p + y 
for an isotropic system (Redner 1981a). Since the right-hand side of the latter equation 
must be 2 in order to obtain d, = 8 for isotropic animals, we find d, = 7 for directed 
animals. Thus we shall study the range of dimensions between two and eight for our 
series calculations. 

3. Exact enumeration 

We have primarily concentrated on fully directed animals because it is possible to 
calculate longer series. We have enumerated fully directed animals for d = 2 through 8, 
and partially directed animals for d = 2 and 3. In addition to calculating the number of 
animals, we have studied the cluster shape by measuring .$I and & as a function of N. For 
fully directed animals, we measure 511 as defined in figure 1 directly, while in the 
perpendicular direction we calculate thc maximum value of the projection of the animal 
onto a partkular (d - 1)-dimensional hyperplane that includes the anisotropy axis. The 
transverse cluster width, t , ( N ) ,  is directly proportional to this projected length. For 
partially directed animals, we performed similar calculations, although it is somewhat 
less convenient to find the cluster width because azimuthal symmetry about the 
anisotropy axis is no longer exact. The data from this enumeration are shown in 
appendix 1. 

We first consider the analysis for the generating function. For this purpose we first 
performed a Pad6 analysis of the logarithmic derivative of this generating function 
series to get a qualitative picture. Because this function is only weakly singular, it is 
useful to analyse the first and second derivatives of the series as well. In higher 
dimensions, the shortness of the series and the relatively slow convergence due to the 
possible presence of confluent singularities make the Pad6 analysis very inaccurate. 
Consequently, we have also used an alternative method following Gaunt et a1 (1976). 
We form the estimates e&, = b(1  - A b / A ) ,  where Ab = a b / @ , - l  is the ratio of successive 
generating function coefficients, and A is an estimate for the b + CO limit of the Ab. For A, 
we use estimates based on linearly extrapolating the Ab against l /b ,  that is bAb- 
(b  - 1)hb-1. It is then possible to extrapolate the resulting sequence for Ob by a variety of 
methods (see e.g. Gaunt and Guttmann 1974), and thereby obtain estimates for 8 which 
appear more reliable than the results of the Pade analysis. Our estimates for the critical 
fugacity x c  and the exponent 8 are given in table 1. 

Qualitatively, we find that e interplates smoothly from a value of 0.5 in two 
dimensions to a value of approximately 1.5 in seven and eight dimensions. Further- 
more in two and three dimensions the estimates for e in fully and partially directed 
animals are quite close. This supports a universality of directed animals with respect to 
the direction of the anisotropy axis. 

In higher dimensions, our exponent estimates are somewhat imprecise, although the 
closeness of our estimates for e in seven and eight dimensions is consistent with d, = 7. 
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Table 1. Series estimates for the critical parameters of directed animals. The error bars 
represent subjective estimates of the uncertainties in extrapolating the series. 

Fully directed 
d XC B VI1 VI 

2 0.2849 f 0.0001 
3 0.1586 f 0.0004 
4 0.1100*0.0005 
5 0.084f0.001 
6 0.068 f0.001 
7 0.058 i 0.001 
8 0.050f0.001 
Partially directed 
2 0.2252f0.0001 
3 0.108f0.001 

0.53i0.01 
0.94 f 0.02 
1.20f0.05 
1.35 f 0.15 
1.40f0.15 
1.43 f 0.15 
1.44f0.15 

0.497 f0.003 
0.93 i 0.02 

0.800f 0.001 
0.700f0.005 

0.64fO.01 
0.62 i0.02 
0.61 f 0.03 
0.60f0.05 
0.60i0.05 

0.792 f 0.003 
0.64 f 0.05 

0.50 f 0.003 
0.45 i0.005 
0.40f0.02 
0.39f 0.04 
0.35 f 0.05 
0.35 f 0.08 
0.35 f 0.08 

0.52f0.01 
0.49 i 0.03 

To obtain the correct mean-field limit for 8, we consider direct animals on the Cayley 
tree. In this case, the only difference from isotropic animals is that only one site of a 
directed animal can serve as the origin. This leads to a reduction in the number of 
distinct directed animals of b bonds by a factor of b compared with the isotropic case, 
and a corresponding reduction of 8 by 1. For isotropic animals, it is known that 6 = 5 
(Fisher and Essam 1961, Gaunt and Ruskin 1978), and consequently for directed 
animals we expect 6 = $. Our data for 8 are in rough agreement with the predicted 
results of mean-field theory. 

We now turn to the analysis of the correlation lengths in order to obtain estimates 
for vi1 and vI. To accomplish this, we first examine the dependence of &(N) and &(N) 
against N on a double logarithmic scale. These data should be asymptotically linear, 
with limiting slopes v11 and vI respectively. We estimate these limiting values by first 
considering the sequence of slopes calculated from the straight lines that join each pair 
of successive data points. Then this sequence is extrapolated by means of Neville tables 
to yield the values shown in table 1. For low-dimensional systems, we have series of 
sufficient length to extrapolate with a good degree of confidence. The only exception is 
the 511 series for zdirected animals in three dimensions. The Neville tables are not well 
converged and our estimate for seems anomalously low. In higher dimensions, 
however, there is substantial downward curvature in the data of successive slopes when 
plotted against 1/N, and a visual extrapolation appears as reliable as the Neville tables. 
In six and higher dimensions, the series appear to be too short to display fully the 
curvature mentioned above. As a result, our estimates for YII  and vI will probably be 
too high for these dimensions. 

The general trend of the data is that vI decreases from approximately 0.5 in two 
dimensions to a value near 0.35 in seven and eight dimensions. This is in qualitative 
agreement with the predictions of mean-field theory. In addition, is approximately 
equal to 0.8 in two dimensions and appears to decrease to about 0.6 in seven 
dimensions. While the estimated values of vll and vI in seven and eight dimensions are 
not in good agreement with mean-field prediction, the ratio of y ~ / v ~  is fairly close to the 
predicted value of 2. This suggests that there is a systematic effect which is cancelled in 
taking the ratio, thereby producing a relatively more accurate number. In sum, we see 
that the anisotropy is relevant as N + 00; both 511 and diverge, but at different rates so 

5 

that 5idh -* 0. 
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4. Position-space renormalisation group 

For directed animals it is possible to formulate a rather simple cell P s m  approach in a 
manner similar to that employed for the percolation, self -avoiding walk and isotropic 
lattice animal problems (Reynolds et a1 1977, de Queiroz and Chaves 1980, Family 
1980, Redner and Reynolds 1981). The basic idea is to divide the lattice into finite 
cells of linear dimension I and rescale to cells of linear dimension 1. Within each cell 
we consider the generating function for all animals that start at an origin (the lower 
left-hand corner of the cell) and traverse the cell in a particular direction. These 
configurations map to an occupied directed bond on the rescaled level. We define 
the recursion relation by requiring that the generating function for traversing directed 
animals remain invariant on the original and rescaled levels. 

This leads to a recursion relation of the form 

x ' = R ( x )  ( 5 )  

where XI  is simply the renormalised generating function of the 1 x 1 cell. We have 
calculated this recursion relation for the 2 x 2 ,3  X 3 and 4 x 4 cells (appendix 2). These 
recursion relations each have three fixed points. Stable ones occur at x *  = 0, and there 
is also an unstable fixed point at an intermediate value of x *  which describes directed 
animals at criticality. The location of the fixed point provides an estimate for xc, and the 
eigenvalue of the transformation is generally used to find a correlation length exponent. 
For directed animals there are two correlation length exponents, and the connection 
between the eigenvalue and vli and v, is still not well understood. One can make a 
plausible argument that this type of PsnG approach is sensitive to vll (Redner 1981a). 
However, to resolve the point definitively, a PSRG approach that unambiguously 
differentiates VI( and Y, is required. 

From our cell-to-bond transformations, we can also construct implicit cell-to-cell 
transformations in which a cell of linear dimension I is rescaled into a cell of linear 
dimension I' (Reynolds et a1 1978, 1980, Family 1980, Redner and Reynolds 1981). 
This type of transformation has been useful because, with minimal computational 
labour, it gives accuracy comparable to the cell-to-bond transformation with I = 40. 
The results for x *  and V I I  with both types of transformations are given in table 2. It 
is somewhat surprising that any reasonable extrapolation procedure for x *  and vll 
based on finite-size scaling (see e.g. Reynolds et a1 1978, 1980 and references therein) 
gives estimates that are quite different than those found by series. One possible 
explanation for this discrepancy is the ambiguity in relating the eigenvalue to the 

Table 2. Results for x*  and "11 upon rescaling a cell of linear dimension I to a cell of linear 
dimension I'. 

2 X *  0.3306 
"11 0.6392 

3 X *  0.3157 0.3048 
"I1 0.6463 0.6547 

4 X *  0.3080 0.3003 0.2966 
"I1 0.6515 0.6599 0.6656 
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exponent discussed above. In addition, there is a further problem in that isotropic 
finite-size scaling is not valid for directed animals or directed percolation. It is 
necessary to scale in an anisotropic way to reflect the anisotropy of the problem 
(Redner 1981b). 

While a one-parameter approach is limited quantitatively, we can obtain very useful 
qualitative information by introducing a second parameter into the PSRG, a fugacity p 
for an isotropic bond. This permits us to study the crossover between directed and 
isotropic animals and obtain the general two-parameter phase diagram. To accomplish 
this, we examine all lattice animal configurations that start at the lower-left comer 
and span the cell. A given spanning animal may be made up of n+ directed bonds 
and n isotropic bonds and is therefore weighted by xn+pn. Then the statistical 
weight for all animals that span from the lower-left hand comer to the opposite 
edge is used to determine x' as before. However, if the spanning animal contains a 
path that allows one to traverse the cell in either direction, we renormalise to an 
isotropic bond. 

These considerations lead to coupled recursion relations for x' and p' which can then 
be solved to yield the global phase diagram shown in figure 2. An important feature of 
this diagram is that there is a critical line in which the renormalisation flow is from the 
isotropic to the directed fixed point. This indicates that a lattice animal with any amount 
of anisotropy, no matter how weak, will have the same critical behaviour as directed 
animals. 

0 Isotropic 1 
tonh p 

Figure 2. Schematic flow diagram for the two-parameter renormalisation defined by the 
coupled recursion relations described in the text. Fixed points are shown as heavy dots and 
the arrows give the direction of the flow under renormalisation. Notice the presence of a 
critical line along which the renormalisation flow is from the isotropic to the directed animal 
fixed point. 

In summary, we have studied the properties of directed lattice animals, a random 
cluster model where the constituent bonds are directed and possess a preferred 
orientation. Directed animals are extremely anisotropic in shape in the asymptotic 
limit, being described by two diverging correlation lengths, one parallel (611) and one 
transverse (6,) to the anisotropy. For spatial dimensions greater than or equal to seven, 
mean-field theory appears to be valid and the two lengths diverge with exponents VI( = f 
and Y ,  = respectively. Moreover, the exponent 8 characterising the singularity of the 
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generating function is equal to $ in mean-field theory, and this can be found by 
considering the Cayley tree limit. We have used series methods to estimate these 
exponents for directed animals between two and eight dimensions. Our data are fairly 
accurate in d = 2, and in. higher dimensions they are in rough agreement with the 
predictions of the mean-field limit. We have also used a small-cell position-space 
renormalisation group to study directed animals in two dimensions. A two-parameter 
approach gives a global phase diagram encompassing the crossover between isotropic 
and directed animals. We find that an animal with a non-zero fraction of directed 
bonds has the asymptotic behaviour of fully directed animals. 
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Appendix 1. Exact enumeration data for fully and partially directed animals. 

Number  of fully directed animals 
2 3 4 5 6 

1 2 3 4 5 6 
2 5 12 22 35 51 
3 14 55 140 285 506 
4 42 273 969 2 530 5 481 
5 130 1419 7 060 23 701 62 742 
6 412 7 617 53 304 230 480 746 293 
7 1326 41 838 413 028 2 303 445 9 130 254 
8 4 318 233 826 3264214 23507305 114133905 
9 14 188 1 324 596 26 201 392 243 890 210 

10 46 950 7585266 212967186 
11 156 258 43 822 671 
12 522 523 255 049 350 
13 1 754 254 
14 5 909 419 
15 19 964 450 
16 67 618 388 
17 229 526 054 

d 7 8 
b 

1 7 8 
2 70 92 
3 819 1240 
4 10 472 18 278 
5 141 631 285 160 
6 1991 661 4 627 708 
7 28821066 77 308184 

__ 
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Number of partially directed animals 

2 3 

L185 

1 2 
2 6 
3 21 
4 79 
5 309 
6 1239 
7 5 053 
8 20 861 
9 86 920 
10 364 770 
11 1 539 608 
12 6 528 865 
13 27 794 518 
14 118 717 437 
15 508 504 266 

3 
15 
93 
643 

4 739 
36 408 
287 911 

2 325 398 
19 085 788 
158 629 279 

~~ 

Fully directed animals-Longitudinal cluster radius 
2 3 4 5 6 7 8 

1 1.000 1.000 
2 1.800 1.750 
3 2.571 2.412 
4 3.238 3.087 
5 3.892 3.674 
6 4.512 4.223 
7 5.111 4.745 
8 5.693 5.243 
9 6.260 5.723 
10 6.813 6.187 
11 7.356 6.636 
12 7.888 7.073 
13 8.411 
14 8.926 
15 9.434 
16 9.935e 
17 10.430 
Transverse cluster radius 

2 3 

1.000 
-.727 
2.428 
3.022 
3.583 
4.105 
4.598 
5.064 
5.514 
5.944 

4 

1.000 
1.714 
2.403 
2.986 
3.532 
4.041 

4.972 
5.404 

4.519 

5 

1.000 
1.705 
2.387 
2.962 
3.500 
4.000 
4.469 
4.913 

6 

1.000 
1.700 
2.376 
2.947 
3.479 
3.973 
4.436 

7 

1.000 
1.696 
2.368 
2.935 
3.462 
3.953 
4.412 

8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

0.500 
0.800 
1.071 
1.285 
1.484 
1.665 
1.831 
1.987 
2.134 
2.273 
2.406 
2.532 
2.654 
2.771 
2.884 
2.993 
3.099 

0.333 
0.583 
0.781 
0.948 
1.095 
1.228 
1.348 
1.460 
1.564 
1.662 
1.754 
1.842 

0.250 
0.454 
0.621 
0.162 
0.886 
0.997 
1.098 
1.190 
1.276 
1.357 

0.200 
0.371 
0.515 
0.639 
0.749 
0.847 
0.936 
1.018 
1.093 

0.167 
0.313 
0.440 
0.551 
0.650 
0.739 
0.820 
0.894 

~~ 

0.143 0.125 
0.271 0.239 
0.385 0.341 
0.485 0.433 
0.575 0.516 
0.657 0.591 
0.732 0.661 
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Partially directed animals 
Longitudinal cluster radius 

b d = 2  d = 3  
Transverse cluster radius 
d = 2  d = 3  

1 0.500 0.333 
2 1 .ooo 0.667 
3 1.428 0.956 
4 1.810 1.219 
5 2.190 1.459 
6 2.548 1.681 
7 2.887 1.889 
8 3.216 2.086 
9 3.535 2.272 

10 3.847 2.451 
11 4.151 
12 4.449 
13 4.742 
14 5.030 
15 5.314 

0.500 0.333 
1.000 0.800 
1.428 0.967 
1.810 1.237 
2.158 1.482 
2.481 1.706 
2.782 1.913 
3.065 2.106 
3.333 2.288 
3.588 2.459 
3.831 
4.065 
4.289 
4.506 
4.715 

Appendix 2: Recursion relations for directed animals. 

2 x 2 cell 

x2+4x3+5x4+4x5 + x 6  
3 x 3  cell 

x 3  +6x4+ 26x5 +67x6+ 135x' +219x8 + 287x' 

+ 302x1"+244x11 + 1 4 0 ~ ' ~  + 52Xl3+ l l X l 4 +  x lS 

4 x 4 cell 

x4 + 8x5 +43x6 + 191x7 + 646x8+ 1 8 3 9 ~ ' + 4 6 0 0 x ~ ~ '  

+ 1 0 3 3 0 ~ "  + 2 1 0 5 2 ~ ' ~  + 3 9 0 1 9 ~ ' ~  +65635x l 4  + 9 9 7 4 6 ~ ' ~  

+ 1 3 6 0 4 9 ~ ' ~  + 65090x"+ 176143x"+ 1 6 2 7 2 0 ~  '' + 1 2 7 7 1 4 ~ ~ ~  

+83335x21 +44130x2*+ 1 8 4 5 8 ~ ~ ~ +  5 9 0 4 ~ ~ ~  

+ 1 3 8 4 ~ ~ ' + 2 2 3 ~ ~ ~ + 2 2 x ~ ~ + x ~ ~  
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