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Abstract. We develop an approach for describing an isolated polymer chain in solution, 
without appeal to the n + 0 limit of the n-vector model. Our approach treats the generating 
function for self-avoiding walks as a grand partition function. In this description, the 
fugacity per monomer plays a fundamental role as the unique scaling field in the problem. A 
physical picture of a polymer chain in both an ordered and disordered phase emerges 
naturally from the resulting thermodynamic relations. This picture turns out to be similar to 
percolation, and leads us to classify the phases of a single polymer chain according to their 
fractal dimensionality. We identify the monomer density as the order parameter. 
Furthermore, since we have only a single scaling field-the fugacity per monomer-we can 
relate all the critical exponents to a single exponent. We find cy = y, p = 1 - c y  = du - 1. We 
emphasise that this theory is not equivalent to the n + 0 limit of the n-vector model, though 
the underlying generating function, and hence the correlation functions, are the same. 

1. Introduction 

The statistical properties of self-avoiding walks (SAWS) - random walks constrained 
never to self-intersect - have been the focus of extensive investigation for two prin- 
cipal reasons. First, the SAW model has been extremely successful in describing the 
properties of an isolated polymer chain. The self-avoiding condition enforces the 
‘excluded-volume’ constraint, which prohibits different monomers within a polymer 
from occupying the same position (see e.g. Flory 1953, de Gennes 1979 and references 
therein). Second, the configurational properties of such SAWS, in the limit that the 
number of steps N tends to infinity, can be described in terms of the critical behaviour of 
an n-component magnet in the limit n + 0 (de Gennes 1972, Domb 1972, des Cloizeaux 
1974). 

From this analogy of the SAW model with critical phenomena, there has arisen 
considerable interest in calculating various properties which characterise the large-N 
scaling behaviour of SAWS (see e.g. references in McKenzie (1976)). For example, in 
Monte Carlo studies configurational properties are calculated by sampling SAWS with a 
fixed number of steps N. This procedure may be repeated for several different 
(relatively large) values of N to deduce the asymptotic dependence on N of the quantity 
under study. Series expansion studies, on the other hand, involve enumerating all 
lattice SAWS (beginning at some fixed origin) for 1 < N < N,,,, where N,,, is lattice 
dependent and determined by constraints of computer time. For each N one calculates 
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the various configurational properties, and then extrapolates in order to infer N + CO 

behaviour. Thus, in such studies scaling behaviour is expressed as the dependence of a 
given property on the number of monomers or steps, N. 

While these investigations are very useful, the analogy with critical phenomena is 
not immediate; N, rather than a temperature-like variable, is the fundamental 
parameter. An important conceptual advance was provided by the n + 0 magnetic 
correspondence, which showed that 1/N is equivalent to ( T  - T,) in the magnetic model 
(de Gennes 1972, des Cloizeaux 1974). This identifies criticality with the limit N + CO. 
Unfortunately, this correspondence is valid only for T > T,. In particular, the inter- 
pretation of an analogue of a low-temperature phase for an isolated polymer chain has 
not been adequately addressed (de Gennes 1979). 

In this Letter we develop an approach to the isolated polymer chain problem which 
is of considerable simplicity, and is valid for all values of a temperature-like variable. It 
is based on tre,a,ting the SAW generating function as a grand partition function (Shapiro 
1978). Within the grand canonical ensemble, the fugacity per monomer, p ,  is the 
unique scaling field in the problem. As we shall see, the fugacity plays a temperature- 
like and a magnetic field-like role simultaneously. 

In this thermodynamic description, a simple picture of the ordered and disordered 
phases of a polymer chain emerges naturally (see figure 1). For p < p c ,  only a chain of 
finite length can occur; this corresponds to the disordered or high-temperature phase in 
the ( n  = 0)-vector magnet. For p > p c ,  on average a chain occupying a finite fraction of 
the total lattice volume occurs. In this phase, we identify the monomer density as the 
order parameter, and derive an expression for the associated exponent. Since there is 
only one chain, the monomer density is just the probability that a given bond (either 
occupied or empty) belongs to an infinite chain. This is similar to the order parameter in 
percolation?. Our description of the single polymer chain resembles percolation in 
several ways, and so we use here ideas from percolation to describe geometric features 
of the chain. 

Figure 1. The three 'temperature' regimes for a polymer chain described in the text. ( a )  In 
the high-temperature region ( p  <p,) only a finite-length chain can occur. ( b )  At criticality 
( p  = p,) an infinite chain with a ramified structure occurs. (c) In the low-temperature region 
( p  > p,) an infinite chain with a compact structure occurs. 

2. Thermodynamic description for a single chain 

To introduce our approach, we briefly review the conventional way to study lattice 
SAWS. Let cN be the number of N-step SAWS which begin at a fixed lattice site. We may 

+ More precisely, the monomer density corresponds to p P ( p )  in percolation, where p is the bond occupation 
probability and P( p ) ,  the percolation order parameter, is the probability that an occupied bond belongs to the 
infinite cluster. 
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define a generating function for all single SAWS by creating a linear combination of the 
different cN in the space of polynomials p N .  This is equivalent to assigning a weight, or 
fugacity, p to each step in the walk. Thus (see e.g. de Gennes 1979) 

The asymptotic behaviour of cN may be written as 

C N  - p 

( 2 . l u )  

( 2 . l b )  

Thus as p + p c  = l / p  from below, r ( p )  diverges with the characteristic exponent y. The 
exponent in ( 2 . l b )  is chosen to be y because, in the n + 0 magnetic analogy, T ( p )  is the 
susceptibility of the spin system. Thus we write 

r (p )  - ( p  - p , ) - y m = o .  ( 2 . l c )  

The subscript n = 0 indicates the origin of the exponent from the magnetic analogy. 
Notice from ( 2 . 1 ~ )  that p acts as a temperature-like variable in the generating function. 

On the other hand, we may also view the generating function ( 2 . 1 ~ )  as a grand 
partition function % ( p ) .  In this sense, the variable In p now plays the role of a chemical 
potential or ‘field’ which is conjugate to N. We write 

(2 .2a)  

This grand canonical ensemble contains one chain with a fluctuating number of 
monomers N. Note that, from equation (2 .2u) ,  the canonical partition function for 
N-step SAWS is simply CN. Thus we may write 

2 = CN = Tr e-%”. (2 .2b)  

If we consider the trace to be taken over the cN possible (already self-avoiding) states, it 
follows that the Hamiltonian XN is zero; purely entropic considerations determine the 
statistical mechanics of the system?. 

The dual role played by p - both temperature-like and field-like -suggests that 
one can describe the configurational problem of an isolated chain with only a single 
scaling field$. This is not the case in the n + 0 magnetic analogy for the single-chain 
problem, in which two apparently independent scaling fields exist. 

Let us now pursue the consequences of the definition (2 .2a)  for S ( p ) .  We define a 
(normalised) grand potential, 

G ( p )  = lim V-’ In 
V-U2 

( 2 . 3 ~ )  

The prime on the summation indicates that the generating function is defined on a finite 
lattice of volume V = b d ,  where b is the linear size of the system. Near pc ,  we assume 
that G(  p )  behaves as 

G ( p ) - ( p  -pc )2 -asAw,  (2.3b) 

where we use the subscript SAW to distinguish our exponents from those of the 

i Alternatively, one could consider the trace in (2.2b) to be over the z N  possible states of a random walk. 
However, now accounting for the excluded volume interaction leads to a complicated Hamiltonian. 
$ Another scaling field would appear, in both the canonical and grand canonical ensembles, if one introduced 
an actual field in addition to In p .  
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( n  = 0)-vector spin system. We now explore the thermodynamics resulting from our 
potential ( 2 . 3 ~ ) .  In the next section, we indicate how the assumption (2.3b) leads to a 
consistent thermodynamic formulation of the SAW problem. 

By differentiating G ( p )  with respect to In p ,  our field-like variable conjugate to N, 
we obtain an ‘order parameter’, 

( 2 . 4 ~ )  

The notation (. . .) indicates an average in the grand canonical ensemble defined by 
equation ( 2 . 2 ~ ) .  Assuming equation (2.3b),  as p + p c  from above, the order parameter 
( N )  varies as 

( N )  - ( p  -pc ) l -asAw.  (2.46) 

From this equation we identify 

P S A W  = 1 - USAW. (2.5) 
Furthermore, the derivative of the order parameter with respect to its conjugate field 

( 2 . 6 ~ )  

Thus we may identify equation ( 2 . 6 ~ )  as the ‘susceptibility’ of the single chain polymer. 
Then from equation (2 .4b)  we obtain 

(2.6b) 

is simply related to the fluctuation in the order parameter, 

d(K)/d(ln p )  = V ( ( X 2 )  - (K)’). 

dW)ld(ln p )  ~ X S A W -  ( p  -pJaSAW,  

from which we find a susceptibility exponent 

Y S A W =  USAW. (2.7) 
If we have viewed p as a temperature-like variable in the thermodynamic relations 
instead of a field-like variable, then ( 2 . 4 ~ )  and ( 2 . 6 ~ )  would be the entropy and the 
specific heat respectively. Hence, in this formalism, the entropy is equivalent to the 
order parameter and the specific heat is equivalent to the susceptibility. This 
equivalence is a direct consequence of the existence of a single scaling-field. 

3. Scaling laws and order parameter 

In order to study the consequences of the single-scaling-field approach, we now relate 
the SAW exponents to the correlation length exponent v. Our argument emphasises the 
physical interpretation of the order parameter. Consider an ensemble of isolated 
polymer chains at the critical value, pc(b) ,  for a finite system of linear dimension b. From 
finite size scaling, the deviation of p,(b) from p c  of an infinite system may be written as 
(Fisher 1971, Sur et a1 1976, Reynolds et a1 1978) 

( 3 . 1 ~ )  

Since (cf equations (2.1~2, c)) 

we may combine equations ( 3 . 1 ~ )  and ( 3 . l b )  to obtain 

( X )  = ( N ) / b d  - bl’v-d. ( 3 . 2 ~ )  



l e t t e r  to the Editor L59 

On the other hand, finite size scaling arguments show that the order parameter for a 
finite system at p c  varies as 

( X )  - b-””. (3.2b) 

Combiningequations ( 3 . 2 ~ )  and (3.2b), we obtain p = d v  - 1. This may also be derived 
from hyperscaling ( d v  = 2 - a )  together with equation (2.5). Since the correlation 
length is the same for both our formulation of the SAW problem and the formulation 
from the n -+O magnetic analogy, v does not require a distinguishing subscript. 
Employing the Flory (1953) values of v yields the numerical values of the SAW 
exponents shown in table 1. 

Table 1. Relationship of the SAW exponents to v for general d. The numerical results for 
1 s d ~4 are obtained from the Flory formula v = 3 / ( d  + 2 ) .  Above d = 4 ,  mean-field 
theory gives v = i. 

Dimension a P Y U 

d c 4  2 - d v  d v - 1  2 - d v  3 / ( d  + 2 )  
1 1 0 1 1 
2 0.5 0.5 0.5 0.75 
3 0.2 0.8 0.2 0.6 

24 0 1 0 0.5 

The problem of identifying the order parameter has been addressed previously by 
de Gennes (1979), who proposed that the order parameter squared is the monomer 
density. This proposal is based on making an equivalence between the magnetisation of 
the ( n  = 0)-vector spin system (the presumed order parameter), and the square root of 
the monomer density. However, our identification of ( X )  as the order parameter allows 
one to find the exponent p simply. Moreover, the resulting physical picture is similar to 
both percolation and gelation (de Gennes 1976, Stauffer 1976). In these theories the 
order parameters are the percolation probability and the gel fraction -the prob- 
abilities that a monomer belongs to an infinite cluster or to an infinite gel molecule 
respectively. For the single chain, the monomer density is the same as the probability 
that a bond (occupied or empty) belongs to an infinite chain. Thus the similarity with 
percolation and gelation is quite close. 

Following this similarity further, we may classify the phases of a single chain 
according to its effective or fractal dimensionality (Stanley 1977, Mandelbrot 1977). 
This quantity may be defined as the exponent relating the volume R occupied by the 
chain to the characteristic linear dimension of the system b, i.e. 0- bdf. This effective 
dimension is one of many parameters which helps to describe the ramification and 
spatial extent of an object (Gefen et a1 1980), and has provided useful insights into the 
geometric aspects of the percolation transition. 

When p < p c ,  the probability of having a chain with N monomers decreases 
exponentially with N (see equations (2 .14 b)). Hence ( N ) ,  which is the volume 
occupied by the chain, is finite even in an infinite system, and df = 0. At the point p = pc ,  
the average number of bonds in a SAW varies asymptotically as b”“. Hence df = 1 / v  for 
‘critical’ SAWS. Finally, for p >pc  we have the ordered phase for which ( X )  > 0. This 
implies that ( N )  must scale linearly in the volume of the system, yielding df = d. Thus, in 
the condensed phase, the SAWS are compact. This geometric picture for the shape of a 
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polymer chain as a function of p is qualitatively the same as that in percolation and 
gelation. 

Finally, we discuss briefly the nature of the mean-field theory that is appropriate for 
the isolated polymer chain. From table 1, we see that for spatial dimensions d 2,4, the 
exponents remain constant. This indicates that mean-field theory holds above an upper 
critical dimensionality d, = 4. In fact, from the Ginzburg (1960) criterion we verify, by 
substituting the mean-field values @SAW = 1 and ?SAW = 0, that d, = (2p + y ) / v  = 4. 
Such a mean-field theory can be described by a phenomenological Landau-Ginzburg 
expansion of the form 

F ( ( N ) )  = a(N) + b ( J q 2  + . * . , (3.3) 

where a a ( p - p , ) ,  b is non-zero at pc ,  and the potential F ( ( N ) )  is the Legendre 
transform of G ( p ) .  The linear term is admitted into this expansion because a polymer 
chain has the same spatial symmetry for all values of p # 0 (Landau and Lifshitz 1969). 
This expansion yields the SAW exponents in table 1 for d 3 4. 

A similar single-scaling-field treatment can be applied equally well to any single 
element system whose configuration is controlled by a constant fugacity for each of its 
constituents. Such a system will also satisfy the exponent relations, equations (2 .5)  and 
(2.7). In this description, one may think of v as fundamental, depending on the physical 
details of the system. Once the value of Y is determined, the remaining exponents 
follow. As an example, we can apply these ideas to the lattice animal problem and 
predict the value of d,. While it was first thought that for animals d ,=6 as in 
percolation, recent evidence points to d, = 8 (Lubensky and Issacson 1978, 1979, 
Issacson and Lubensky 1980, de Gennes 1980). To derive this, we use the known value 
v = from mean-field theory (de Gennes 1980). From the same symmetry argument 
used for the single polymer chain, a Landau theory for animals also has the form of 
equation (3.3), from which the mean-field values are ,f3 = 1 and y = 0. Substituting 
these into the Ginzburg criterion yields d, = 8. 

4. Summary 

We have formulated a description of the single polymer chain problem through an 
approach in which the fugacity per monomer is the only scaling field in the problem. We 
have treated the generating function for lattice self-avoiding walks as a grand partition 
function. Our treatment appears to have applicability to any configurational problem 
with a generating function controlled by a fugacity per monomer. For the single chain 
problem, the thermodynamic relations following from our definition of the grand 
partition function have led naturally to a percolation-like picture of the ordered and 
disordered phases for a polymer chain, and to the identification of the monomer density 
as the order parameter. Moreover, since there is only one scaling field in the problem, 
all the exponents may be related to each other. 
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