
J. Phys. A: Math. Gen. 14 (1981) L349-L354. Printed in Great Britain 

LETTER TO THE EDITOR 

Percolation and conduction in a random resistor-diode 
network 

S Redner 
Center for Polymer Studiest and Department of Physics, Boston University, Boston, MA, 
USA 02215 

Received 13 July 1981 

Abstract. We study percolation and conduction in a randomly diluted network in which the 
occupied bonds may be either resistor-like, transmitting connectivity in both directions 
along a bond, or diode-like, transmitting in only one direction. This system exhibits novel 
phase transitions signalling the onset of infinite clusters with either isotropic or uni- 
directional connectivity. Position-space renormalisation group methods are applied to map 
out the phase diagram and calculate exponents associated with these phase transitions. 

The percolation problem has been extensively investigated, partly because it is an 
extremely simple system exhibiting the intriguing complexities of continuous phase 
transitions, apd also because of its many physical realisations (Stauffer 1979, Essam 
1980). Recent work has focused on developing generalisations of percolation which are 
of fundamental theoretical interest, as well as models which more realistically describe 
the properties of particular physical systems. Many such generalisations are contained 
implicitly in the pioneering work of Broadbent and Hammersley (1957). They pro- 
posed that neighbouring lattice sites may be joined by two randomly occupied directed 
bonds, one ‘transmitting’ connectivity or information in one direction, and the other 
transmitting in the reverse direction. In this sense, the directed bonds act as diodes, in 
contrast to pure bond percolation in which the bonds act as resistors, transmitting in both 
directions. 

One special case of this Broadbent-Hammersley model is directed bond percola- 
tion, in which, on the square lattice, randomly occupied directed bonds may transmit 
only upward or to the right. Above the percolation threshold, an infinite cluster forms 
which may be traversed from the lower-left to the upper-right, but not vice versa. This 
model has different critical behaviour from pure bond percolation (Blease 1977a, b, c, 
KertCsz and Vicsek 1980, Dhar and Barma 1981), exhibiting an anisotropic structure 
for both the infinite cluster and the decay of correlations (Obukhov 1980, Kinzel and 
Yeomans 1981). Further interest in this model stems from the fact that directed 
percolation can be mapped into a Reggeon field theory (Cardy and Sugar 1980), and the 
latter model can then be related to Markov processes with absorption, branching and 
recombination (Grassberger and Sundermeyer 1978, Grassberger and de la Torre 
1979) which are of relevance for describing many chemical and biological processes 
(Schlogl 1972). Reynolds (1981) treated a more general problem in which the diodes 
could ‘break down’, and conduct in both directions. By varying such a breakdown 
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probability, Reynolds studied the crossover between directed and isotropic percolation, 
and argued that the two models are in different universality classes. 

In this Letter, we consider a more general percolation process on the square lattice, 
mediated by both resistors and randomly oriented diodes. We define positive diodes to 
be transmitting either upward or to the right and vice versa for negative diodes. 
Resistors transmit in both directions, and vacancies are non-transmitting (figure 1). 

r d, 

Figure 1. A typical configuration in a 2 x 2 cell of the square lattice. Diodes, resistors and 
vacancies are represented by arrows, heavy lines and broken lines respectively. The 
probability of traversing the cell vertically requires only the four vertical bonds and the d.. 
horizontal bond. Under rescaling, the configuration maps into the state shown on the right. 
These five bonds are also used to calculate the probability of finding a path that joins the top 
edge of the cell with the ghost site via ghost bonds (wavy lines). 

These elements occur with random probabilities d,, d- ,  r and v respectively. For this 
system, the diode ‘polarisation’ points along an axis inclined at 45” to the horizontal, 
taking on any value between -1 and +l. Our work indicates that this model exhibits 
novel phase transitions due to the formation of infinite clusters which support either 
isotropic information flow or unidirectional flow, either with or against the diode 
polarisation. 

We have applied the position-space renormalisation group (PSRG) to study the 
properties of this random resistor-diode network. Our procedure is based on the 
simplest approximation of rescaling a 2 x 2 bond cell as shown in figure 1 (Reynolds et a1 
1977). For the 45 configurations of the cell, we calculate the probabilities of traversing 
the cell in both directions, and in only one direction. These give respectively, the 
probability of a renormalised resistor, and the probability of a renormalised diode 
oriented in the direction of traversing. From these recursion relations, we obtain the 
phase diagram in the probability space spanned by d,, d-,  r and v (figure 2). Four 
phases exist: a ‘vacancy’ phase containing only finite clusters, a ‘resistor’ phase in which 
information flows isotropically within the infinite cluster, and two unidirectional ‘diode’ 
phases in which information flows only along the direction of diode polarisation. The 
phase diagram exhibits two symmetries which arise from the invariance of the recursion 
relations under inversion (d+-d-),  and under a duality in which v - r  and d,-d,. 
The latter symmetry appears to be exact, similar to the dual symmetry of pure bond 
percolation. 

Of the six non-trivial fixed points (figure 2), there are two directed fixed points which 
occur at d: (or d ? )  = 0.5550, U* = 1 - d z ,  and r* = 0. They describe the onset of an 
infinite cluster which transmits only along the direction of diode polarisation. Our value 
of d* is a reasonable approximation to the estimates d ,  = 0.643-0.645 for directed 
percolation found by more accurate numerical methods (Blease 1977a, b, c, Kertksz 



Letter to  the Editor L351 

V Isotropic r 

Figure 2. Schematic phase diagram of the random resistor-diode network in the probability 
space d,, d- ,  r and U. Fixed points are shown as heavy dots, and arrows indicate the 
direction of flow under renormalisation. The phase diagram is symmetric across the plane 
defined by d, = d- (cross-hatched), and across the plane o = r. The two shaded surfaces 
form a wedge which originates from the central line of the symmetry plane. The wedges on 
the d, and d- side of the symmetry plane meet on this line of higher-order critical points, 
and divide the tetrahedron into regions of positive diode, negative diode, resistor and 
vacancy phases. At the mixed fixed point, independent exponents arise when we approach 
in the I and d directions (within and perpendicular to the symmetry plane respectively). 

and Vicsek 1980, Dhar and Barma 1981, Kinzel and Yeomans 1981). From the 
thermal eigenvalue, Ad,  = dd,/dd*ld* = 1.567, we obtain a correlation length exponent 
zq = In 2/ln Ad,  = 1.543 describing the divergence of the length along the polarisation. 
This is consistent with the estimate q= 1.65-1.70 found by more accurate methods. 
There also exist two reverse fixed points which signal the onset of infinite paths, 
mediated by resistors, which transmit opposite to the direction of polarisation. By 
duality, these fixed points occur at d, = 0.5550, r* = 1 -d* ,  and v* = 0, with the same 
exponents as those at the directed fixed points. Both pairs of fixed points are domains of 
attraction for the two surfaces of second-order transitions which separate the diode and 
vacancy phases and the diode and resistor phases respectively (figure 2). 

The isotropic fixed point occurs at r* = (which is exact by duality), U* = 1 - r* ,  and 
d$  = 0. This is a higher-order critical point where the vacancy, resistor and two diode 
phases become simultaneously critical. Within the symmetry plane defined by d, = d-, 
the linearised recursion relation is diagonal, leading to an isotropic correlation length 
exponent vi = 1.428 as the fixed point is approached in any direction. Finally, a ‘mixed’ 
fixed point occurs at d, = d- = 0.2457, r* = v* = 0.2543. Here an isotropic infinite 
cluster forms whose connectivity requires both diodes and resistors, and which is 
described by two diverging correlation lengths. One is an isotropic length scale as the 
fixed point is approached in the ‘r’  direction. In our 2 x 2 cell approximation, the 
exponent governing the divergence of this length equals v i  of the isotropic fixed point. 
The second length scale is associated with connected paths oriented opposite to the 
diode polarisation as the fixed point is approached in the ‘d ’  direction. As the 
polarisation approaches zero, this reverse length diverges with an exponent of 1.710. 
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The domain of attraction of the mixed fixed point is a line of higher-order critical points 
in the symmetry plane, where the four phases are simultaneously critical (figure 2). 

In addition to finding thermal exponents, we introduce a magnetic-field-like vari- 
able to calculate magnetic exponents as well. This may be accomplished by having a 
ghost site which may connect to all lattice sites via randomly occupied ghost bonds 
(Kasteleyn and Fortuin 1969, Reynolds et a1 1977, 1980). When the ghost bond 
probability, h, is greater than zero, an infinite cluster exists for all non-zero lattice bond 
probabilities in a manner analogous to the magnetisation induced in a ferromagnet by a 
field for all temperatures. To renormalise h, we calculate the probability that there 
exists a connected path joining one edge of the cell to the ghost site. Configurations 
with such a path renormalise to the combination of an occupied lattice bond and ghost 
bond, leading to a recursion relation of the form r’h’ = R h ( r ,  h )  for pure percolation. We 
obtain the best numerical results when we employ a five-bond cell. This procedure is ad 
hoc since six bonds of the cell contribute to the probability of reaching the ghost. Our 
approximation yields a magnetic eigenvalue Ah = ah’/ahl,*,h* = 3.75, a magnetic scaling 
power of Y h  =In 2/ln Ah = 1.907, and exponents p = (d - yh)/y,  = 0.1242, y = 
( 2 y h  - d ) / y ,  = 2.418, in good agreement with more accurate estimates (see e.g. Stauffer 
1979, Essam 1980). 

For directed percolation, the orientation of connected paths on the lattice suggests 
that we introduce directed ghost bonds which go f r o m  the ghost to all the lattice sites 
(Obukhov 1980). This construction induces an orientation for connected paths in finite 
field in which the ghost is ‘earlier’ than all lattice sites. Consistent with this ‘ordering’, 
we renormalise a diode ghost bond by calculating the probability of getting from the 
ghost to a site in the cell, and finally to a cell edge. From this recursion relation, and with 
the numerical estimates dT = 0.634 and VIJ = 1.70, we find p = 0.2156 and y = 2.968. 
Our values of p and y should be compared with the series estimates p = 0.28 k 0.02 and 
y = 2.27 f 0.04 (Blease 1977a, b, c). For the reverse threshold, we calculate the 
probability that we can go in the reverse direction f r o m  the cell edge to the ghost. Since 
this goes against the diode polarisation, both resistor-like lattice and ghost bonds are 
required to construct such a path. From the recursion relation for the resistor ghost 
bond probability, and from d* and  VI^ quoted above, we find p = 0.0633 and y = 3.273. 

At the mixed threshold, there exist two independent magnetic exponents related to 
approaching the fixed point in the r and d direction. In the former case, we measure an 
isotropic mean cluster size by calculating the probability of getting from the ghost to the 
cell edge or  vice versa. This renormalises the resistor ghost bond probability, and we 
obtain a magnetic eigenvalue Ah,  = 3.731. Under the assumption that the thermal 
exponent in the r direction is the same as that in pure bond percolation, y ,  = a, we obtain 
p = 0.1342, y = 2.398, very close to the magnetic exponents found in pure percolation. 
In the d direction, the mean size of clusters transmitting only opposite to the diode 
polarisation diverges as d, (or d-) -* d*.  In addition, the probability that a particular 
diode belongs to a unidirectional infinite cluster transmitting parallel to the diode 
vanishes as the polarisation approaches zero. These processes may be described by 
renormalising the diode ghost bond probability. We find a magnetic scaling power 
Ahd = 3.756, and associated exponents, p = 0.1550 and y = 3.109. 

We have also examined the conductivity properties of a random network of resistors 
and ‘ohmic’ diodes. The latter elements have zero conductivity in the reverse direction, 
and ohmic response in the forward direction (equivalent to a real resistor and diode in 
series). An oriented network of ohmic diodes, resistors and vacancies can be treated 
self-consistently within our approximate PSRG. However, with both positive and 
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negative diodes allowed, a new circuit element appears after rescaling: a bidirectional 
bond with different conductivities in either direction. We treat these new elements as 
resistors by taking the average of the conductivities in the two directions, thereby 
truncating the parameter space to the four variables we have already considered. 

To obtain the critical behaviour, we employ the simplest approximation and 
calculate the arithmetic mean of the conductivities of all traversing cell configurations at 
the fixed point, under the assumption that each resistor and each forward-biased diode 
has a conductivity U. From this rescaling, we find a conductivity exponent, t, through 
t = v[d - 2 + l n  b/ln(a/u’)] (Rosman and Shapiro 1977, Bernasconi 1978). For bond 
percolation, this rescaling yields U’/(+ = 0.566 . , . , and an isotropic conductivity 
exponent of t = 1.093, in reasonable agreement with recent estimates of t (Kirkpatrick 
1979). At the directed fixed point, we find that the forward-bias conductivity 
approaches zero as d + d* from above, with an exponent of 1.292. At the reverse 
threshold, the conductivity opposite to the diode polarisation approaches zero as r + r* 
from below with an exponent of 1.498. At the mixed fixed point, there are two critical 
conductivity processes. One is the vanishing of the isotropic conductivity as the fixed 
point is approached in the ‘r’  direction, while the other is the vanishing of the 
conductivity along the direction of diode polarisation as the fixed point is approached in 
the ‘ d ’  direction. Employing the truncation discussed above, we find that the former 
process is governed by an exponent of 1.111, while the latter is governed by an 
exponent of 1.463. 

In conclusion, we have studied percolation and conduction in a random resistor- 
diode network. This system exhibits new types of phase transitions due to the formation 
of infinite clusters which are either isotropic or unidirectional, with the directionality 
being either parallel or antiparallel to the diode polarisation. Position-space renor- 
malisation group methods have been applied to map out the phase diagram of this 
system, and to calculate the exponents associated with various novel percolation and 
conduction processes. Many of our predictions may be tested quantitatively by more 
accurate numerical methods. 

I thank S Alexander, A Brown, P G de Gennes, W Klein, W Kinzel, H Nakanishi, J F 
Nicoll, P Pincus, P J Reynolds and J Y Yeomans for informative discussions, and F Y 
Wu for a helpful correspondence. I am also grateful to A Brown for checking several of 
my calculations by computer. After I initiated this work, I learned that Reynolds (1981) 
has generalised his work on oriented resistor-diode networks, and treated a randomly 
oriented resistor-diode network similar to the one considered in this paper. 

Note added in proof. Recently Cardy (private communication) pointed out a very simple alternative approach 
for obtaining the recursion relation (d: + r’). Through this method several numerical errors were found and 
corrected. 
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